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Abstract

It is generally recognized that today’s frontier of HCI research lies beyond the traditional desktop

computers whose GUI interfaces were built on the foundation of display—pointing device—full

keyboard. Many interface challenges arise without such a physical UI foundation. Text writing—

ranging from entering URLs and search queries, filling forms, typing commands, to taking notes and

writing emails and chat messages—is one of the hard problems awaiting for solutions in off-desktop

computing. This paper summarizes and synthesizes a research program on this topic at the IBM

Almaden Research Center. It analyzes various dimensions that constitute a good text input interface;

briefly reviews related literature; discusses the evaluation methodology issues of text input; presents

the major ideas and results of two systems, ATOMIK and SHARK; and points out current and future

directions in the area from our current vantage point.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Text input; Pervasive; Mobile; Off-desktop computing; Shorthand; Gesture; Stylus; Virtual keyboard

1. Introduction

Desktop computers, as well as their more mobile cousins—laptop computers, take

the form of ‘workstations’ featuring a large and personal display, a pointing device,

0953-5438/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.intcom.2003.12.007

Interacting with Computers 17 (2005) 229–250

www.elsevier.com/locate/intcom

* Corresponding author. Tel.: þ1-408-927-112.

1 Alison Sue, Clemens Drews, Paul Lee, Johnny Accot, Michael Hunter and Jingtao Wang have also

significantly contributed to the work reported in this overview paper and most of them have co-authored separate

research papers cited in the text. Per-Ola Kristensson (Linköpings universitet, Sweden), Paul Lee (Stanford),
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and a keyboard evolved from the typewriter. The display-pointing device-keyboard tripod

forms the physical foundation of today’s GUI interfaces.

Against this background, it is generally recognized that today’s frontier of HCI research

lies beyond the traditional desktop computer. Increasingly computing could be embedded

in work and life environments, possibly with wall sized displays, or takes place in various

mobile devices such as PDAs, Tablet PCs, or mobile phones. Off-desktop computing

without the traditional display-pointing device-keyboard foundation faces many user

interface challenges. Some will be surprisingly hard to solve. Text input is one of them.

Text writing—including writing emails and chat messages, filling forms, typing

commands, taking notes, authoring articles, and coding programs—constitutes one of

the most frequent computer user tasks.

A good textual interface has many desired dimensions. First, it should be efficient. An

average user with sufficient amount of practice should be able to write text at a sufficiently

fast speed without making many errors. Second, it should have a low initial usability

threshold and a rapid learning curve. Third, it should impose a low cognitive, perceptual,

and motor demand on the user. Fourth, it should be fun to use, although, fun could well be

a product of the first three dimensions. Fifth, it should be easy to access. Any requirement

of attaching devices to the user, or even picking up and mounting a headset as in speech

recognition, can be a significant impediment to frequent and constant use. For mobile

computing, a compact form factor is obviously also important.

This paper first analyzes various dimensions that a comprehensive evaluation method

should consider. It then briefly reviews the QWERTY typewriter keyboard and other

recent textual interfaces related to our work. We then focus on synthesizing, updating,

revising and summarizing the major ideas and results of our own research in this area. The

paper ends with issues and directions we believe are critical to future research.

2. Evaluation methods

Text typing involves rather complex and multi-faceted perceptual, cognitive and motor

processes (Cooper, 1983). Because of this complexity, there is no one standard or best

evaluation method in the field of text input research. Even in traditional typewriting

research, a clear-cut conclusion has rarely been reached on issues such as the relative

superiority of the QWERTY vs. Dvorak layout (Lewis et al., 1997; Yamada, 1980).

Developing a standard set of tasks for evaluating text input methods would be an important

contribution to the field. Such a battery of procedures or tasks should consider at least the

following aspects and issues of text input.

1. Ultimate performance. The eventual performance for an average user is often the most

important goal in designing a new input method. The effective speed is usually the first

question that comes to the user’s mind when facing a new method. Unfortunately, it is

also a very difficult question to answer, because the user’s speed is a function of

practice and many other variables. Without a substantial amount of training, what is

measured is not going to be close to the ultimate performance. Substantial amount

of training is always costly, especially if more than a few participants are employed.
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It has been reported that it takes more than 100 h of training on Dvorak keyboard for

typists to catch up with their old QWERTY performance (Cooper, 1983). One solution

for a standard is to set particular ‘milestone’ speed performance measurements at, for

example, 15 min, 1, 5, 10, 20, 50, and 100 h of practice.

2. Error and error handling. Another important dimension to consider is error rate and

ease of error correction. What matters is the effective speed, or speed after correcting

any errors made. Experimentally there are different ways of handling errors in studies;

each has different implications to the text input study result. Some leave errors in the

text and report them separately (MacKenzie and Zhang, 1999). Others do not allow

errors, e.g. the testing program will not proceed until the correct character is entered

(Zhai et al., 2002). Yet others require the participants to correct their errors, and

measure their effective speed including errors. The amount of time needed to correct

errors depends on the design of the error correction mechanism; hence there are no set

rules to tradeoff errors with speed. Traditionally in typing contests each error caused the

deduction of 5 words in the participant’s score. Making study participants correct their

errors seems most informative overall, although it lumps input and correction together.

3. Models as performance measures. An alternative approach to empirically measuring

expert performance is theoretical modeling. Computer simulation based on theoretical

modeling has been used in typing research (Rumelhart and Norman, 1982). Theoretical

models, if they indeed capture the essence of user-system interaction, offer a clear

description of factors that influence performance. For example, the Fitts-digraph model

of stylus keyboarding (Lewis, 1992; Soukoreff and MacKenzie, 1995; Zhai et al.,

2002), to be reviewed later in this paper, gives us a baseline prediction of the average

user performance when a stylus keyboarding method is well practiced. Note that a

model is always built with strong assumptions. In the case of a stylus keyboard, it

assumes that learning would reduce the visual search time to be negligible in

comparison to the stylus movement time. With most new techniques, we do not know

enough about human perceptual motor and cognitive skills to form strong quantitative

laws as a foundation to theoretical performance prediction. Understanding atomic

human performance regularities is undoubtedly important to future research and design

(Accot and Zhai, 1997; Zhai et al., 2004).

4. Initial performance vs. longitudinal learning. The very initial performance of a novice

user and the initial slope of the learning curve often determine the fate of a new

interaction technique. The general user population is very reluctant to invest a large

number of hours in learning before benefiting from a new interface. To measure the

initial performance is relatively easy since it does not involve much practice on the

participant’s part. Conducting a longitudinal study to measure the user’s learning curve

is costly, particularly if the study employs more than a few participants. It is possible to

use the power law of learning (regression) to extract future performance (Crossman,

1959). By the nature of regression analysis, however, a reliable estimate of the

exponent of the learning curve still requires a large number of sessions. See MacKenzie

and Zhang (1999) and Zhai et al. (2002) for two examples.

5. Visual and cognitive attention. Ideally a text input method requires little visual or

cognitive attention so the user can focus on his or her writing or other real-world tasks.

Most of the new input methods require more visual attention than the physical
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typewriter which could be ‘touch-typed’. When a typing method does require visual

attention, how should it tradeoff with typing speed? How should it be measured? Eye-

tracking and secondary tasks are two possible measurement methods, but they would

certainly make the already complex typing evaluation more cumbersome.

6. Delight. An interaction method should not only be efficient, but also fun to use.

Although, the interest in studying fun in interaction has emerged in the HCI field, it is

poorly understood how fun is related to the other design dimensions of an interface. In

the case of text entry, is it the fluidity of the method, ease of use, ease of learning, or

skill challenge as in video games that make the interface fun? How could delight be

reliably measured other than by self-reporting?

7. Task validity. ‘Copy typing’, the targeted task in traditional typing research, is rarely

practiced today. Most of the new text input interfaces for off-desktop computing are

aimed at generative typing—typing from the user’s mind. From this perspective, a

writing task based on some task scenarios (e.g. writing an email to schedule an

appointment) is a more valid evaluation task than typing prescribed text. However, such

a task could also be much less sensitive as an evaluation tool, because the task

components unrelated to the efficacy of the textual interface, such as problem solving or

composition could take a large portion of, or even dominate the entire evaluation task.

To reduce visual attention needed in ‘copy typing’ like tasks, familiar, memorable text

can be used (MacKenzie and Zhang, 1999). However, this brings up the issue of

linguistic fidelity.

8. Linguistic fidelity. Depending on the purpose of the evaluation, one has to decide if

the text used for testing should be linguistically representative in frequency

distributions (letters, words, digraphs, etc.). Another issue to consider is, if the text

is open (unlimited, fresh text each time) or closed (same sentence or paragraph

repeated). This is because the skill learned during the study could be specific to the

words practiced and may not generalize to open text.

It is difficult, if not impossible, to incorporate all of the above dimensions in evaluating

a new text input method. Depending on the purpose of the evaluation, a study may focus

on and control a sub-set of these dimensions. Results of an evaluation should be

understood and interpreted with the conditions and assumptions in mind. Comparing

different measurements made under different sets of conditions are always difficult and

often misleading.

3. Current approaches

The need for entering text off the desktop has driven numerous inventions in text entry

in recent years, although the majority has not been properly researched with either

theoretical or empirical human performance studies. In this short review, we focus on only

a few major approaches related to our work. More comprehensive reviews of novel text

input methods are provided elsewhere (Buxton et al., 1994/2002; MacKenzie and

Soukoreff, 2002; Zhai et al., 2002).
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3.1. The QWERTY typewriter keyboard

It is informative to briefly review the typewriter keyboard, although, it is not an off-

desktop method. The most common typewriter uses the QWERTY keyboard, credited to

Christopher L. Sholes, Carlos Glidden and Samuel Soule in 1867 (Yamada, 1980).

Systematic study of human performance in typewriting and optimizing the keyboard

layout happened much later, with the best-known example being the Dvorak study and

layout (Dvorak et al., 1936). Human factors research on typewriting continues in the

modern literature (e.g. Cooper, 1983). The QWERTY layout as the de facto standard is a

subject of debate. Research comparing QWERTY with alternative layouts such as the

Dvorak simplified keyboard has shown varied, sometimes opposite results. Cooper (1983),

Lewis et al. (1997), Norman and Fisher (1982) and Yamada (1980) provide a few reviews

of this literature. The QWERTY vs. Dvorak debate, interestingly, is just as heated in the

business and economics literature where the proponents of ‘path dependence’ or ‘lock-in’

theory cite QWERTY as a classic example of ‘QWERTYNomics’. In QWERTYNomics,

an accidental sequence of events may lock technology development into a particular

irreversible path—‘one damn thing follows another’ (David, 1985). Technical

interrelatedness, economics of scale, and quasi-irreversibility prevent better alternative

rationally optimized solutions from prevailing (David, 1985). The opponents of

QWERTYNomics argue that QWERTY has not been replaced because there is no

convincingly superior alternative to QWERTY (Liebowitz and Margolis, 1996, 1990).

The main rationale of the QWERTY arrangement was to minimize mechanical

jamming (Cooper, 1983; Yamada, 1980). Accidentally, this design also facilitates the

frequent alternation of the left and right hand, which is a key factor in rapid touch-typing

with two hands. Partially because the QWERTY design scores well in alternation

frequency, various attempts to replace QWERTY with more efficient layouts, such as the

Dvorak simplified keyboard (Dvorak et al., 1936), have not prevailed. The performance

gain with these newer designs (estimated around 5–15%) has not been substantial enough

to justify the cost of retraining the great number of QWERTY users (Cooper, 1983; Lewis,

1992; Lewis et al., 1997; Norman and Fisher, 1982; Yamada, 1980).

Montgomery (Montgomery, 1982) made another attempt to rearrange the key layout so

that some common short words or word fragments can be wiped through. This attempt

pointed to the direction of the SHARK method to be reviewed later, although it did not

involve the key ideas and methods in SHARK such as pattern recognition and shorthand

production for all words needed.

The typewriter keyboard offers numerous advantages as a human–computer interface.

In addition to speed, a touch typist can focus his or her visual attention on the computer

screen, not the typewriter keyboard itself. Interestingly, touch-typing (typing without

looking at the keyboard) was first applied in the 1880s by L.V. Longley and F. E.

McGurrin, many years after the typewriter invention, and was not widely adopted by

training schools until about 1915 (Yamada, 1980). This means the low attention demand

was not a rational design feature, but rather an evolutionary improvement discovered in

the process of use.

Although, the typewriter keyboard has been a resilient de facto standard method for text

input, it has many weaknesses as a modern interface technology. First, it takes effort to
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learn touch-typing skills; and usually it takes hundreds of hours of practice to be proficient

(Cooper, 1983). Second, the argument of over specification, to be discussed later on stylus

keyboards, can also be made here. The system is unable to take advantage of today’s

computing power in applying statistical information to reduce the load of input. Third and

most importantly, it is not suited for off-desktop computing in its usual size and form.

3.2. Speech recognition

Speech recognition has been expected to be a compelling alternative to manual typing.

Despite the progress made in speech recognition technology, however, a recent study

(Karat et al., 1999) showed that the effective speed of text entry by continuous speech

recognition was still far lower than that of the keyboard (13.6 vs. 32.5 corrected wpm for

transcription and 7.8 vs. 19.0 corrected wpm for composition). Error correction is

particularly difficult with speech commands. Furthermore, the study also revealed many

human-factors issues that had not been well understood. For example, many users found it

‘harder to talk and think than type and think’ and considered the keyboard to be more

‘natural’ than speech for text entry. It has been further argued that speech production

competes for cognitive/memory resources, which impede the user’s performance

(Shneiderman, 2000). In short, using speech as a text input method still faces many

challenges.

3.3. Handwriting recognition

Handwriting is a rather ‘natural’ and fluid mode of text entry, thanks to users’ prior

experience from writing on paper. Handwriting recognition technology has made

tremendous progress in recent years (Plamondon and Srihari, 2000). The current PDA

devices tend to use alphabet character based handwriting recognition, such as Graffiti and

Jot. The alphabet used can be either natural or artificially modified for reliable recognition

(Goldberg and Richardson, 1993). EdgeWrite defines an alphabet around the edge of a

fixture to help users with motor impairment (Wobbrock et al., 2003). The fundamental

weakness of (long) handwriting, however, is the limited speed, typically estimated around

15 wpm (Card et al., 1983). For Graffiti and Jot, (Sears and Arora, 2002) found between

4.3 and 7.7 wpm performance for new users and 14–18 wpm for more advanced users,

although, other informal reports claimed higher peak performance. This speed might be

good enough for entering names and phone numbers on a PDA, but too slow for writing a

longer text.

3.4. Mobile physical keyboard

There are various ways to reduce the size of physical keyboards. One is to shrink the

size of each key. This is commonly seen in electronic dictionaries. Typing on these

keyboards is difficult due to their reduced size that prevents 10-finger touch-typing.

Another method is to use the number pads in telephones, whereby each number

corresponds to multiple letters. The ambiguity of multiple possible letters is commonly

resolved by the number of consecutive taps, or by lexical models. Optical projection

keyboards are yet another approach, although a key issue is the lack of tactile feedback of

S. Zhai et al. / Interacting with Computers 17 (2005) 229–250234



the keys, both vertically (the non-linear resistance of a key) and laterally (key surface

features that prevent the finger from drifting away). Furthermore, it requires set-up and a

‘desktop’ space to operate.

3.5. Gesture input

There have been various continuous-gesture-based text methods. Quikwriting (Perlin,

1998) uses continuous stylus movement on a radial layout to enter letters. Cirrin (Circular

Input) is another example (Mankoff and Abowd, 1998). Dasher (Ward et al., 2000) uses

continuous mouse movement to pass through traces of letters laid out by a predictive

language model. Using such a technique is a novel and intriguing experience, but the

primary drawback is that the user has to continuously recognize the dynamically

rearranged letters. The visual recognition task may limit the eventual performance of text

entry with such a method.

3.6. Stylus keyboards

Stylus keyboards display letters and numbers on a touch sensitive screen or surface. To

input text, the user presses keys with a finger or stylus. Such a keyboard can be scaled to fit

computing devices with varying sizes, particularly small handheld devices. One central

issue is the layout of the keys in these keyboards. Due to developers’ and users’ existing

knowledge, QWERTY tend to be also the default layout of stylus keyboards. However,

QWERTY is a poor choice for stylus keyboarding. The polarizing positions of common

English digraphs in QWERTY mean that the stylus has to move back and forth more

frequently and over greater distances than necessary.

The key to a good virtual keyboard is exactly opposite to the idea behind QWERTY.

Common digraph letters should be close to each other so the hand does not have to

travel much. The movement distance concern also points to another problem of

QWERTY as a virtual keyboard layout, it is elongated horizontally, which increases the

average stylus movement distances.2 The human performance effect of relative

distances between the letters can be modelled by a simple movement equation—Fitts’

law (Fitts, 1954), which may serve as a foundation to optimize the letter positions in

stylus keyboards.

4. Optimization of stylus keyboard

4.1. The Fitts-digraph model of virtual keyboards

Lewis, 1992 and Lewis et al., 1997 was probably the first to use the well known Fitts’

law and digraph frequency as bases to model stylus keyboard performance, followed by

MacKenzie and colleagues (MacKenzie and Zhang, 1999; Soukoreff and MacKenzie,

1995). According to Fitts’ law, the mean time to move the tapping stylus from one key i to

2 From a screen space management point of view, it is better to have an elongated rather than square shaped on

screen keyboard. This can be achieved by arranging the numeric and auxiliary keys on the two sides of

alphabetical key set rather than horizontally stretching the alphabetical key set.
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another j for a given distance ðDijÞ and key size ðWjÞ is

tij ¼ a þ b log2

Dij þ Wj

Wj

 !
ð1Þ

where a and b are empirically determined coefficients.

The validity of Fitts’ law for general tapping tasks has been proven repeatedly by a vast

literature. See MacKenzie (1992) for a general review, and Accot and Zhai (2002, 2003),

McGuffin and Balakrishnan (2002) and Zhai et al. (2003) for recent developments in the

context of HCI. In the case of stylus keyboarding, by analyzing the Gaussian hits

distribution of the stylus tip, we have shown that the users do effectively use the virtual

keys as Fitts’ law assumes—they could control their normally distributed hit points

‘tightly’ enough to be within the key size, but also sufficiently ‘loosely’ to utilize the given

surface of the keys (Zhai et al., 2002b).

There is a wide range of values of the Fitts’ law parameters (a and b) reported in the

literature. For example, IP ð¼ 1=bÞ has been reported as low as 4.9 bits per second (bps) in

MacKenzie et al. (1991) and as high as 12 bps in Fitts (1954). As the Fitts’ law parameters

change, the movement speed limit on virtual keyboards change dramatically. Without

empirically measured performance specifically for stylus keyboarding, researchers

(MacKenzie and Zhang, 1999) tended to use the more conservative estimates of a ¼ 0;

b ¼ 1=4:9 (sec) based on results from the more general Fitts’ reciprocal tapping tasks

(MacKenzie et al., 1991).

More recently, Zhai et al. (2002b) estimated the values of a and b in Fitts’ law in the

context of stylus typing which involves a relatively small range of index of difficulty

formed by tightly packed targets, the use of stylus, and visual recognition of a series of

intended target letters (but excluding visual search needed by the novice users of stylus

keyboards) in varied directions. Their results were a ¼ 0:083; b ¼ 0:127 s, or

IP ¼ 1=b ¼ 7:9 bps.

Once the basic Fitts’ law parameters are estimated, the average tapping time (per key)

on a stylus keyboard can be obtained by calculating the average of all pairs of keys

�t ¼
X

i;j[S

pijtij ð2Þ

where S is the key set, usually including the 26 letters in English and the space key, and pij

is the diagraph transition probability from letter i to letter j in a language corpus.

Combining Eq. (1) and (2)

�t ¼ a þ b
X

i;j[S

pij log2

Dij þ Wj

Wj

 !
ð3Þ

Using the estimates a ¼ 0:083; b ¼ 0:127 s, we have

�t ¼ 0:083 þ 0:127
X

i;j[S

pij log2

Dij þ Wj

Wj

 !
ð4Þ
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Assuming five characters per word (including space), �t (in second/character) can be

converted to the more conventional speed unit—words per minute (wpm).

It should be emphasized that Eq. (2)–(4) only estimate the movement efficiency of

tapping on a virtual keyboard. An expert user could possibly achieve this efficiency. A

novice or intermediate user has to visually search for the destination key before tapping on

it. In that sense, Eq. (2) only predicts the potential upper bound of a user’s performance

(Soukoreff and MacKenzie, 1995). Note that the Fitts’ law coefficient in the model is based

on average human tapping performance. Some users, with high quality sensing surface,

could surpass this ‘upper bound’.

The letter transition (diagraph) probability pij in Eq. (2)–(4) is often reported in the

form of a table for a given language such as English, based on a representative corpus of

text. There are many sources for a diagraph table. One traditionally used digraph table was

made by Mayzner and Tresselt, extracted from an English text corpus of 87,296 characters

(Mayzner and Tresselt, 1965). Zhai et al. (2002) provides two new English diagraph

tables. One based on informal English collected from Internet chat rooms and the other

more formal English based on electronic newspapers. An authoritative corpus of English is

the BNC (British National Corpus—http://www.natcorp.ox.ac.uk/). Our experience shows

that the efficiency of a stylus keyboard is not very sensitive to the language corpus used for

evaluation or optimization. The reason is that the language style (formal vs. informal) does

not significantly affect the phonology of a corpus, which dictates the digraph distributions.

In other words, as long as the language sounds English, the digraph distributions should

remain similar. A different language with distinct phonology may indeed require a

different layout.

With Eq. (4), we could estimate the movement efficiency of various keyboard layouts

for stylus typing. Some subtle details in calculating Eq. (4) can be confusing or ambiguous,

particularly when a key is irregular (e.g. the long space key in a QWERTY layout) or when

there are multiple instances of the same key. Zhai et al. (2002a) gives detailed estimation

of some of the better known layouts, including QWERTY, Alphabetic, OPTI (MacKenzie

and Zhang, 1999), FITALY (TextwareSolutions, 1998), and Metropolis (Zhai et al., 2000)

based on the more conventional a ¼ 0; b ¼ 0:204 s Fitts’ law assumption. Zhai et al.

(2002a) updated those estimates with the empirically measured a ¼ 0:083; b ¼ 0:127s in

the context of stylus typing. The results were 34.2, 41.2, 42.8, 46.6 and 45.3 wpm for

QWERTY, FITALY, OPTI, Metropolis and ATOMIK layouts.

5. Algorithmic design of stylus keyboards—Metropolis and ATOMIK

Once the efficiency model of a stylus keyboards is established, it can be used to guide

the design of new layouts. Such an idea has been around for many years. Getschow et al.

(1986) is one early example. Lewis et al. (1999a) is another. A more recent design based

on trial and error exploration is OPTI (MacKenzie and Zhang, 1999). Fitaly

(TextwareSolutions, 1998) is a commercial example.

Getschow et al. (1986) used a simple greedy algorithm that placed alphabetical letters

to most easily accessible positions according the letters frequency rank order. As the

authors stated, this greedy algorithm ignores many arrangements that could be
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substantially better, because it does not consider the letter placement with respect to each

other. The opposite approach to the simple greedy algorithm is exhaustive algorithmic

searching that calculates the efficiency of each and every combination of letter

arrangement. However, the complexity of that search—O(n!)—is approximately 1028, a

too large number even for modern computing.

The idea of minimizing energy, or tension, in the keyboard layout brought us to explore

a well-known optimization method—the Metropolis algorithm. The Metropolis algorithm

is a Monte Carlo method widely used in searching for the minimum energy state in

statistical physics (Beichl and Sullivan, 2000; Binder and Heermann, 1988; Metropolis

et al., 1953). If we define Eq. (4) as ‘Fitts-Digraph energy’, the problem of designing a

high performance keyboard is equivalent to searching for the structure of a molecule (the

keyboard) at a stable low energy state determined by the interactions among all the atoms

(keys). Applying this approach, we designed and implemented a software system that did a

‘random walk’ in the virtual keyboard design space. In each step of the walk, the algorithm

picked a key and moved it in a random direction by a random amount to reach a new

configuration. The level of Fitts’ energy in the new configuration, based on Eq. (2), was

then evaluated. Whether the new configuration was kept as the starting position for the

next iteration depended on the following Metropolis function

WðO ! NÞ ¼ e2DE=kT if DE . 0

WðO ! NÞ ¼ 1 if DE # 0
ð5Þ

In Eq. (5), WðO ! NÞ was the probabilty of changing from configuration O (old) to

configuration N (new), DE was the energy change, k was a coefficient, T was

‘temperature’, which could be interactively adjusted. The use of Eq. (5) occasionally

allowed moves with positive energy change in order to be able to climb out of a local

energy minimum. An interactive ‘annealing’ process bringing temperature T through up

and down cycles was repeated until no further improvement was seen. We call layouts

produced by this process Metropolis keyboards. The details of this design process can be

found by Zhai et al. (2000).

Alternatively, instead of performing the random walk algorithm on an open space, we

have also developed a program that used the Metropolis method in a confined array of

hexagons. Each walk step was taken by swapping a random pair of keys. The rest of the

random walk process was same as the previous approach. Our experience shows that this

was an equally effective, and more efficient approach (Zhai et al., 2002a).

By means of the Metropolis algorithms, we have designed a variety of layouts with

different characteristics, all with similar movement efficiency. In other words, instead of

one deep and narrow Fitts-diagraph energy canyon, there is a relatively flat valley in the

stylus keyboard design landscape, all much better than non-optimized keyboard but not

significantly different from each other in efficiency. This means that it is possible to

accommodate additional design considerations without lowering movement efficiency.

We have taken advantage of this fact in various ways (Zhai et al., 2002a), most notably

‘alphabetical tuning’.

For novice users of virtual keyboards, speed is determined mostly by the need to search

and find target keys rather than by the amount of motor movement. A keyboard optimized
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by movement efficiency only may look rather arbitrary to a novice user and hence be

difficult to search. We explored the possibility of easing the novice user’s search process

by introducing alphabetical ordering to a virtual keyboard layout. Alphabetical layout is

not a new idea. For example, Norman and Fisher studied a strictly alphabetical layout of

the physicalkeyboard of a typewriter (Norman and Fisher, 1982). They showed that even

novice users did not type faster on such a keyboard than on a standard QWERTY

keyboard. The main problem with an alphabetical keyboard, they concluded, was that the

keys were laid out sequentially in multiple rows. The location of a key depended on the

length of each row—the break point from which the next letter had to start at the left end of

the keyboard again. MacKenzie, Zhang and Soukoreff (1999) studied a virtual keyboard

where the letters were laid alphabetically in two columns. Again, they did not find a

performance advantage with the alphabetical layout. Lewis et al. (1999b) proposed a five

by six virtual keyboard layout with a strictly alphabetical sequence. Such a design should

suffer from the same problem as discovered by Norman and Fisher—the alphabetical

discontinuity caused by row breaks.

Instead of strictly laying out the keys in an alphabetical sequence, we introduce

alphabetical tuning in the optimization process. To produce such a keyboard, an additional

term was added to the ‘energy’ function, which, for each key, depended on the place in the

alphabet for the character, and on its position on the keyboard:

e ¼ �t þ l
Xz

i¼a

hðiÞðyi 2 xiÞ ð6Þ

where �t was the previous energy term defined by Eq. (3). l was an empirically adjusted

weighting coefficient, depending on how much alphabetical order was brought to

consideration at the cost of the average movement time. hðiÞ was an integer number

representing the place of the letter in the alphabet, with hðaÞ ¼ 212;h ðbÞ ¼

211;…;hðmÞ ¼ 0; hðnÞ ¼ 1;… and hðzÞ ¼ 13: xi and yi were the coordinates of letter i

with origin (0,0) at the center of the keyboard. The term hðiÞðyi 2 xiÞ could be viewed as

two forces. hðiÞyi produced a force pushing the first half of the letters (a–m) upward, the

second half (n–z) downwards, with a resulting energy proportional to letter distance

from the center. For example, for letter a, hðaÞ ¼ 212: The lowest energy state for it is

the uppermost position and the highest energy state lies in the lowermost position

(negative yi). The opposite is true for letter z. ðhðzÞ ¼ 13Þ: Similarly, the other force,

hðiÞð2xiÞ pushes the first half the letters (a–m) leftwards and later half rightwards. For the

space key, a special case in this treatment, the alphabetic bias term was zero at the center of

the keyboard, and increases with distance from the center.

The result of Eq. (6) as an objective function was the general trend of letters starting out

from the upper left corner moving towards the lower right corner. Zhai et al. (2002a) show

that it is possible to preserve the general tendency of alphabetical order without a

significant sacrifice of movement efficiency.

In addition to alphabetical tuning, the connectivity of a word—the degree to which

consecutive letters in the word are spatially adjacent, can also be important to movement

efficiency, visual search and memory of the pattern of the word. This is particular

important to the most common words such as the, to, and, of, is, in, and it.
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We, therefore, introduced the third criterion in our design—Connectivity Index (CI). CI

was defined as

CI ¼
XN
i¼1

f ðiÞcðiÞ ð7Þ

where f ðiÞ is the percentage frequency of the ith most frequent word and cðiÞ is the

connectivity score of that word. For example, for the word ‘the’, if t-h and h-e are

connected (adjacent), the word ‘the’ gets a score of 1: cðiÞ ¼ 1: It is multiplied by f ðiÞ ¼

3:38%; its frequency, before being added to CI. If only t-h or only h-e are connected, the

word ‘the’ gets a score of cðiÞ ¼ 0:5:

We call layouts satisfying all three critieria—movement efficiency, alphabetical tuning,

and word connectivity ATOMIK (alphabetically tuned and optimized mobile interface

keyboard) layouts, to reflect these criteria as well as the method by which they were

produced—atomic interactions among all keys.

Fig. 1 shows an ATOMIK layout. See Zhai et al. (2002a) for additional design and

implementation details and considerations.

6. Shark shorthand system

Stylus typing suffers from several drawbacks which, together with the use of the

inefficient QWERTY layout as a stylus keyboard, might have contributed to the relatively

low rate of adoption. The simple tapping movement may feel tedious for prolonged use.

Accurate tapping is also extremely demanding in visual attention. As a tool for complex

and dexterous tasks such as drawing and writing, a stylus is much more expressive and

fluid hand than a mouse. Not taking advantage of the pen’s affordances is another

weakness of stylus keyboard. In synergy with drawing, sketching and other pen experience

in PDAs, Tablet PCs, etc. a text entry method should maximally utilize the fluidity and

dexterity of the pen.

Another important weakness of stylus keyboarding is the lack of support from the

computer. It is well known that in any language there is a great deal of redundancy, as

Shannon (1948) observed in the process of building his mathematical theory of

communication. In this sense, tapping exactly on each individual letter in a word is

an unnecessary over specification. It should be possible to reduce the amount of input

information from the user and supplement it with information based on statistical and

linguistic (lexical and grammatical) knowledge from the computer. The use of

Fig. 1. The ATOMIK Keyboard (adapted from Zhai and Kristensson, 2003 by permission).
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statistical information is common and essential in today’s speech and handwriting

recognition systems. The commonly available T9 method that produces the most

probable word based on an ambiguous numeric keystroke sequence in mobile phones is

another example. Bear in mind, however, when an interface is not entirely verbatim, it

may impose more attention and cognitive burden on the user. It is an important

research and design challenge to exploit machine intelligence while maintaining low

attention and cognitive cost to the user.

Yet another resource that is not fully exploited with stylus tapping is the fact that people

in general are very good at perceiving, recognizing, recalling and producing patterns.

These observations led us to design a system that allows the user to directly draw

gesture patterns as a basic mode of entering words on a stylus keyboard. Each pattern of a

word is formed by the trajectory through all of the letters of a word, from the first to the last

in order, on the keyboard. Fig. 2 shows a few examples of such patterns defined by the

ATOMIK keyboard in Fig. 1. Since, these gesture patterns are essentially a form a

shorthand for the words they represent, we call each of these patterns a sokgraph

(shorthand on keyboard graph), and the input system that uses sokgraph SHARK

(shorthand aided rapid keyboarding).

There are many design rationales for such a SHARK system. We briefly review a

few of them here. See Zhai and Kristensson (2003) for the original and more detailed

discussion, but note that some of our thinking has further developed since the original

SHARK paper.

Scale, location and visual attention relaxation. Sokgraphs to a certain degree can be

scale and location independent when the user produces them on the keyboard. Instead of

inputting each character the stylus crosses on the keyboard, the SHARK system treats the

shape of a sokgraph as a pattern and recognizes it by a pattern recognition algorithm. The

exact scale and location in which the sokgraph is produced, and hence the visual attention

demand, are relaxed.

Efficiency. In comparison to handwriting based on alphabetic or logographic

characters such as Chinese, writing a word pattern defined by a stylus keyboard can be

much more efficient, with each letter constituting only one straight stroke and with the

entire word as one shape. Indeed, sokgraph is a form of shorthand. Table 1 shows

the sokgraphs of a common and critical3 phrase ‘The quick brown fox jumps over the

lazy dog’ in comparison to the more traditional and well known English shorthand

systems.

Fig. 2. Sokgraphs defined by the ATOMIK Keyboard for the, word, and have (a dot indicates the starting end).

3 This phrase is critical because it covers all 26 English letters in nine words. Sokgraphs of these words are more

stretched than usual as a result.

S. Zhai et al. / Interacting with Computers 17 (2005) 229–250 241



In theory, sokgraphs can be defined on any keyboard layout. However, if we define

them on the QWERTY layout, for example, it would involve frequent left–right zig–

zag strokes, because the commonly used consecutive keys are deliberately arranged on

the opposite sides of QWERTY. Currently we use the ATOMIK layout, although a

more suited layout can possibly be developed.

Duality. Traditional shorthand writing systems, such as Pitman’s, take significant time

and effort to master. Furthermore, one must sufficiently master a traditional shorthand

system to begin actual use. A sokgraph, on the other hand, shares the same pattern as

tapping on a stylus keyboard. A user could choose to use tapping or tracing individual

letters or writing the sokgraph on the keyboard. Stylus tapping/tracing can serve as a

bridge to sokgraph writing.

Common components and Zipf’s law effect. Due to the effect of Zipf’s law,4 mastering a

small number (e.g. 100) of sokgraphs of the most common words can benefit the user at a

disproportionably high frequency of use. Familiarity of the common fragments of words,

such as ing and tion, even in a less common word, may also transfer to the user’s general

skill of writing sokgraphs.

Skill transition. One advantage of sokgraphs is that the user does not have to

memorize any of them to begin. One can start using them by tracing the letters on the

keyboard. In other words, it initially can be visually guided, closed-loop action. Over

time, as the contribution of pattern recall, or open-loop action increases, their

dependence on visual guidance will decrease. We expect a user’s behavior to be always

somewhere in between in general, but gradually shifts from closed-loop to open-loop

performance with practice.

Table 1

The phrase ‘The quick brown fox jumps over the lazy dog’ in traditional shorthand systems and in sokgraph

The Pitman and Gregg shorthand writings are reproduced from http://personal.riverusers.com/,busybee/

handy/althandwriting.htm by permission of Eric Lee.

4 Zipf’s law models the observation that frequency of occurrence of some event f ; as a function of its rank i;

defined by the frequency, is a power-law function Pi , 1=ia with the exponent a close to unity. The effect of

Zipf’s law is that disproportionally large percentage of a body of text is made of the most common words.
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There are many previous research results related to SHARK. The idea of optimizing

gestures for speed is embodied in the Unistrokes alphabet designed by Goldberg and

Richardson (1993). In Unistrokes, every letter is written with a single stroke but the

more frequent ones are assigned with simpler strokes. If mastered, one can potentially

write faster in the Unistrokes alphabet than in the Roman alphabet. The fundamental

limitation of Unistrokes, however, is the nature of writing one letter at a time.

Quikwriting (Perlin, 1998) uses continuous stylus movement on a radial layout to enter

letters. Each character is entered by moving the stylus from the center of the radial

layout to one of the eight outer zones, sometimes crossing to another zone, and finally

returning to the center zone. The stylus trajectory determines which letter is selected.

While it is possible to develop ‘iconic gestures’ for common words like the, such

gestures are rather complex due to the fact that the stylus has to return to the center

after every letter. In this sense, Quikwriting is fundamentally a character entry method.

Cirrin (Mankoff and Abowd, 1998), is probably the closest prior art to SHARK. Cirrin

operates on letters laid out on a circle. The user draws a word by moving the stylus

through the letters. Cirrin explicitly attempts to operate on a word level—the pen lifts

up at the end of each word. Cirrin also attempts to optimize pen movement by

arranging the most common letters closer to each other. However, some of the key

principles of SHARK such as open-loop pattern production rather than crossing

individual keys, location and scale relaxation, and the transition from visual guidance

to memory recall, are not in Cirrin.

6.1. SHARK gesture recognition

Many pattern recognition techniques have been previously invented for ‘online’

handwriting recognition, including template matching, syntactical modeling, statistical

modeling and neural networks. See Tappert et al. (1990) or Beigi (1993) for surveys of

the common techniques. We have developed a SHARK recognition system based on the

classic elastic matching algorithm (Tappert, 1982) which computes the minimum

distance between two sets of points by dynamic programming. One set of points is

from the shape that a user produces on a stylus tablet or a touch screen (sample

gesture). The other is from a prototype—the sokgraph defined by the letter trace of a

word on a keyboard. The word corresponding to the sokgraph that has the shortest

distance to the sample is returned as the recognized word. See Zhai and Kristensson

(2003) for more details of our recognition system and ways of disambiguating similar

sokgraphs.

6.2. A feasibility user study

The SHARK method raises many human performance questions. We focus on the most

basic question—in an experimental study can users learn, remember or discriminate, and

produce sokgraphs at all? Can they learn a useful number of sokgraphs in a relatively short

period of time?

There are reasons to expect that people can remember a large number of symbols.

We use dozens of Roman letters, Arabic numbers, Greek letters, punctuation marks,
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and mathematic symbols. Trained stenographers learn a great number of shorthand

symbols. Seven hundred separate hieroglyph symbols were used in ancient Egypt

(Gardiner, 1978). A literate Chinese person must learn at least two thousand unique

characters.

We have conducted a feasibility user study on the learnability of sokgraphs. See

Zhai and Kristensson (2003) for the details of the experiment design and execution.

The results of the user study show that all of the participants could learn to write

correctly recognized sokgraph gestures for any word presented to them, if practiced

enough (typically 7–15) times. As shown in Fig. 3, participants were able to correctly

write more words in each learning session (in different days), on average about 15

words more per session. In the final test, on average they correctly produced 48.83

(between 62 and 39) words in their first attempt, and 58.67 (between 77 and 49) words

if counting the second attempt when the first failed. Interestingly, the number of new

words learned per session was rather constant.

During the study, the participants were encouraged to write down comments on

SHARK. Most of them found the method delightful, particularly in the initial

sessions (‘It is fun!’ ‘Ought to be a really effective way of writing once you get a

hang of it,’ etc.). None of the participants found the method tedious during the

study.

7. Acquisition of new text input methods and skills

7.1. Characteristics that ease learning

In addition to inventing and studying methods that offer high performance for expert

users, understanding ease of initial adoption and the ease of learning present an equally

critical research challenge. There are many aspects to this challenge. One is that the

method itself should be easy to start and improve. Finding characteristics that may ease

Fig. 3. Total number of words correctly written in test sessions, averaged across participants.
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learning is an important research topic. Compatibility with users’ existing skills,

conceptual clarity of the new method and many other factors may play a role. A small step

in this direction is the alphabetical tuning mechanism employed in the ATOMIK

keyboards.

As reported in Smith and Zhai (2001), we conducted a study to test whether

alphabetical tuning indeed could help novice users in the very initial stage of learning a

new stylus layout. In the study, participants with no prior experience with stylus keyboards

took part in an order-balanced within-subject experiment with two layouts, one with

alphabetical tuning and one without alphabetical tuning. With each layout, participants

first tapped from the a to the z key as a brief warm-up. For the next 15 min, they entered

memorable English sentences, such as ‘the quick brown fox jumps over the lazy dog’, ‘we

hold these truths to be self evident’, and ‘all men are created equal.’ Results show that

participants’ average speed was 9% faster with alphabetical tuning.

To explain the empirical findings of alphabetical tuning, Smith and Zhai (2001) also

conducted a theoretical analysis of the uncertainty in visual search, in the framework of the

Hick–Hyman law (See Keele, 1986 for a review). With the alphabetical tuning, novices

may have a stronger expectation of the area that a letter is likely to appear in (lower

entropy), hence reduce their search time. This is particularly true to the letters at the

beginning or the end of the alphabet (For example a; b; c; d and x; y; z).

7.2. Learning methods

The other aspect of easing users learning experience is to design learning processes,

perhaps eventually embodied in the form of a game for example, to help them acquire the

skills in a motivating fashion.

The literature on skill acquisition (e.g. Proctor and Dutta, 1995) and human memory

(e.g. Baddeley, 1998) presents a variety of theories, models and insights on how people

learn and retain skills. One compelling method from that literature that may be relevant

and useful in helping people to learn novel text methods is practicing with expanding

rehearsal interval (ERI) (Landauer and Bjork, 1978). ERI has been acclaimed as an

important result in human memory research and is also supported by recent thoughts in the

field of skill acquisition and memory (Schmidt and Bjork, 1992).

Briefly, the ERI method suggests that trial repetitions for learning should be neither

totally massed nor randomly distributed. Rather, they should be optimized by system-

atically increasing the interval between repetitions. For example, a good way to learn a

new foreign word is to rehearse the word frequently at first and gradually reduce the

frequency of rehearsal as it becomes better memorized.

We have revised and applied the ERI method in two studies, one on learning stylus

tapping (Zhai et al., 2002b) and the other on learning sokgraphs (Zhai and Kristensson,

2003). An important modification we made to ERI was to make it adaptive to user’s

learning speed. The rehearsal interval was expanded, kept the same, or even decreased

depending on whether the user’s performance indicated that the item practiced was

correctly recalled. The basic goal was to keep the learner on the very edge of forgetting and

hence enforce active retrieval of information from memory, which had been suggested as a

key to memory retention (Schmidt and Bjork, 1992).
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For example, in Zhai et al. (2002b), our algorithm scheduled the reappearance of each

training item (a letter, a digraph, or a word) with a gradually increasing interval. The

interval for each item was increased only when the participant learned the item well

enough to type it without spending a significant portion of the total typing time searching

for the keys. This was judged by the algorithm with a Fitts’ law prediction of the time

needed to tap all the letters within that item. If the typing time was within Fitts’ law

prediction, the item was judged as being learned by the participant and the practice interval

increased. If the participant took much longer to type the item, an error trial was registered

and the item was immediately repeated. If the participant typed the item within the Fitts’

law prediction the second time, the rehearsal interval for the item remained unchanged. If

it took more than two trials to type the item with Fitts’ law prediction, the rehearsal

interval for the item was decreased.

A similar method has also been applied to training users to learn sokgraphs in Zhai and

Kristensson (2003). In each cycle of rehearsal of a particular sokgraph, the participant was

asked to write it in the stylus keyboard area without actually showing the keyboard layout.

This forced the user to actively retrieve the sokgraph patterns from their memory. If

correctly written, the word would be rescheduled to appear at an interval twice the current

value. If the participant could not recall the sokgraph of a practiced word in a new

rehearsal cycle of a word, or failed to write it correctly, the rehearsal interval kept its

current value. Fig. 4 shows the ERI traces of a few sample words by one participant. As we

can see, the participant could keep up with the doubling interval with some sokgraphs (e.g.

other) but slowed down with other sokgraphs (e.g. was) at some ERI cycles. Our

experience is that the ERI method is effective if applied appropriately, as indicated by the

training results and by the study participants’ subjective satisfaction.

We have also explored whether the learning curve of acquiring a new text input method

could be accelerated using top-down learning strategies. In one experiment (Lee and Zhai,

2004), one group of participants learned a stylus keyboard layout with top–down methods,

such as visuo-spatial grouping of letters and mnemonic techniques, to build familiarity

Fig. 4. Sample ERI traces of sokgraph does, other, those and was.
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with a stylus keyboard layout. The other (control) group learned the keyboard by typing

sentences. The top–down learning group liked the stylus keyboard better and perceived it

to be more effective than the control group. They also had better memory recall of the

stylus keyboard layout. Typing performance after the top–down learning process was

faster than the initial performance of the control group, but not different from the

performance of the control group after they had spent an equivalent amount of time typing.

These results suggest that the acquisition of declarative knowledge does not necessarily

improve procedural skills, even during the initial cognitive stage of the virtual keyboard

learning. They also suggest that top–down learning strategies can motivate users to learn a

new keyboard more than repetitive rehearsal, without any loss in typing performance.

8. Future directions

SHARK utilizes the expressive affordances of stylus and bridges visually guided

performance (tapping or tracing) for ease of learning to recall-based open-loop actions

(shorthand) for eventual high performance. While we believe SHARK, or systems

embodying some of the principles in SHARK, could be a solution to off-desktop

computing, many research challenges are still ahead of us. First, both the interface and the

technology beneath SHARK need improvement. On the surface, further reducing visual

attention in SHARK is an important design challenge. On the recognition technology side,

we are developing robust sokgraph recognition algorithms that maximize the flexibility to

user’s gesture production and minimize recognition errors. Systematic evaluation along

the dimensions outlined earlier in this paper has barely begun. Conceptually, how speed

and accuracy tradeoff in gesture production and recognition is poorly understood. This is

true for handwriting and other recognition technology in general. As the user produces

faster but sloppier input, the risk of recognition errors will increase. At a certain point, the

user’s input may not contain enough information for any recognizer (humans included) to

decipher. Can the amount of information in a user’s gesture be theoretically quantified?

Can an information theory be developed to guide sokgraph gesture interface design?

Unlike stylus keyboards where Fitts’ law provides a simple baseline estimate of the

ultimate performance, there does not exist any satisfying model for shorthand gesture

based interaction. In parallel to this research program, we have undertaken research on

‘law of action’ in order to be able to model multiple classes of human actions (Accot and

Zhai, 1997; Zhai et al., 2004), but the understanding so far is not enough to model

sokgraph or similar gestures. Being the intimate interface between the user’s expression

and the computer’s interpretation, gesture and similar interfaces await deeper theories that

can guide the design and development of interfaces that helps the user and the machine

negotiate at a level that does not require explicit attention.

Some broader issues with regard to interfaces for off-desktop computing also deserve

attention. Will interfaces for off-desktop computing converge to some de facto standard as

‘QWERTYNomics’ suggests? Or does the nature of off-desk computing inherently require

diverse and specific solutions for each type of application? In short, the field is filled with

interesting HCI research challenges.
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