
Fault-tolerant consensus control of multi-agent systems

under actuator/sensor faults and channel noises: a

distributed anti-attack strategy

Jing Zhaoa, Chun Liua,b, Bin Jiangc, Ron J. Pattond

aSchool of Mechatronic Engineering and Automation, Shanghai
University, Shanghai, 200444, China

bSchool of Artificial Intelligence, Shanghai University, Shanghai, 200444, China
cCollege of Automation Engineering, Nanjing University of Aeronautics and

Astronautics, Nanjing, 210016, China
dSchool of Engineering and Computer Science, University of Hull, Hull, HU6

7RX, United Kingdom

Abstract

This study investigates the distributed fault-tolerant consensus control prob-
lem of multi-agent systems subject to simultaneous actuator/sensor faults
and channel noises in physical layer and hostile connectivity-mixed attacks
in cyber layer. Actuator/sensor faults are remodeled into unified abrupt-type
and incipient-type characteristics, and connectivity-mixed attacks are estab-
lished with connectivity-maintained and connectivity-paralyzed topologies
by a switching and nonoverlapping version. Normalization and estimation-
based observer is devised to recollect unknown state and fault observations,
and distributed anti-attack fault-tolerant consensus control is also developed
to achieve the tolerance to faults, resilience to attacks and robustness to
noises, respectively, with the novel incorporated sensor fault and output
channel noise estimation as well as neighboring output information. Cri-
teria of reaching leader-following consensus of multi-agent systems under
cyber-physical threats are derived with attack frequency and activation rate
technique. Effectiveness and improvements of the proposed fault-tolerant
consensus algorithm are validated on two case studies: 1) multi-machine
power system synchronization and 2) multi-aircraft system coordination .
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1. Introduction

Fault-tolerant consensus control of multi-agent systems (MASs) [1] with
capabilities of maintaining local and global expected performance when con-
fronted with faults has received a tremendous surge of interest in a wide
range of civil-military applications in islanded microgrids [2], underwater ve-
hicles [3], self-driving vehicles [4], unmanned aerial vehicles [5], etc. Unlike
conventional fault-tolerant consensus for the general linear MASs [6], the non-
linear factors of MASs bring challenges to the realization of quick consensus
and accurate robustness, and hence fault-tolerant consensus classification for
the fractional-order nonlinear MASs [7], stochastic nonlinear MASs [8] and
switched nonlinear MASs [9] has progressed rapidly. A class of the nonlinear
MASs in the presence of heterogeneous and switching characteristics as well
as actuator faults is considered with fuzzy logic approximation technique to
solve the consensus tracking problem [10]. However, not only unintended fail-
ures in the physical layer but also hazardous attacks in the cyber layer can
propagate dramatically and rapidly to other agents through contaminated
information interactions, thus resulting in local performance destruction or
global mission degradation of nonlinear MASs. Thus, fault-tolerance con-
sensus with anti-attack resilience on nonlinear MASs remains its ability and
sustainability at a normal prescribed level or slightly lower operation in the
face of cyber-physical threats of individual agents.

In view of long-term utilization or environmentally affected components,
MASs are vulnerable to physical anomaly problems, such as time-varying ac-
tuator faults (bias, partial loss of effectiveness, stuck or hard-over) [11], [12]
and sensor faults (fixed deviation, drift deflection or accuracy degradation)
[13], [14]. Compared to the handling of actuator or sensor faults individually
[9], [15], the fault-tolerant consensus literature on the simultaneous dealing
with actuator and sensor faults in the input and output channels of MASs is
still relatively limited. Specifically, the enhanced resilient adaptive compen-
sation protocol and H∞ control strategies are proposed for MASs with local
actuator and sensor faults [16]. The neuroadaptive inverse optimal consen-
sus issue of uncertain high-order MASs [17] and distributed adaptive resilient
consensus tracking issue of fuzzy-logic MASs [18] in the presence of actua-
tor and sensor faults are investigated, respectively. On the one hand, the
key feature is that the ever-developing consensus controller with compensa-
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tion mechanisms is designed based on the full state of itself and neighboring
state information [19], whereas the factors including output information or
unavailable information estimated by observers [11], [12], [14] are rarely ad-
dressed in dealing with simultaneous actuator and sensor faults of nonlinear
MASs. On the other hand, most research concentrate on constant or sud-
den faults of additive and multiplicative types [6], [11], while ignoring the
hidden faults, namely, incipient faults in the early stage. It is worth not-
ing that the widespread damage of the whole MASs may be due to the
insignificant deviations or fluctuations of the individual agents spreading to
its neighbors through fragile and unreliable network interaction, thus even-
tually destroying the order and coordination of MAS. In addition, owning to
the coexistence of the abrupt/incipient-type actuator/sensor faults and ad-
ditive communication noises [19], [20] or input channel noises [21], the exact
fault-tolerant consensus cannot be reached effectively. Therefore, even under
the influence of unified time-varying abrupt and incipient actuator/sensor
failures and channel noises simultaneously, it is meaningful but challenging
to devise the novel observer-based fault-tolerant consensus control concept
from estimated dynamics to tolerant systems to construct unmeasurable fault
information of nonlinear MASs.

The safe and reliable operation and evolution of MASs are affected not
only by physical faults occurring on local components but also by infor-
mation interruptions or topology disruptions induced by cyber-attacks in
hostile environments [22]. The consensus implementation of MASs requires
independent autonomous intelligences to preserve accurate and continuous
uninterrupted information interaction, while cyber-attacks carried out by a
hostile adversary poses a severe threat to MASs, eventually undermining the
basic coordination. To combat various malicious cyber-attacks, such as ac-
tuator/sensor attacks [23], deception attacks [24], false data-injection and
replay attacks [25], denial-of-service (DoS) attacks [26] and intermittent at-
tacks [27], the secure fault-tolerant consensus of the cyber-physical MASs
with an anti-attack mechanism urgently needs to be explored. The average
dwelling time (ADT) technique-based distributed consensus protocol is de-
veloped for layered MASs under attacks on topological edges to achieve the
node-to-node synchronization [28]. One of the key issues aforementioned is
how to guarantee the desirable safe and resilient consensus performance of
each individual as well as the entire MASs when confronted with simultane-
ous faults and attacks. Recent development analysis and trends of physical
safety and cyber security of MASs are briefly reviewed in [29]. In contrast
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to anomaly detection and identification subject to physical faults and cyber-
attacks in some existing studies [30], the distributed impulsive mechanism-
based cooperative fault-tolerant control [31] or the event-triggered adaptive
fault-tolerant pinning control [32] are incorporated into the consensus field to
compensate for actuator faults in the physical layer and to resist deception
attacks and aperiodic DoS attacks, respectively. Another DoS attacks in non-
linear MASs and interval type 2 fuzzy networked MASs against simultaneous
actuator faults are also investigated through the adaptive fault-tolerant con-
sensus control scheme [33] and the fault-tolerant containment control strat-
egy [34] with combination of both switching concept and ADT mechanism.
In particular, by using the existing graph theory and switching technology
[35], [36], it is extremely challenging to achieve cyber-physical tolerance and
security of multi-agent consensus that suffers from unified actuator/sensor
faults and maintained/paralyzed connectivities of topologies affected by vari-
ation in the nodes of action, degree of action and duration of failures and
attacks. To eliminate the adverse effects of them, this study explicitly ad-
dresses the leader-following consensus issue, whereas providing stringent and
co-designed framework of normalization and estimation-based observer and
distributed anti-attack fault-tolerant consensus control strategies for nonlin-
ear MASs, in the presence of unified abrupt and incipient actuator/sensor
faults, channel noises and topology switching (connectivity-maintained and
connectivity-paralyzed attacks).

The following contributions of this study are summarized. 1) Unlike con-
sensus of MASs in compensating individual physical faults [12], [17] or resist-
ing independent cyber-attacks [31], the distributed anti-attack fault-tolerant
consensus control policy attempts to synchronously address the self-dynamic
large deviations subject to unified abrupt and incipient actuator/sensor faults
and input/output channel noises in the physical layer as well as the main-
tained/paralyzed connectivities caused by connectivity-mixed attacks in the
cyber layer, which have unexpectedly high levels of confidence. 2) Normal-
ization and estimation-based observer technique is invoked to decouple the
structure of the augmented multi-agent dynamics and overcome the dele-
terious effects raised by unknown state and fault observations. Instead of
devising separated units for fault detection, identification, isolation and con-
trol in consensus control communities [7], [30], the duality and compromise
between observation and control layers (tolerance to faults, resilience to at-
tacks, and robustness to noises) are generated in an integrated framework. 3)
The computation of the ADT constraint [28], [33]-[35] is avoided by choos-
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ing appropriate attack indicators (attack frequency and activation rates),
and finally the online updating relationship between the exponential leader-
following consensus performance and less conservative dual attack indicators
is established intuitively.

The remainder of this study is structured as follows. Preliminaries and
problem formulation of MASs with actuator/sensor fault and connectivity-
mixed attack modeling are presented in Section 2. Main results including
normalization/estimation-based observer design and distributed anti-attack
fault-tolerant consensus control design are developed in Section 3. Simulation
results in Section 4 are illustrated to exemplify the effectiveness and merits
of the proposed fault-tolerant consensus control algorithm. Section 5 finally
concludes conclusions with potential future investigations.

2. Preliminaries and Problem Formulation

2.1. Graph theory

A directed and switching topology Gγ(t) is a pair (ν, ε,Aγ(t)), where ν =
{ν1, ν2, · · · , νN} is a nonempty finite set of nodes, ε ⊆ ν × ν is a set of edges,
and (νi, νj) is an edge that denotes an ordered pair of nodes νi, νj. Adjacency

matrix of the switching topology Gγ(t) is denoted by Aγ(t) = [a
γ(t)
ij ] ∈ RN×N ,

where a
γ(t)
ij is the weight coefficient of edge (νi, νj) and a

γ(t)
ii = 0, a

γ(t)
ij > 0

if (νi, νj) ∈ ε, otherwise, a
γ(t)
ij = 0. The laplacian matrix is Lγ(t) = Dγ(t) −

Aγ(t) = [l
γ(t)
ij ] ∈ RN×N , where Dγ(t) = [d

γ(t)
ii ] ∈ RN×N is a diagonal matrix

with d
γ(t)
ii =

∑N
j=1 a

γ(t)
ij .

The leader-following interaction matrix is denoted by Hγ(t) = Lγ(t) +

Bγ(t), where Bγ(t) = diag{bγ(t)
1 , · · · , bγ(t)

N } with b
γ(t)
i denoted as the information

interaction between node νi and the leader. If b
γ(t)
i = 1, the node νi can reach

the leader via a directed path, otherwise, b
γ(t)
i = 0.

2.2. Actuator and sensor fault modeling in MASs

The general nonlinear MASs with a group of one leader and N followers
are considered. The nonlinear dynamics of the ith follower in the presence
of actuator/sensor faults and channel noises are established as{

ẋi (t) = Axi (t) +Bui (t) + Fafai (t) + ξ (xi (t) , t) + E1ωi1 (t)
yi (t) = Cxi (t) + Fsfsi (t) + E2ωi2 (t) , i = 1, · · · , N (1)
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where xi(t) ∈ Rn, ui(t) ∈ Rm, yi(t) ∈ Rp and ξ(xi(t), t) ∈ Rn denote the state,
input, output and nonlinearity vectors, respectively, ωi1(t) ∈ Rs1 and ωi2(t) ∈
Rs2 denote the input and output channel noises, respectively, fai(t) ∈ Rq1

and fsi(t) ∈ Rq2 denote the actuator and sensor fault, respectively. Matrices
A,B,C denote the system-described gains, E1, E2 denote the noise-described
gains, and Fa, Fs denote the physical fault-described gains with appropriate
and known dimensions.

Actuator and sensor faults: fai(t) = [f 1
ai(t), · · · , f

q1
ai (t)]

T and fsi(t) =
[f 1
si(t), · · · , f

q2
si (t)]T in (1) are denoted as the unified abrupt-type and incipient-

type time-varying actuator and sensor faults with each element f%ai(t) and
f%si(t) modeled as f%ai (t) =

(
1− e−ε

%
a(t−T %a )

)
f̄%ai, t ≥ T %a , % = 1, · · · , q1

f%si (t) =
(

1− e−ε
%
s(t−T %s )

)
f̄%si, t ≥ T %s , % = 1, · · · , q2

(2)

where f̄%ai, f̄
%
si are the %th row elements of unknown constant fault bounds,

T %a , T
%
s are the fault occurrence time instants, and ε%a, ε

%
s are the unknown

decay rates. The modeled actuator and sensor faults are defined as incipient-
type faults (slow-varying decay rate) when εa(s) ≤ ε%a(s) < εa(s) and abrupt-

type faults (quick-varying decay rate) when ε%a(s) ≥ εa(s), respectively.

The nonlinear system of the leader (labeled as 0) is modeled as{
ẋ0 (t) = Ax0 (t) +Bu0 (t) + ξ (x0 (t) , t)
y0 (t) = Cx0 (t)

(3)

where x0(t) ∈ Rn, y0(t) ∈ Rp and ξ(x0(t), t) ∈ Rn represent the available
state, output vectors and intrinsic system nonlinearity of the leader, respec-
tively. The control input u0(t) ∈ Rm is designed as u0(t) = −Kxx0(t) with
the derived state-estimation gain Kx ∈ Rm×n.

Assumption 1: The pairs (A,B) and (A,C) are controllable and observ-
able, respectively.

Assumption 2: (i) The unified abrupt-type and incipient-type actuator
and sensor faults are differentiable after each fault occurrence instants. The
lower and upper bounds of decay rates ε%a and ε%s are determined manually
with the known positive scalars εa(s) and εa(s). (ii) The input and output
channel noises are constrained within the known and positive upper bounds,
i.e., ‖ωi1(t)‖ ≤ ω̄i1 and ‖ω̇i2(t)‖ ≤ ω̄i2, respectively.
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Assumption 3: The state-dependent system nonlinearity is satisfied with
the Lipschitz condition, i.e., ‖ξ(xi(t), t)−ξ(xj(t), t)‖ ≤ β‖xi(t)−xj(t)‖, i, j =
0, 1, · · · , N with the Lipschitz scalar β > 0.

2.3. Connectivity-mixed attack modeling

The time-varying signal γ(t) : [0,∞) → Γ = {1, · · · , r} is introduced to
denote each topology switching caused by cyber attacks. The set {G1, · · · ,Gr}
denotes the switching topologies Gγ(t), and {H1, · · · ,Hr} denotes the leader-
following interaction matrices Hγ(t) for γ(t) ∈ Γ. The switching sequence is
denoted as k ∈ N over [t0, t). Consider that there exists an infinite sequence
of uniformly bounded and non-overlapping time intervals [tk, tk+1), in which
the topology is time-invariant and non-switching.

Connectivity-mixed attacks: The topologies affected by connectivity-mixed
attacks present two consequences: network connectivity is maintained and
paralyzed, respectively. On the one hand, the connectivity-maintained topol-
ogy (removing or relinking edges slightly) still remains connected and con-
tains a directed spanning tree with the leader as the root. On the other
hand, the connectivity-paralyzed topology (removing or relinking edges dra-
matically) falls disconnected without a directed spanning tree but can be
recovered into connectivity through the attack defense or repair mechanism.
The signal γ(t) ∈ Γ = Γm ∪ Γp = {1, · · · , q, q + 1, · · · , r}, r ≥ 2 is introduced
for the switching topologies {G1, · · · ,Gq,Gq+1, · · · ,Gr}, where Γm and Γp are
the sets of q connectivity-maintained topologies and (r − q) connectivity-
paralyzed topologies, respectively.

Definition 1: Denote the number of connectivity-mixed attacks asNΓ(t0, t) =
NΓm(t0, t)+NΓp(t0, t),∀t > t0 ≥ 0 with the numbers of connectivity-maintained/-
paralyzed topologiesNΓm(t0, t) andNΓp(t0, t), respectively. Denote FΓ(t0, t) =
NΓ(t0,t)
t−t0 as the connectivity-mixed attack frequency over [t0, t).

Definition 2: Denote RΓm(t0, t) = Tm(t0,t)
t−t0 , γ(t) ∈ Γm and RΓp(t0, t) =

Tp(t0,t)

t−t0 , γ(t) ∈ Γp as the connectivity-maintained/-paralyzed attack activa-
tion rates over [t0, t), where the total activation durations of connectivity-
maintained/-paralyzed topologies Tm(t0, t) and Tp(t0, t) are expressed as{

Tm(t0, t) =
∑

k∈N,γ(tk)∈Γm
(tk+1 − tk)

Tp(t0, t) =
∑

k∈N,γ(tk)∈Γp
(tk+1 − tk)

(4)

Definition 3: The control objective in this study aims at designing the
novel fault-tolerant consensus control for the modelled nonlinear MASs (1)
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to compensate the actuator/sensor faults and channel noises in the physical
layer and resist the connectivity-mixed attacks in the networked layer through
a distributed anti-attack strategy. Specifically, the leader-following consensus
‖xi(t) − x0(t)‖2 ≤ µe−λ(t−t0)‖xi(t0) − x0(t0)‖2,∀t ≥ t0 is achieved with the
positive amplitude µ and positive decay rate λ.

Lemma 1: Υγ(t) = Φγ(t)Hγ(t) +HT
γ(t)Φγ(t) is a symmetric positive-definite

matrix with Φγ(t) = diag{φ−1
γ(t),1, · · · , φ

−1
γ(t),N} denoted as the diagonal positive-

definite matrix, where φγ(t),i, i = 1, · · · , N corresponds with the row element
of vector φγ(t) = (H−1

γ(t))
T1N for γ(t) ∈ Γ.

Remark 1: Compared with communication noises [19], [20] and individual
noises appearing in the input channel [21], or uncertain coupling nonlineari-
ties [7] and membership functions-based parameter uncertainty nonlinearities
[34], simultaneous input and output channel noises ωi1 and ωi2 are considered,
assuming that actuator/sensor faults are modeled in a general exponential
form in Assumption 2, while the modeled system nonlinear perturbation
ξ(xi(t), t) in Assumption 3 is constrained within the Lipschitz condition,
which is more general than the norm-bounded canonical constraint.

Remark 2: For attacks that actively bypass and evade the monitoring of
anomaly attack surveillance mechanisms, the attack sequence is hidden and
inescapable from the defender, and the networked graphs may be affected
by switched and updated connectivity-maintained/-paralyzed topologies, ul-
timately leading to a severe disruption of the node-to-node consensus. Com-
pared with network disconnections described by switching mechanisms [33] or
semi-Markov chains with random topology switching [36], a switching signal
version-based connectivity-maintained topologies and connectivity-paralyzed
topologies are incorporated to simulate the connectivity-mixed attack phe-
nomenon, corresponding to different scenarios: 1) with a directed spanning
tree and 2) without a spanning tree. Furthermore, despite the fact that a
malicious adversary may launch attacks of different durations and the de-
fender may not be able to determine the true situation at each moment, it
is common sense to require that the switching topologies or sequences Gγ(t)

be deterministic and switching known by some intelligent device. Modelled
connectivity-mixed attacks can be characterized by setting attack frequency
and activation rate constraints under which the problem of fault-tolerant con-
sensus control can still be guaranteed, despite receiving the dynamic effects
of actuator/sensor failures, channel noise, and cyber-attacks.
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3. Main Results

The control framework contains the normalization/estimation-based ob-
server design and distributed anti-attack fault-tolerant consensus control de-
sign to address the connectivity-mixed attacks in the cyber layer and unified
abrupt-/incipient-type actuator/sensor faults and channel noises in the phys-
ical layer, as shown in Figure 1.

Figure 1: Control framework of cyber layer, physical layer and model dynamics.

3.1. Normalization and estimation-based observer design

For nonlinear MASs with mixed actuator/sensor faults and channel noises,
the normalization of the derivable faults and noises into the same variable
using augmented dimensionality techniques aims to hide the explicit system
negative quantities of the input and output channels in the normalized state.
This section exploits the intuitive estimation-based observer structure for the
augmented system dynamics and supplements it with decoupled parameter
designs so that only estimation error, augmented uncertainty and nonlin-
earity are decoupled from the estimation error dynamics. The innovative
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observer framework thus enables efficient estimation of the original system
state, actuator/sensor faults and output channel noises.

The normalization process of the original MASs (1) is formulated on the
basis of the augmented state, uncertainty and nonlinearity items as follows{

˙̄xi(t) = Āx̄i(t) + B̄ui(t) + D̄d̄i(t) + ξ̄(A0x̄i(t), t)
yi(t) = C̄x̄i(t)

(5)

where x̄i(t) = [xTi (t) fTai(t) fTsi(t) ωTi2(t)]T denotes the augmented state,
d̄i(t) = [ωTi1(t) ḟTai(t) ḟTsi(t) ω̇Ti2(t)]T denotes the augmented uncertainty,
ξ̄(A0x̄i(t), t) = [ξT (xi(t), t) 01×q1 01×q2 01×s2 ]T denotes the augmented non-
linearity with A0 = [In 0n×q1 0n×q2 0n×s2 ], and the system matrices Ā, B̄, D̄
and C̄ are expressed as

Ā =


A Fa 0n×q2 0n×s2

0q1×n 0q1×q1 0q1×q2 0q1×s2
0q2×n 0q2×q1 0q2×q2 0q2×s2
0s2×n 0s2×q1 0s2×q2 0s2×s2

 , B̄ =


B

0q1×m
0q2×m
0s2×m


D̄ =


E1 0n×q1 0n×q2 0n×s2

0q1×s1 Iq1 0q1×q2 0q1×s2
0q2×s1 0q2×q1 Iq2 0q2×s2
0s2×s1 0s2×q1 0s2×q2 Is2

 , C̄ =


CT

0q1×p
F T
s

ET
2


T (6)

Define the augmented state estimation as ˆ̄xi(t) = zi(t) + Hyi(t) with
ˆ̄xi(t) = [x̂Ti (t) f̂Tai(t) f̂

T
si(t) ω̂

T
i2(t)]T denoted as the estimation of x̄i(t), where

x̂i(t) ∈ Rn, f̂ai(t) ∈ Rq1 , f̂si(t) ∈ Rq2 and ω̂i2(t) ∈ Rs2 denote the respective
estimated state, actuator fault, sensor fault and output channel noise vectors.
Then, the augmented estimation-based observer is devised for the normalized
structure (5) as follows

żi(t) = (ΘĀ− J1C̄)zi(t) + ΘB̄ui(t) + (J1 + J2)yi(t) + Θξ̄(A0 ˆ̄xi(t), t) (7)

where zi(t) ∈ Rn+q1+q2+s2 is the designed observer’s state, ξ̄(A0 ˆ̄xi(t), t) =
[ξT (x̂i(t), t) 01×q1 01×q2 01×s2 ]T , and Θ, J1, J2 are later devised matrices of
proper dimensions.

Subsequently, define the augmented estimation error as ei1(t) = x̄i(t) −
ˆ̄xi(t) = [eTxi(t) e

T
ai(t) e

T
si(t) e

T
ωi(t)]

T with the state estimation error exi(t) =
xi(t) − x̂i(t), the actuator fault estimation error eai(t) = fai(t) − f̂ai(t), the
sensor fault estimation error esi(t) = fsi(t) − f̂si(t) and the output channel
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noise estimation error eωi(t) = ωi2(t)− ω̂i2(t). Then, the augmented estima-
tion error dynamics are obtained as

ėi1 (t) =
(
ΘĀ− J1C̄

)
ei1 (t) +

((
ΘĀ− J1C̄

)
H − J2

)
yi (t)

+Θ
(
ξ̄(A0x̄i(t), t)− ξ̄(A0 ˆ̄xi(t), t)

)
+ ΘD̄d̄i (t)

(8)

In order to decouple the additional output item in the augmented estima-
tion error dynamics (8), matrices Θ = I−HC̄ and J2 = ĀH−HC̄ĀH−J1C̄H
are defined with I = In+q1+q2+s2 . Then, it follows that

ėi1 (t) =
(
Ā−HC̄Ā− J1C̄

)
ei1 (t) +

(
D̄ −HC̄D̄

)
d̄i (t)

+
(
I −HC̄

)
∆ξ̄i (t)

(9)

where the nonlinear estimation error is ∆ξ̄i(t) = ξ̄(A0x̄i(t), t)− ξ̄(A0 ˆ̄xi(t), t).
The augmented estimation error dynamics with the global formulation

e1(t) = [eT11(t), · · · , eTN1(t)]T are derived as follows

ė1 (t) =
(
IN ⊗

(
Ā−HC̄Ā− J1C̄

))
e1(t) +

(
IN ⊗

(
D̄ −HC̄D̄

))
d̄(t)

+
(
IN ⊗

(
I −HC̄

))
∆ξ̄(t)

(10)

where d̄(t) = [d̄T1 (t), · · · , d̄TN(t)]T and ∆ξ̄(t) = [∆ξ̄T1 (t), · · · ,∆ξ̄TN(t)]T .
Thus, the observer design based on normalization and estimation decom-

poses essentially into solving the matrices H and J1 such that the augmented
estimation error dynamics (9) and (10) are robustly asymptotically stable,
i.e., the state estimation x̂i(t) → xi(t), the actuator/sensor fault estima-
tions f̂ai(t) → fai(t), f̂si(t) → fsi(t) and the derivative output channel noise
estimation ω̂i2(t)→ ωi2(t) when t→ +∞.

3.2. Distributed anti-attack fault-tolerant consensus control design

The motivation of the distributed anti-attack fault-tolerant consensus
control design of MASs in this section is achieved in three main ways. First,
the fault-tolerant controller contains robust compensation for the unified ac-
tuator/sensor faults in the physical layer. Second, the anti-attack controller
with strong resistance contains topological information based on switching
signals against connectivity-mixed attacks in the cyber layer. Third, the dis-
tributed structure in the consensus controller on the basis of leader-following
interaction-based output information, estimated sensor fault and derivative
output channel noise collections is proposed for efficient and timely conver-
gence of the leader-following tracking performance.
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The anti-attack fault-tolerant consensus controller of the ith follower in
MASs under actuator/sensor faults, channel noises and connectivity-mixed
attacks with a distributed structure is designed as

ui(t) = −K ˆ̄xi(t) + δR(
∑N

j=1 a
γ(t)
ij (yj(t)− yi(t)) + b

γ(t)
i (y0(t)− yi(t)))

+δRFs

(∑N
j=1 a

γ(t)
ij (f̂sj(t)− f̂si(t))− bγ(t)

i f̂si(t)
)

+δRE2

(∑N
j=1 a

γ(t)
ij (ω̂j2(t)− ω̂i2(t))− bγ(t)

i ω̂i2(t)
) (11)

where K = [Kx Ka 0m×q2 0m×s2 ] denotes the compensation gain with the
state-estimation gain Kx ∈ Rm×n and actuator fault-estimation gain Ka =
B†Fa ∈ Rm×q1 , R is the coupling matrix, δ > 0 is the coupling coefficient,
a
γ(t)
ij is the (i, j)th coefficient between the ith and jth followers corresponding

with the switching topology Gγ(t), and b
γ(t)
i = 1 when the ith follower can

access the leader and b
γ(t)
i = 0, otherwise.

Define the leader-following consensus error as ei2(t) = xi(t)− x0(t). The
corresponding leader-following consensus error dynamics are derived as

ėi2(t) = (A−BKx)ei2(t) +BKei1(t) + E1ωi1(t) + ξ(xi(t), t)

−ξ(x0(t), t) + δBR
(∑N

j=1 a
γ(t)
ij (yj(t)− yi(t)) + b

γ(t)
i (y0(t)− yi(t))

)
+δBRFs

(∑N
j=1 a

γ(t)
ij

(
f̂sj(t)− f̂si(t)

)
− bγ(t)

i f̂si(t)
)

+δBRE2

(∑N
j=1 a

γ(t)
ij (ω̂j2(t)− ω̂i2(t))− bγ(t)

i ω̂i2(t)
)

= (A−BKx)ei2(t) +BKei1(t) + E1ωi1(t) + eξi(t)

+δBRC
(∑N

j=1 a
γ(t)
ij (ej2(t)− ei2(t))− bγ(t)

i ei2(t)
)

+δBRFs

(∑N
j=1 a

γ(t)
ij (esj(t)− esi(t))− bγ(t)

i esi(t)
)

+δBRE2

(∑N
j=1 a

γ(t)
ij (eωj(t)− eωi(t))− bγ(t)

i eωi(t)
)

(12)
where the leader-following nonlinear tracking error is denoted as eξi(t) =
ξ(xi(t), t)− ξ(x0(t), t).

Then, the global consensus error dynamics are given as

ė2(t) =
(
IN ⊗ (A−BKx)− δ

(
Hγ(t) ⊗BRC

))
e2(t)

+ (IN ⊗BK) e1(t) + eξ(t) + (IN ⊗ E1)ω1(t)
−δ
(
Hγ(t) ⊗BRFs

)
es(t)− δ

(
Hγ(t) ⊗BRE2

)
eω(t)

=
(
IN ⊗ (A−BKx)− δ

(
Hγ(t) ⊗BRC

))
e2(t)

+
(
IN ⊗BK − δ

(
Hγ(t) ⊗BRFsEs

)
− δ

(
Hγ(t) ⊗BRE2Eω

))
e1(t)

+eξ(t) + (IN ⊗ E1)ω1(t)

(13)

12



whereHγ(t) denotes the nonsingular leader-following interaction matrix, e2(t) =
[eT12(t), · · · , eTN2(t)]T , eξ(t) = [eTξ1(t), · · · , eTξN(t)]T , ω1(t) = [ωT11(t), · · · , ωTN1(t)]T ,
es(t) = [eTs1(t), · · · , eTsN(t)]T and eω(t) = [eTω1(t), · · · , eTωN(t)]T . The trans-
formed matrices areEs = [0q2×n 0q2×q1 Iq2 0q2×s2 ], Eω = [0s2×n 0s2×q1 0s2×q2 Is2 ].

The following sufficient condition is developed for the modeled nonlin-
ear MASs (1) and (3) in the presence of the unified abrupt-/incipient-type
actuator/sensor faults and channel noises in the physical layer as well as hos-
tile connectivity-mixed attacks in the cyber layer through an integration of
the normalization and estimation-based observer and distributed anti-attack
fault-tolerant consensus control strategies.

Theorem 1: Given positive scalars χ1, χ2, χ3, χ4, σΓ and δ0, the leader-
following MASs (1) and (3) with the framework of the normalization and
estimation-based observer design (7) and the distributed anti-attack fault-
tolerant consensus control protocol (11) can achieve the exponential consen-
sus tracking performance in Definition 3, if there exists a symmetric positive-
definite matrix P ∈ Rn×n, matrices Kx ∈ Rm×n, H ∈ R(n+q1+q2+s2)×p, J1 ∈
R(n+q1+q2+s2)×p and positive scalars τ1, τ2, τ3 such that

χ1

(
He[(A−BKx)

TP ] + E1E
T
1 + In + β2P 2

)
< χ1χ3P < χ3

(
He[(BKx − A)TP ]− ϕmax(λ2E1E

T
1 + λ2In + P 2)

) (14)

1
τ1

(He[Ā−HC̄Ā− J1C̄] + (D̄ −HC̄D̄)(D̄ −HC̄D̄)T + (I −HC̄)(I −HC̄)T

+β2AT0A0) +KTK − δ(ET
s F

T
s R

TRFsEs + ET
ωE

T
2 R

TRE2Eω) + χ2I < 0
(15)

max
(
εa
χ2
−
√

ε2a
χ2

2
− τ2

χ2
,
εs
χ2
−
√

ε2s
χ2

2
− τ3

χ2

)
< τ1

≤ min
(
εa
χ2

+
√

ε2a
χ2

2
− τ2

χ2
,
εs
χ2

+
√

ε2s
χ2

2
− τ3

χ2

) (16)

0 < τ2 ≤ ε2a
χ2
, 0 < τ3 ≤ ε2s

χ2
(17)

max (χ3, χ4τ1) ≥ min (χ1, χ2τ1) (18)

where the lower bounds εa = min
%=v,r,p

ε%a, εs = min
%=1,2

ε%s, λ2 = λmax(Υ2
γ(t)), and

ϕmax = max
i=1,···,N

ϕγ(t),i, γ(t) ∈ Γm.

The coupling matrix and coupling coefficient in the distributed anti-attack
fault-tolerant consensus controller (11) are devised as R = BTP−1C† and
δ = max{ λ2

λ1+2λ3
, 1

2λ4(1+λ4)
} + δ0 with a preset positive scalar δ0 and another

scalars denoted as λ1 = λmin(He[Υγ(t)Hγ(t)]), λ3 = λmin(Υγ(t)Hγ(t)HT
γ(t)Υγ(t))

for γ(t) ∈ Γm, and λ4 = λmin(Hγ(t)) for γ(t) ∈ Γp.

13



For a positive decay rate ρΓ ∈ (0, ρ?) with the selected positive scalar
ρ? ∈ (0, ηm), ηm = min(χ1, χ2τ1), the connectivity-mixed attack frequency
FΓ(t0, t) satisfies with

FΓ (t0, t) ≤ ln−1
(
Nϕ
τ1ϕ

((1 + τ1)ω̄2
1 + ω̄2

2)
)

(ρ? − ρΓ) (19)

and each connectivity-maintained/-paralyzed attack activation ratesRΓm(t0, t)
and RΓp(t0, t) over [t0, t) constrain within

RΓm (t0, t) ≥ ηp+ρ?

ηm+ηp
,RΓp (t0, t) ≤ ηm−ρ?

ηm+ηp
(20)

where ηp = max(χ3, χ4τ1), ω̄1 = max
i=1,···,N

ω̄i1, ω̄2 = max
i=1,···,N

ω̄i2, ϕ = min
i=1,···,N

ϕγ(t),i,

and ϕ = max
i=1,···,N

ϕγ(t),i for γ(t) ∈ Γm.

Hence, the leader-following consensus control issue of the considered non-
linear MASs in the presence of actuator/sensor faults and channel noises in
the physical layer as well as connectivity-mixed attacks in the cyber layer is
addressed with the following exponential consensus error expression

‖xi(t)− x0(t)‖2 ≤ µΓe
−ρΓ(t−t0)‖xi(t0)− x0(t0)‖2 (21)

with the decay rate ρΓ and the amplitude scalar µΓ expressed as

µΓ =
N((1+τ1)ω̄2

1+ω̄2
2)
(

max
(
λmax(ϕ−1

γ(t),i
P−1),λmax(P−1)

)
+σΓ

)
τ1 min

(
λmin(ϕ−1

γ(t),i
P−1),λmin(P−1)

) (22)

Proof. Consider the following piece-wise Lyapunov function V1(t) =
V m

1 (t) for γ(t) ∈ Γm and V1(t) = V p
1 (t) for γ(t) ∈ Γp,{

V m
1 (t) =

∑N
i=1 e

T
i2(t)ϕ−1

γ(t),iP
−1ei2(t), γ(t) ∈ Γm

V p
1 (t) =

∑N
i=1 e

T
i2(t)P−1ei2(t), γ(t) ∈ Γp

(23)

where P denotes the symmetric positive-definite matrix and ϕ−1
γ(t),i, γ(t) ∈

Γm, i = 1, · · · , N is the element scalar of the diagonal positive-definite matrix
Υγ(t) in Lemma 1.

Introduce the new vector ϑ(t) = [ϑT1 (t), · · · , ϑTN(t)]T with each element
ϑi(t) = P−1ei2(t). According to the coupling matrix R = BTP−1C†, the

14



derivative of the Lyapunov function V m
1 (t) when γ(t) ∈ Γm is obtained as

V̇ m
1 = 2

∑N
i=1 ϑ

T
i ϕ
−1
γ(t),i(A−BKx)Pϑi + 2

∑N
i=1 ϑ

T
i ϕ
−1
γ(t),iBKei1

+2
∑N

i=1 ϑ
T
i ϕ
−1
γ(t),iE1ωi1 + 2

∑N
i=1 ϑ

T
i ϕ
−1
γ(t),ieξi

+2δ
∑N

i=1 ϑ
T
i ϕ
−1
γ(t),iBB

T
(∑N

j=1 a
γ(t)
ij (ϑj − ϑi)− bγ(t)

i ϑi

)
+2δ

∑N
i=1 ϑ

T
i ϕ
−1
γ(t),iBR(FsEs + E2Eω)

(∑N
j=1 a

γ(t)
ij (ej1 − ei1)− bγ(t)

i ei1

)
= ϑT (Υγ(t) ⊗ He[(A−BKx)P ])ϑ− δϑT (He[Υγ(t)Hγ(t)]⊗BBT )ϑ

+2
∑N

i=1 ϑ
T
i ϕ
−1
γ(t),iE1ωi1 + 2

∑N
i=1 ϑ

T
i ϕ
−1
γ(t),ieξi

+2ϑT (Υγ(t) ⊗BK − δΥγ(t)Hγ(t) ⊗BR(FsEs + E2Eω))e1

≤ ϑT
(
Υγ(t) ⊗ He [(A−BKx)P ]

)
ϑ− δλ1ϑ

T
(
IN ⊗BBT

)
ϑ+ ωT1 ω1

+λ2ϑ
T
(
IN ⊗ E1E

T
1

)
ϑ+ λ2ϑ

T
(
IN ⊗BBT

)
ϑ− 2δλ3ϑ

T (IN ⊗BBT )ϑ
+eT1 (IN ⊗ (KTK − δET

s F
T
s R

TRFsEs − δET
ωE

T
2 R

TRE2Eω))e1

+λ2ϑ
Tϑ+ β2ϑT (IN ⊗ P 2)ϑ

≤ ϑT
(
Υγ(t) ⊗

(
He [(A−BKx)P ] + ϕmax(λ2E1E

T
1 + λ2In + P 2)

))
ϑ

+ωT1 ω1 + eT1
(
IN ⊗

(
KTK − δET

s F
T
s R

TRFsEs − δET
ωE

T
2 R

TRE2Eω
))
e1

(24)
where the nonlinear tracking error is satisfied with ‖eξi(t)‖ ≤ β‖ei2(t)‖ and

eTξ (t)eξ(t) ≤
∑N

i=1 β
2eTi2(t)ei2(t), and the coupling coefficient is constrained

within δ ≥ λ2

λ1+2λ3
with λ1 = λmin(He[Υγ(t)Hγ(t)]), λ2 = λmax(Υ2

γ(t)), λ3 =

λmin(Υγ(t)Hγ(t)HT
γ(t)Υγ(t)), and ϕmax = max

i=1,···,N
ϕγ(t),i, γ(t) ∈ Γm.

Meanwhile, the derivative of the Lyapunov function V p
1 (t) (23) when

γ(t) ∈ Γp is obtained as

V̇ p
1 ≤ ϑT (IN ⊗ He [(A−BKx)P ])ϑ+ ϑT

(
IN ⊗ E1E

T
1

)
ϑ+ ωT1 ω1

−2δϑT (Hγ(t) ⊗BBT )ϑ+ ϑT
(
IN ⊗BBT

)
ϑ+ eT1

(
IN ⊗KTK

)
e1

−2δϑT (Hγ(t)HT
γ(t) ⊗BBT )ϑ− δeT1

(
IN ⊗ ET

s F
T
s R

TRFsEs
)
e1

−δeT1
(
IN ⊗ ET

ωE
T
2 R

TRE2Eω
)
e1 + 2

∑N
i=1 ϑ

T
i eξi

≤ ϑT (IN ⊗ He [(A−BKx)P ])ϑ+ ϑT
(
IN ⊗ E1E

T
1

)
ϑ+ ωT1 ω1

+ϑTϑ+ eT2 (IN ⊗ β2In)e2 + (−2σλ4 − 2σλ2
4 + 1)ϑT (IN ⊗BBT )ϑ

+eT1
(
IN ⊗ (KTK − δET

s F
T
s R

TRFsEs − δET
ωE

T
2 R

TRE2Eω)
)
e1

≤ ϑT
(
IN ⊗

(
He [(A−BKx)P ] + E1E

T
1 + In + β2P 2

))
ϑ+ ωT1 ω1

+eT1
(
IN ⊗ (KTK − δET

s F
T
s R

TRFsEs − δET
ωE

T
2 R

TRE2Eω)
)
e1

(25)

where the coupling coefficient is also constrained within δ ≥ 1
2λ4(1+λ4)

with

λ4 = λmin(Hγ(t)), γ(t) ∈ Γp.
Subsequently, consider another Lyapunov function V2(t) that combines

the augmented estimation error ei1(t) with the uniform derivative type for
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abrupt and incipient actuator/sensor faults ḟai(t), ḟsi(t) as follows

V2(t) =
∑N

i=1

(
1
τ1
eTi1(t)ei1(t) + 1

τ2
ḟTai(t)ḟai(t) + 1

τ3
ḟTsi(t)ḟsi(t)

)
(26)

with scalars τ1 > 0, τ2 > 0 and τ3 > 0.
Before deriving the derivative of V2(t) in (26), the relationship of the first-

order and second-order derivatives of unified abrupt-type and incipient-type
actuator and sensor faults f%δi(t) and f%si(t) is modeled as an exponentially
varying characteristic,{

f̈%ai(t) = −(ε%a)
2e−ε

%
a(t−T %a )f̄%ai = −ε%aḟ

%
ai(t), % = 1, · · · , q1

f̈%si(t) = −(ε%s)
2e−ε

%
s(t−T %s )f̄%si = −ε%s ḟ

%
si(t), % = 1, · · · , q2

(27)

Then, the derivative of the Lyapunov function V2(t) (26) is derived as

V̇2 = 1
τ1

∑N
i=1 e

T
i1(He[Ā−HC̄Ā− J1C̄] + (D̄ −HC̄D̄)(D̄ −HC̄D̄)T

+(I −HC̄)(I −HC̄)T )ei1 + 1
τ1

∑N
i=1 ∆ξ̄Ti ∆ξ̄i + 2

τ2

∑N
i=1 ḟ

T
aif̈ai

+ 1
τ1

∑N
i=1

(
ωTi1ωi1 + ḟTaiḟai + ḟTsi ḟsi + ω̇Ti2ω̇i2

)
+ 2

τ3

∑N
i=1 ḟ

T
si f̈si

≤ 1
τ1

∑N
i=1 e

T
i1(He[Ā−HC̄Ā− J1C̄] + (D̄ −HC̄D̄)(D̄ −HC̄D̄)T

+(I −HC̄)(I −HC̄)T + β2AT0A0)ei1 + 1
τ1

∑N
i=1

(
ωTi1ωi1 + ω̇Ti2ω̇i2

)
+
∑N

i=1

(
( 1
τ1
− 2εa

τ2
)ḟTaiḟai + ( 1

τ1
− 2εs

τ3
)ḟTsi ḟsi

)
(28)

where the nonlinear estimation error satisfies with ‖∆ξ̄i‖2 ≤ β2eTi1A
T
0A0ei1

with a Lipschitz scalar β, and εa = min
%=1,···,q1

ε%a, εs = min
%=1,···,q2

ε%s.

On the basis of the inequality constraint of P in (14), He [(A−BKx)P ]+
ϕmax(λ2E1E

T
1 +λ2In+P 2)+χ1P < 0 is derived with the selected scalar χ1 > 0.

Applying the inequality constraint 1
τ1

(He[Ā−HC̄Ā−J1C̄]+(D̄−HC̄D̄)(D̄−
HC̄D̄)T + (I − HC̄)(I − HC̄)T + β2AT0A0) + KTK − δ(ET

s F
T
s R

TRFsEs +
ET
ωE

T
2 R

TRE2Eω) + χ2I < 0 in (15), the derivative of the total Lyapunov
function V m

1 (t) + V2(t) is derived as

V̇ m
1 (t) + V̇2(t) < −χ1ϑ

T (t)
(
Υγ(t) ⊗ P

)
ϑ(t)− χ2e

T
1 (t)e1(t)

+1+τ1
τ1
ωT1 (t)ω1(t) + 1

τ1
ω̇T2 (t)ω̇2(t)

+
∑N

i=1

(
( 1
τ1
− 2εa

τ2
)ḟTai(t)ḟai(t) + ( 1

τ1
− 2εs

τ3
)ḟTsi(t)ḟsi(t)

)
< −χ1V

m
1 (t)− χ2τ1V2(t) + 1+τ1

τ1
ωT1 (t)ω1(t) + 1

τ1
ω̇T2 (t)ω̇2(t)

+
∑N

i=1

(
χ2τ1−2εa

τ2
+ 1

τ1

)
ḟTai(t)ḟai(t) +

∑N
i=1

(
χ2τ1−2εs

τ3
+ 1

τ1

)
ḟTsi(t)ḟsi(t)

≤ −min (χ1, χ2τ1) (V m
1 (t) + V2(t)) + 1+τ1

τ1
ωT1 (t)ω1(t) + 1

τ1
ω̇T2 (t)ω̇2(t)

(29)
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where χ2τ1
τ2

+ 1
τ1
− 2εa

τ2
≤ 0 and χ2τ1

τ3
+ 1

τ1
− 2εs

τ3
≤ 0 are derived according to

the scalar constraints (16) and (17) with the selected scalar χ2 > 0.
Meanwhile, under the same inequality constraint of P in another side of

(14), He [(A−BKx)P ] + E1E
T
1 + In + β2P 2 − χ3P < 0 is given with the

chosen scalar χ3 > 0. Under the inequality constraint 1
τ1

(He[Ā − HC̄Ā −
J1C̄]+(D̄−HC̄D̄)(D̄−HC̄D̄)T +(I−HC̄)(I−HC̄)T +β2AT0A0)+KTK−
δ(ET

s F
T
s R

TRFsEs + ET
ωE

T
2 R

TRE2Eω) − χ4I < 0 in (15), the derivative of
the total Lyapunov function V p

1 (t) + V2(t) is obtained as

V̇ p
1 (t) + V̇2(t) < χ3V

p
1 (t) + χ4τ1V2(t) + 1+τ1

τ1
ωT1 (t)ω1(t) + 1

τ1
ω̇T2 (t)ω̇2(t)

+
∑N

i=1

(
−χ4τ1−2εa

τ2
+ 1

τ1

)
ḟTai(t)ḟai(t) +

∑N
i=1

(
−χ4τ1−2εs

τ3
+ 1

τ1

)
ḟTsi(t)ḟsi(t)

≤ max (χ3, χ4τ1) (V p
1 (t) + V2(t)) + 1+τ1

τ1
ωT1 (t)ω1(t) + 1

τ1
ω̇T2 (t)ω̇2(t)

(30)
where the chosen scalar χ4 > 0, −χ4τ1

τ2
+ 1

τ1
− 2εa

τ2
≤ 0 and −χ4τ1

τ3
+ 1

τ1
− 2εs

τ3
≤ 0

are also derived according to the same scalar constraints (16) and (17).
Finally, define the following total Lyapunov function V (t, γ(t)) as

V (t, γ(t)) =

{
V m

1 (t) + V2(t), γ(t) ∈ Γm
V p

1 (t) + V2(t), γ(t) ∈ Γp
(31)

Integrating both left and right sides of V̇ (t, γ(t)) in (31) over t ∈ [tk, tk+1),

V (t, γ(t)) <

{
ξe−ηm(t−tk)V (tk, γ(tk)) + ξ

ηm
, γ(t) ∈ Γm

ξeηp(t−tk)V (tk, γ(tk))− ξ
ηp
, γ(t) ∈ Γp

(32)

where ηm = min(χ1, χ2τ1), ηp = max(χ3, χ4τ1) and ξ = N
τ1

((1 + τ1)ω̄2
1 + ω̄2

2)
with ω̄1 = max

i=1,···,N
ω̄i1 and ω̄2 = max

i=1,···,N
ω̄i2.

According to the scalar condition max(χ3, χ4τ1) ≥ min(χ1, χ2τ1) in (18),
for γ(t) ∈ Γ = Γm ∪ Γp, it follows that

V (t, γ(t)) < ξeηpTp(tk,t)−ηmTm(tk,t)V (tk, γ(tk)) (33)

where Tm(tk, t) and Tp(tk, t) represent the total activation durations of each
connectivity-maintained/-paralyzed topologies, respectively.

Since ϕV m
1 (t) ≤

∑N
i=1 e

T
i2(t)P−1ei2(t) ≤ ϕV m

1 (t) is derived with ϕ =

min
i=1,···,N

ϕγ(t),i, ϕ = max
i=1,···,N

ϕγ(t),i when γ(t) ∈ Γm, V (tk, γ(tk)) ≤ ϕ
ϕ
V (t−k , γ(t−k ))

is then derived at each signal switching instant tk, k ∈ N.
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Undoubtedly, it is derived that

V (t, γ(t)) < ξeηpTp(tk,t)−ηmTm(tk,t) ϕ
ϕ
V (t−k , γ(t−k ))

< ξ2eηpTp(tk−1,t)−ηmTm(tk−1,t) ϕ
ϕ
V (tk−1, γ(tk−1))

< · · · < ξk+1eηpTp(t0,t)−ηmTm(t0,t)
(
ϕ
ϕ

)k
V (t0, γ(t0))

= ξe
NΓ(t0,t) ln

(
ξϕ
ϕ

)
+ηpTp(t0,t)−ηmTm(t0,t)V (t0, γ(t0))

(34)

where the time instant k is denoted as the number of the connectivity-mixed
attacks, i.e., k = NΓ(t0, t).

Since the connectivity-mixed attack frequency FΓ(t0, t) (19) is satisfied,
NΓ(t0, t) ln( ξϕ

ϕ
) ≤ (ρ?−ρΓ)(t− t0) is then derived. Furthermore, ηpTp(t0, t)−

ηmTm(t0, t) ≤ −ρ?(t − t0) is derived on the basis of the scalar inequali-
ties (20) of the connectivity-maintained/-paralyzed attack activation rates,

i.e., RΓm (t0, t) ≥ ηp+ρ?

ηm+ηp
and RΓp (t0, t) ≤ ηm−ρ?

ηm+ηp
. Then, it is derived that

NΓ(t0, t) ln
(
ξϕ
ϕ

)
+ ηpTp(t0, t)− ηmTm(t0, t) ≤ −ρΓ(t− t0), and it follows that

V (t, γ(t)) < ξe−ρΓ(t−t0)V (t0, γ(t0)) (35)

According to the definition of V (t, γ(t)), γ(t) ∈ Γ in (31), the total Lya-
punov function V (t0, γ(t0)) with the initial instant t0 is given as

V (t0, γ(t0)) ≤ max
(
λmax(ϕ−1

γ(t),iP
−1), λmax(P−1)

)∑N
i=1 ‖ei2(t0)‖2

+
max

i=1,···,N

(
1
τ1
‖ei1(t0)‖2+ 1

τ2
‖ḟai(t0)‖2+ 1

τ3
‖ḟsi(t0)‖2

)
min

i=1,···,N
‖ei2(t0)‖2

∑N
i=1 ‖ei2(t0)‖2

(36)

Introduce the new parameter ΛΓ = max(λmax(ϕ−1
γ(t),iP

−1), λmax(P−1))+σΓ

for γ(t) ∈ Γm with the appropriate positive scalar σΓ, it follows that

min
(
λmin(ϕ−1

γ(t),iP
−1), λmin(P−1)

)∑N
i=1 ‖ei2(t)‖2 ≤ V (t, γ(t))

< ξe−ρΓ(t−t0)V (t0, γ(t0)) ≤ ξΛΓe
−ρΓ(t−t0)

∑N
i=1 ‖ei2(t0)‖2

(37)

and the leader-following consensus error finally yields that

‖xi(t)− x0(t)‖2 = ‖ei2(t)‖2 ≤ ξΛΓe
−ρΓ(t−t0)‖ei2(t0)‖2

min
(
λmin(ϕ−1

γ(t),i
P−1),λmin(P−1)

)
= µΓe

−ρΓ(t−t0)‖ei2(t0)‖2 = µΓe
−ρΓ(t−t0)‖xi(t0)− x0(t0)‖2

(38)
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with

µΓ =
N((1+τ1)ω̄2

1+ω̄2
2)
(

max
(
λmax(ϕ−1

γ(t),i
P−1),λmax(P−1)

)
+σΓ

)
τ1 min

(
λmin(ϕ−1

γ(t),i
P−1),λmin(P−1)

) (39)

Remark 3: The bi-linear property of the nonlinear matrix inequality (15)
causes the inequality to be complicated and tedious to obtain a suitable
solution, thus using Schur’s Lemma and parametric matrix decomposability
H and J1, the inequality (15) can be derived solvability from the following
multi-dimensional and easily constructed linear matrix inequality.

Ω11 Ω12 Ω13 Ω14 In −H1C 0n×q1 −H1Fs −H1E2

? Ω22 Ω23 Ω24 −H2C Iq1 −H2Fs −H2E2

? ? Ω33 Ω34 −H3C 0q2×q1 Iq2 −H3Fs −H3E2

? ? ? Ω44 −H4C 0s2×q1 −H4Fs Is2 −H4E2

? ? ? ? Ω55 0n×q1 0n×q2 0n×s2
? ? ? ? ? − τ1

2
Iq1 0q1×q2 0q1×s2

? ? ? ? ? ? − τ1
2
Iq2 0q2×s2

? ? ? ? ? ? ? − τ1
2
Is2


< 0

(40)

where Ω11 = 1
τ1

He[A−H1CA− J11C] +KT
xKx + (β

2

τ1
+ χ2)In,Ω12 = 1

τ1
(Fa −

H1CFa−ATCTHT
2 −CTJT12)+KT

xKa,Ω13 = − 1
τ1

(J11Fs+ATCTHT
3 +CTJT13),

Ω14 = − 1
τ1

(J11E2 + ATCTHT
4 + CTJT14),Ω22 = − 1

τ1
He[H2CFa] + KT

aKa +

χ2Iq1 ,Ω23 = − 1
τ1

(J12Fs + F T
a C

THT
3 ),Ω24 = − 1

τ1
(J12E2 + F T

a C
THT

4 ),Ω33 =

− 1
τ1

He[J13Fs]−σF T
s R

TRFs+χ2Iq2 ,Ω34 = − 1
τ1

(J13E2 +F T
s J

T
14),Ω44 = χ2Is2−

1
τ1

He[J14E2]−σET
2 R

TRE2,Ω55 = −τ1(E1E
T
1 +In) withH = [HT

1 HT
2 HT

3 HT
4 ]T

and J1 = [JT11 J
T
12 J

T
13 J

T
14]T .

Remark 4: (i) In contrast to traditional auxiliary strategies for state ob-
server [11] or disturbance observer [14], i.e., fuzzy logic approximation [10],
adaptive compensation [16] and neural networks evaluation [12], [14], it is in-
terestingly found that a less conservative calculation of gain matrices H and
J1 in augmented estimation-based observer mechanism applies the model
normalization and decoupling without any challenges to equality solvability
in our previous study [35], which simplifies the computational decentral-
ized information interaction at the observer layer. (ii) The novel distributed
fault-tolerant consensus control module is devised for achieving node-to-node
consensus by exploiting the set of available output collections from the neigh-
boring followers as well as local sensor fault/output channel noise estimations
and augmented state observation. To eliminate the adverse effects of simul-
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taneous actuator/sensor faults and channel noises in the physical layer and
connectivity-mixed attacks in the cyber layer on the augmented estimation
error dynamics (9) and leader-following consensus error dynamics (12), the
ADT index [28], [33] is avoided with the aid of dual attack frequency and acti-
vation rates (19) and (20). In addition, multi-step computation of parameters
in Theorem 1 with recursive linear matrix inequality (40) is derived for the
quantitative relationship among the exponential leader-following consensus
performance, decay rate/amplitude bounds, and multi-agent numbers.

4. Simulation Results

In this section, two simulation cases are put forward to illustrate the ef-
fectiveness and validation of comparative analysis (ADT-based fault-tolerant
consensus control algorithm [35] and the proposed dual attack indicators-
based fault-tolerant consensus algorithm), i.e., case 1 with multi-machine
power systems and case 2 with multi-aircraft systems.

4.1. Case 1: multi-machine power systems

The multi-machine power system matrices describe the dynamic behavior
of each machine as follows [15]

A =


0 1 0 0
0 −0.2941 30.7999 0
0 0 −2.8571 2.8571
0 0.6366 0 −10

 , B =


0
0
0
10

 , C =

[
1 0 0 0
0 1 0 0

]
(41)

The state vector of each machine in multi-machine power systems is de-
noted as xi(t) = [∆σTi ∆ωTi ∆P T

mi ∆XT
ei]
T , i = 0, · · · , 6, where ∆σi is the rotor

angle deviation, ∆ωi is the speed deviation, ∆Pmi is the mechanical power de-
viation, and ∆Xei is the steam valve aperture deviation. Furthermore, denote
the leader-following consensus error as ei2 = [eσi2 e

ω
i2 e

P
i2 e

X
i2]T , i = 1, · · · , 6.

The noise distribution matrices are set as E1 = [0.8 0.9 1 0]T and E2 =
[0.75 0.95]T , the specific input and output channel noises with machine num-
bers N = 6 are settled as ωi1(t) = 0.9 sin(0.8t), ωi2(t) = 0.5 sin(1.5t). The
Lipschitz nonlinear interconnection is denoted as ξ(xi(t), t) =

∑6
j=1 sin(∆σi−

∆σj). The selected physical fault distribution matrices Fa = [0 0 0 1.5]T , Fs =
[1.5 0.8]T with the lower and upper boundaries of the decay rates εa(s) =
0.005, εa(s) = 0.1 and the specific unified incipient-/abrupt-type actuator and
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sensor faults fai(t), fsi(t) in the presence of steam valve aperture actuator
faults and sensor faults in the rotor angle and relative speed measuring chan-
nels are set as

Machine 1,Machine 2 : normal/healthy operation

Machine 3 :fa3(t) =

{
1− e−0.2t), t ≤ 70s

1.2(1− e−0.6t), otherwise

Machine 4 :fs4(t) =

{
0, t ≤ 40s

1− e−0.5t, otherwise

Machine 5 :fs5(t) =

{
0.07(1− e−0.06t), t ≤ 90s

0.05(1− e−0.06t), otherwise

Machine 6 :fa6(t) =

{
0.03(1− e−0.05t), t ≤ 10s

0.07(1− e−0.05t), otherwise

(42)

Figure 2: Switching of connectivity-maintained and connectivity-paralyzed topologies un-
der connectivity-mixed attacks.

The switching connectivity-maintained and connectivity-paralyzed topolo-
gies under connectivity-mixed attacks are shown in Figure 2, in which G1 de-
notes the initial graph during 0s-30s, G2-G4 denote the connectivity-maintained
topologies (30s-50s,50s-80s,80s-100s), G5 represents the connectivity-paralyzed
topology that can recover connected through the repair mechanism within
100s-110s, and finally G6 denotes the maintained connectivity during 110s-
120s. Furthermore, the positive simulation parameters in Theorem 1 are
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calculated and preset as χ1 = 0.55, χ2 = 0.0036, χ3 = 0.8, χ4 = 0.064, τ1 =
12.5, τ2 = 0.63, τ3 = 0.5, δ0 = 1.25 and σΓ = 0.005.

In the presence of unified actuator/sensor faults and channel noises in the
physical layer and connectivity-mixed attacks in the cyber layer, the rotor
angle, speed, mechanical power, and steam valve aperture deviation errors
in Figure 3-Figure 6 all show dramatic fluctuations at the moment of fault
action and topology switching due to attacks. However, the fault-tolerant
consensus control algorithm based on the distributed anti-attack strategy
still achieves efficient and fast convergence. The following three points are of
concern. 1) The abrupt actuator/sensor faults occurring at 40s and 70s have
a greater impact on the error tracking signal, i.e., the abrupt-type faults with
larger amplitude and faster rate are prone to spikes at each fault occurring in-
stant. The unified abrupt-/incipient-type faults occurring at 10s and 90s are
compressed to non-significance along with channel noises due to the strong
robustness of the fault tolerant consensus compensation mechanism. 2) The
amplitude of the oscillations at the moment of topology switching is incre-
mental, which indicates that even if the topology is only a single link change,
the system effect is cumulative for each topology switching. The existence of
an anti-attack algorithm only guarantees the effectiveness of this considered
attack, and over time the limits of the anti-attack resistance must be exceeded
(attack frequency, attack activation rate indicators are no longer satisfied).
3) The proposed dual attack indicators-based fault-tolerant consensus al-
gorithm has faster convergence and smaller oscillations than the ADT-based
fault-tolerant consensus control algorithm [35], and is more robust to sin, cos-
type noises and no longer exhibits periodic reciprocity. Furthermore, Figure 7
illustrates the state estimation errors in multi-power machine systems under
connectivity-mixed attacks and actuator/sensor faults.

4.2. Case 2: multi-aircraft systems
The following system matrices describe the dynamic behavior of each

aircraft as follows [9]

A =


−2.98 0.93 0 −0.034
−0.99 −0.21 0.035 −0.0011

0 0 −2 1
0.39 −5.555 0 −1.89

 , B =


−0.032 0.5 1.55

0 0 0
0 0 0
−1.6 1.8 −2


(43)

The state of each aircraft in multi-aircraft systems is denoted as xi(t) =
[xTi1 x

T
i2 x

T
i3 x

T
i4]T , i = 0, · · · , 6. The leader-following consensus error is denoted
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Figure 3: Comparison of rotor angle deviation errors through the proposed dual attack
indicators-based and ADT-based [35] fault-tolerant consensus control algorithms.

Figure 4: Comparison of speed deviation errors through the proposed dual attack
indicators-based and ADT-based [35] fault-tolerant consensus control algorithms.
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Figure 5: Comparison of mechanical power deviation errors through the proposed dual
attack indicators-based and ADT-based [35] fault-tolerant consensus control algorithms.

Figure 6: Comparison of steam valve aperture deviation errors through the proposed dual
attack indicators-based and ADT-based [35] fault-tolerant consensus control algorithms.
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Figure 7: State estimation errors in multi-power machine systems under connectivity-
mixed attacks and actuator/sensor faults.

as ei2 = [e1
i2 e

2
i2 e

3
i2 e

4
i2]T , i = 1, · · · , 6. The output channel matrix C is preset

as mentioned in Case 1. The noise distribution matrices are set as E1 =
[1.2 0.5 0 1.5]T , E2 = [1.25 0.85]T , the nonlinear function and channel noises
are selected as ξ(xi(t), t) = [0.67 sin(xi1(t)) 0 0.35 cos(xi3(t)) 0]T , ωi1(t) =
0.5(1 + 0.5 sin(0.2t)), ωi2(t) = 1.2 sin(0.5t). The physical fault distribution
matrices Fa = [0.8 0 0 1.3]T , Fs = [−0.85 1.3]T and the specific unified
incipient-/abrupt-type actuator/sensor faults fai(t), fsi(t) are set as

Aircrafts 1, 2, 6 : fault free,Aircrafts 3, 4, 5 : fault
fs3(t) = 0.7(1− e−0.06t), [90s, 120s], fs4(t) = 1− e−0.05t, [70s, 120s]

fa5(t) =


1− e−0.2t), [10s, 40s)

1.2(1− e−0.6t), [40s, 70s)
−(1− e−0.6t), [70s, 90s)

1.2(1− e−0.2t), [90s, 120s]

(44)

The state-estimation gain is derived as Kx = [−1.0315 −3.0695 1.4691 −
1.7447] under the considered cyber-physical threats. i.e., the fault occur-
ring time instants 10s, 40s, 70s, 90s and the attack occurring time instants
30s, 50s, 80s, 100s, 110s.

Figure 8 illustrates the four-channel state consensus errors of multi-aircraft
systems under the influence of connectivity-mixed attacks, uniform abrupt-
/incipient-type actuator/sensor faults and channel noises. Actuator/sensor
faults occurring at 10s, 40s, 70s and 90s have a greater fluctuation on air-
crafts 3, 4 and 5, while switching moments at 30s, 50s, 80s, 100s and 110s
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have a greater effect on aircrafts 1-5 with increasing cumulative fluctuations.
Figure 9 depicts the state estimation errors of multi-aircraft systems under
hostile connectivity-mixed attacks and unified actuator/sensor faults. At the
moment of network attack topology switching, which has a large influence on
the dynamical system, the fault-tolerant consensus control algorithm based
on the distributed anti-attack mechanism achieves efficient and fast conver-
gence despite the presence of oscillatory reciprocity.
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Figure 8: State consensus errors in four channels of multi-aircraft systems under
connectivity-mixed attacks and actuator/sensor faults.
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Figure 9: State estimation errors in multi-aircraft systems under connectivity-mixed at-
tacks and actuator/sensor faults.
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5. Conclusions

An integrated co-design of normalization/estimation-based observer de-
sign and distributed anti-attack fault-tolerant consensus control method is
developed in this study to guarantee the exponential leader-following con-
sensus of nonlinear MASs under the influence of incipient-/abrupt-type ac-
tuator/sensor faults and channel noises in the physical layer and hostile
connectivity-mixed attacks in the cyber layer. The tolerance to faults, re-
siliency against attacks, and robustness to noises are considered through the
safety/security analysis of leader-following consensus restoration proof using
rigorous Lyapunov analysis. Sufficient criteria are proposed to bridge the
quantitative relationship between the prescribed anti-attack fault-tolerant
consensus performance and dual attack frequency and activation rate indica-
tors. Two simulation studies, including multi-helicopter and multi-machine
power systems, with various anti-attack fault-tolerant configurations demon-
strate the efficiency of the algorithm. Future investigations of more general
nonlinear continuous and discrete MASs towards novel anti-attack and tol-
erance capabilities to address physical faults, interruptive attacks, and even
multiple and replay attacks are highlighted.
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