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Abstract—Intelligent Traffic Light Control System (ITLCS) is
a typical Multi-Agent System (MAS), which comprises multiple
roads and traffic lights. Constructing a model of MAS for
ITLCS is the basis to alleviate traffic congestion. Existing
approaches of MAS are largely based on Multi-Agent Deep
Reinforcement Learning (MADRL). Although the Deep Neural
Network (DNN) of MABRL is effective, the training time is
long, and the parameters are difficult to trace. Recently, Broad
Learning Systems (BLS) provided a selective way for learning
in the deep neural networks by a flat network. Moreover,
Broad Reinforcement Learning (BRL) extends BLS in Single
Agent Deep Reinforcement Learning (SADRL) problem with
promising results. However, BRL does not focus on the intricate
structures and interaction of agents. Motivated by the feature
of MADRL and the issue of BRL, we propose a Multi-Agent
Broad Reinforcement Learning (MABRL) framework to explore
the function of BLS in MAS. Firstly, unlike most existing
MADRL approaches, which use a series of deep neural networks
structures, we model each agent with broad networks. Then,
we introduce a dynamic self-cycling interaction mechanism to
confirm the ”3W” information: When to interact, Which agents
need to consider, What information to transmit. Finally, we do the
experiments based on the intelligent traffic light control scenario.
We compare the MABRL approach with six different approaches,
and experimental results on three datasets verify the effectiveness
of MABRL.

Index Terms—Multi-Agent Systems, Broad Learning Sys-
tem, Broad Reinforcement Learning, Multi-Agent Reinforcement
Learning, Intelligent Traffic Light Control.

I. INTRODUCTION

Intelligent Traffic Light Control (ITLC) is a typical applica-

tion of Multi-Agent Systems (MAS) [1]. Intersections of road

networks in ITLC are modeled as agents, and agents aim to

relieve traffic congestion [2]. Therefore, building the suitable

MAS model of ITLC is the basis for achieving goals. In MAS,

agents are a series of intelligence controllers with autonomy,

inferential capability, and social behavior. MAS organize a

group of agents to achieve a common objective by interacting,

making decisions, coordinating, and learning [3]. While MAS

has significant progress in many areas [4], [5], MAS is still

facing many challenges. Firstly, each agent of MAS is a local

observer and has limited perception. Secondly, the decisions

of each agent will disturb the whole environment, causing

the environment becomes unstable. Thus, the mappings from

state to action among Multiple Agents (MA) are complicated.
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Thirdly, the interaction of different agents needs to consider.

Aiming to achieve global optimal resolution, agents require

to quantify the information and ability about other agents,

then build suitable inference mechanisms [6], [7] to make

decisions. In summary, agents of MAS need to take account

of perception, decision, and inference.

Many approaches have been proposed to enhance the per-

formance of MAS [8], [9], [10], [11]. Among these methods,

MADRL receives more attention. MADRL adopts the Deep

Reinforcement Learning (DRL) algorithm with Deep Neural

Network (DNN) to solve problems of MAS. Comparing the

typical structure of traditional Single-Agent DRL (SADRL),

the MADRL approach adds a new section to ponder the

influence of other agents. There are two reasons for the

MADRL approaches not only the simple extension of SADRL.

In terms of information in MADRL, the information space

scales up as the number of agents increases. Both the own

and joint state-action values of individual agents should be

utilized. Thus, storage pressure and the calculation difficulty

are heavier than SADRL. In terms of the framework in

MADRL, Fully Decentralized (FD) [12], Fully Centralized

(FC) [13], Centralized Training and Decentralized Execution

(CTDE) [14] are typically paradigms of MADRL, they all

constituted by DNN. Before agents make the decision, these

paradigms of MADRL standardize the interaction structure by

constructing serviceable and multiple layers. As traditional

SADRL approaches without the cross and parallelism of

policy between MA, the network structures of MADRL are

more intricate than SADRL, and the training time will be

lengthened when the parameters transmit layers by layers.

Accordingly, MADRL has a heavier calculation burden and

intricate structure than SADRL.

Broad Learning Systems (BLS) [15], [16] is an incre-

mental algorithm inspired by the Single-Layer Feedforward

Neural networks (SLFN) [17]. BLS finds a new way with

fast remodeling speed to substitute the learning of DNN.

Unlike the single layer network structure, such as Radial

Basis Function (RBF) [18], BLS uses the mapped nodes and

enhancement nodes to handle the input data and trains the

models regarding ridge regression. Besides, Broad Learning

with RL signal Feedback (BLRLF) [19] exploits BLS to RL

area by introducing a weight optimization mechanism into

Adaptive Dynamic Programming (ADP) [20] to enhance the

expansion capability of BLS. Recently, Broad Reinforcement

Learning (BRL) [21] has been investigated combining the BLS

and DRL. The framework of BRL has two important keys,

one is using the Broad Networks (BN) in BLS to replace the
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DNN, and the other is adopting the training pool to introduce

the labels of BLS. Compared with DRL approaches, BRL has

better performance with a shorter execution time. BRL is the

first algorithm to solve the control questions by using the BLS.

However, BRL has concentrated on the problem with single

agent without paying little attention to the MAS. With the

number of agents increasing, it is worth investigating how BLS

handles the mutual effect between MA.

Inspired by the issues of MADRL and the feature of

BRL, we propose Multi-Agent Broad Reinforcement Learning

(MABRL). Firstly, we outline the framework of MABRL,

which combines the MADRL and BRL to explore the function

of BLS in MAS. Each agent has integrated decision-making

structures with broad networks, and updates policy based on

the memory and pseudoinverse calculation. Secondly, agents

of MABRL adopt the joint policy based on the stochastic game

to interact with the environment continually. They evaluate

the influences of other agents by the Dynamic Self-Cycling

Interaction Mechanism (DSCIM) to make decisions. Finally,

we model an instance of ITLC and experiment with three

datasets to verify the effectiveness of MABRL. To the best of

our knowledge, this is the first approach that applies BRL in

MADRL. The contributions of our work summarize as follow:

(1) A novel MABRL framework has been proposed adopting

the BRL to solve the problems of MAS. Unlike the tradi-

tional MADRL, MABRL has a simple and traceable BN

structure and updates training models and parameters by

pseudoinverse calculation. Compared with BRL, multiple

agents of MABRL adopt BN with interaction mechanisms

to make decisions.

(2) The Dynamic Self-Cycling Interaction Mechanism

(DSCIM) has been designed in MABRL to enhance

the interaction between agents, which accounts for the

attention mechanism. Agents adopt DSCIM to confirm

the joint information about ”3W”: When to interact

with others, Which agents need to consider, and What

informations need to transmit. After obtaining the joint

information, agents of MABRL conduct the mapped

features and joint information by enhancement nodes.

(3) We build a model of ITLC with MABRL. Three datasets

are considered to experiment. The ability of MABRL

can be measured by relieving traffic congestion when the

environment and datasets are intricate.

II. CONCLUSION

In this paper, we propose a Multi-Agent Broad Reinforce-

ment Learning (MABRL) framework for developing the inter-

action of MA with broad networks. Specifically, BLS is used

to replace the network architecture of MADRL with DNN,

making the approach more flexible and intelligible. Besides,

we design DSCIM inspired by AM to enhance the interaction

between agents. Moreover, we apply the MABRL approach

in ITLC to adjust the traffic flow dynamically. The results

of the experiments manifest the MABRL approach obtains

stable performance of different scenarios compared with other

approaches for ITLC. In the future, we will focus on more

complex structures and paradigms of MABRL to solve the

problems of MAS in a new way, and apply the MABRL in

more practical and extensive scenarios.
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