
Levels of Automation and User Participation in Usability Testing 
 

Kent L. Norman 
Department of Psychology 

Laboratory for Automation Psychology and Decision Processes  
University of Maryland, College Park, USA 

Emanuele Panizzi 
Dipartimento di Informatica 

Universita di Roma "La Sapienza" 
Rome, Italy 

 
ABSTRACT 
This paper identifies a number of factors 
involved in current practices of usability testing 
and presents profiles for three prototype 
methods:  think-aloud, subjective ratings, and 
history files.  We then identify ideal levels to 
generate the profile for new methods.  These 
methods involve either a human observer or a 
self-administration of the test by the user.  We 
propose methods of automating the evaluation 
form by dynamically adding items and 
modifying the form and the tasks in the process 
of the usability test.  For self-administration of 
testing, we propose similar ideas of dynamically 
automating the forms and the tasks.  
Furthermore, we propose methods of eliciting 
the user’s goals and focus of attention.  Finally, 
we propose that user testing methods and 
interfaces should be subjected to usability 
testing. 
 
Keywords:  Usability testing, user interface, 
WWW 
 
INTRODUCTION 
In the last decade, usability testing has become 
accepted as an important part of software design, 
testing, and acceptance.  Many different methods 
and procedures for usability testing have been 
developed that vary in important and 
consequential ways from one another.  These 
approaches have been compared and contrasted 
in a number of ways, principally in their ability 
to detect and rectify user interface problems.  
However, there are many other ways that these 
methods differ that affect the cost and 
applicability of user testing of an application, 
particularly those on the World Wide Web 
(WWW).  This paper first considers the ways in 
which usability testing methods and procedures 
vary along a set of relevant factors.  We do this 
using a morphological analysis, which generates 
profiles of current approaches for detailed 

comparison.  Following inspection of these 
profiles, we propose several new methods of 
usability testing that provide a better profile of 
the factors.  These methods seek to increase the 
level of automation of user testing, decrease 
labor on the part of testing personnel, modulate 
the level of involvement of the user in the data 
collection, and further automate the data 
collection and data analysis components of 
usability testing. 
 
Usability Testing Methods and Factors 
Usability testing is now accepted as an essential 
activity in the lifecycle of software design, 
implementation, testing, acceptance, and revision 
(Dix, Finlay, Adowd & Beale, 2003; 
Shneiderman & Plaisant, 2003).  A number of 
usability methods have been developed and 
promoted by different researchers (Neilson & 
Mark, 1994).  

 
Usability testing has a number of possible goals 
and purposes.  Certainly one of the most 
important is to discover major problems in the 
user interface that could result in human error, 
terminate the interaction, and lead to frustration 
on the part of the user.  Other goals might be to 
reduce training time, increase performance and 
efficiency, and increase user satisfaction 
(Shneiderman & Plaisant, 2003).   

 
Some usability testing can be accomplished 
through the use of checklists, guidelines, and 
principles.  For Web-based applications, these 
can also be semi -automated. But since the goals 
of usability testing involve human users, most 
usability testing methods naturally involve tests 
on real users and require human observers to 
evaluate the outcomes of the test.  Consequently, 
usability testing tends to be rather labor 
intensive.  While the user must by necessity be 
doing some task with the interface, usability 
testing often involves a task administrator giving 



instructions and multiple observers logging 
codes for the interactions, taking notes, and 
interpreting the interaction.  The user may be 
minimally involved in the evaluation and only 
perform the tasks as directed or the user may be 
highly involved in the process of evaluation such 
as being asked to think-aloud, make subjective 
ratings, and even provide suggestions for 
improvements to the interface as a design 
partner.  

  
To meet the need for usability testing, many 
companies and government agencies have set up 
usability laboratories.  These labs are equipped 
with hardware and software that automatically 
capture the interactions.  But automation of data 
capture and analysis has generally been a 
problem owing to the unique situation of each 
application.  Moreover, access to usability labs is 
limited and it is often more practical for 
observers to set up testing areas at locations 
convenient for the users without the use of 
special equipment such as video cameras and eye 
trackers.  Several studies have attempted to 
compare usability-testing methods in terms of 
their ability to identify types of usability 

problems (John & Marks, 1997) and their 
influence on software designers. 

 
It is clear that competing methods of usability 
testing differ along a number of dimensions.  In 
the sections that follow, we discuss a number of 
these factors.  Then we use these dimensions to 
construct the morphological box (Ritchey, 1998; 
Zwicky, 1969; Zwicky & Wilson, 1967), which 
is shown in Figure 1.  To aid in the discussion, 
we explore the profiles of three dominant and 
exemplary usability approaches: (a) the think-
aloud method (TA) in which users are instructed 
to provide a running verbal commentary on what 
they are thinking and doing, (b) the method of 
automatically recording of user interactions in a 
history file (HF), and (c) the method of assessing 
subjective ratings (SR) of the interaction by the 
users.  The reader is invited to graph the profile 
of other methods that we do not present here as 
each factor is discussed.  Finally, we list what we 
might call the “ideal method”(IM) that 
capitalizes on the best values and mixes of 
factors in the box.  After discussing each factor 
and the three prototypical methods, we will 
return to the “ideal method.” 

 

 
Figure 1.  Morphological box of eight dimensions of usability methods showing profiles of three 
prototypical methods and one ideal method.  (Pluses and minuses indicate desirability of end points.) 
 
User involvement 
The first factor of usability testing that we will 
consider is the degree to which the user is 
mentally involved either introspectively or in 
terms of self-assessment.  At one extreme, the 
user may be highly involved.  Think-aloud 
procedures require the user to constantly 
verbalize what he or she is thinking, expecting, 
deciding, etc as shown by high value in Figure 1 

for user involvement (Lewis, 1982).  The verbal 
protocols that are elicited in this method can be 
very rich in diagnostic and evaluative 
information, but they can also be contrived, 
biased, and misleading.  Verbalizing while doing 
can be very demanding and can change the 
course of one’s behavior (Rhenius & Deffner, 
1990). To avoid the problem of trying to do two 
things at once, the method of retrospective report 



can be employed in which the user first performs 
the task without verbalization and then reviews a 
recording of the interaction and comments on the 
events as they are replayed.  While the user may 
recall the reasons for particular actions and 
reactions to system responses, it is possible that 
imperfect memory can distort recall and result in 
false rationalizations and constructed 
explanations.  But the biggest problem with the 
retrospective account is that it takes substantially 
longer than the think-aloud method (Norman & 
Murphy, 2004). 

 
At the other extreme, the user may be minimally  
involved in the evaluation.  Only the interaction 
between the user and the system is observed in a 
history file of recorded events and the user is 
neither asked to think-aloud nor to give opinions 
or ratings.  This is the least invasive method as 
shown by the profile in Figure 1.  Only the user 
responses to system events are captured.  The 
advantages are that the user is performing the 
task in the most natural way.  The disadvantage 
is that the responses do not always capture what 
is happening.  For examp le, the user may have 
different goals and may at one time be engaged 
in causal browsing and at another time rushing to 
complete a transaction before a deadline.  Nor do 
the responses convey any information about 
expectations, frustrations, or satisfaction. 
 
Users are often asked to provide subject 
assessments using questionnaires and rating 
scales.  Usually, these ratings are done at the end 
of formal user testing sessions, but sometimes 
after each task is performed.  Users are asked to 
provide ratings of satisfaction, confusion, 
frustration, and particular interface attributes 
(e.g., system responsiveness, meaningfulness of 
messages) either during the interaction or in a 
debriefing session after the task is complete.  
Figure 1 shows that methods of subjective 
assessments fall at an intermediate range for user 
involvement. 
 
Degree of Interface Object Specificity 
The second factor that we consider is the 
specificity or granularity of the evaluation.  User 
testing may focus at one extreme on the overall 
usability or user satisfaction with an application 
or at the other extreme on very specific interface 
objects such as the location or icon of a 
particular button on a particular screen.  Global 
assessments are important for evaluating one 
application relative to others and for gaining a 
sense of the user’s overall satisfaction with the 

system.  User rating scales such as the 
Questionnaire for User Interaction Satisfaction 
(QUIS) (Chin, Diehl, & Norman, 1988) and the 
(SUMMI) (Kirakowski & Corbett, 1990) are 
useful instruments for this purpose.  However, if 
an evaluation is very low, such instruments 
might be able to point to a type of problem (e.g., 
confusing terminology), but they do not identify 
the specific interface objects that are causing the 
problem.  Figure 1 shows these methods at the 
low end of the scale of object specificity. 

 
To achieve a more specific identification of 
problems, user testing typically involves a 
screen-by-screen and object-by-object 
evaluation.  Cognitive walk-throughs by experts 
are used to identify specific interface problems.  
Observations of users performing tasks and 
instructions to “think-aloud” help to identify 
specific problems.  But as noted earlier, these 
approaches are very labor intensive and costly.  
Consequently, user testing is often limited to just 
a handful of participants and only a dozen or so 
hours of observation.  While high frequency 
problems are likely to be observed, less frequent, 
peculiar problems may escape observation and 
detection.  Figure 1 shows these methods at the 
high end of object specificity. 

 
History files of user interaction can be 
programmed at different levels of specificity.  
They may record only high level transitions from 
screen to screen and times to complete tasks or 
screens; or they may record every mouse click 
and movement and every keystroke.  Figure 1 
shows that these methods can span a range of 
levels of object specificity.   
 
Degree of Structure 
Evaluations can be either open-ended with little 
structure or highly structured with rating scales, 
multiple-choice questions, and checklists.  Open-
ended questions are necessary when the 
evaluators do not know what to expect from the 
user or when they want to discover new 
categories of problems and issues.  Open-ended 
questions result in qualitative data that need to be 
interpreted and categorized by the evaluators.  
This can require a lot of time and effort.  On the 
other hand, structured evaluations generally 
result in quantitative data that can be quickly 
summarized and analyzed with statistical 
programs and easily interpreted by the 
evaluators.  Most usability testing uses both 
structured and unstructured questions to benefit 
from the advantages of both. 



Think-aloud methods tend to be very open-
ended; and hence in Figure 1, they are shown at 
the low end.  It is thought by some advocates of 
the think-aloud method that adding structured 
questions might lead the user or suggest answers 
that they would not otherwise have made.  
Subjective rating scales, on the other hand, are 
much more structured.  History files by their 
nature must be pre-programmed.  However, if 
one captures everything, there really is very little 
structure in terms of what actions or problems 
are being investigated.  Additional programming 
is required to add structure and to capture more 
meaningful events, such as failure to efficiently 
navigate through a site rather than to use the 
back button.  Nevertheless, Figure 1 shows that 
the history file tends to be more structured. 
 
Knowledge of User’s Goals and Intentions 
Behavior is generally goal driven.  Even 
browsing Web sites in a seemingly random 
manner is affected by the user’s goals, 
aspirations, and intentions.  Consequently, it is 
extremely important in usability testing to know 
the user’s goals at any moment.  In many user 
testing situations, the goal is set by the task 
administrator who tells the user what task to 
perform and why.  For example, the user may be 
asked to find the cost and availability of some 
product or to fill out a form as fast and 
accurately as he or she can; or if the user is free 
to choose his own task, he will communicate it to 
the administrator. 
 
In many testing situations, the task administrator 
may let the user go to explore and work on their 
own.  In field-testing, users may come to the 
application with different goals in mind (e.g., 
make a purchase, compare prices, etc).  The only 
way to know the user’s goal is to ask.  In most 
think-aloud tests, a task administrator gives a 
specific task to be performed.  Consequently, 
Figure 1 shows that for think-aloud methods the 
level of goal knowledge is high. 
 
On the other hand, when using only a history file 
in user testing, there is little way of knowing 
what the user’s goals are unless they are 
somehow inferred after the fact.  For example, 
after the user has entered credit card information 
and completed a transaction, we might infer that 
the user intended to buy the item.  Nevertheless, 
for history files, Figure 1 shows a low level of 
goal knowledge.  Finally, with subjective ratings, 
there is usually little indication of what the user’s 
goals are. 

Tracking the Focus of Attention 
A substantial part of the user’s interaction with a 
system is looking at or listening to the interface 
without generating any feedback to the system.  
It is important to know where the focus of 
attention is for the user because it involves the 
locus of information acquisition or the point of 
decision-making.  Knowledge of the focus of 
attention is acquired in the think-aloud procedure 
when the users verbalize what they are reading 
or looking at.  But these data are not automated 
and not easily logged.  So, while Figure 1 shows 
the think-aloud method high in knowledge of 
focus of attention, it is also low in automation.  
The history file in its current implementation 
gives an indication of focus of attention only 
when the user clicks a button or link or types in a 
field.  Finally, the subjective ratings give 
virtually no information about the focus of 
attention. 
 
A popular option is to use eye tracking as a 
proxy for the user’s focus of attention.  A close 
coupling exists between gaze and attention 
although it is not perfect.  The user may stare at 
one part of the screen while thinking about 
something else.  But the real problem with eye 
tracking is that the equipment and software is 
expensive and can require substantial time to set 
up and expertise on the part of a usability 
technician.  New systems do not require 
cumbersome and distracting hardware for the 
user, but they are still expensive and require 
some calibration; and of course, they are not an 
option for self-administered user testing on the 
WWW.  The question is whether the user can 
provide input to the system for focus of 
attention.  As will be seen in the sections to 
follow, we will propose a method of adding this 
information to the his tory file. 
 
Automation 
It is odd that most usability testing is done in a 
very manual, labor-intensive way when 
computers and automation surround the usability 
laboratory.  Why can’t we automate user testing?  
Programs such as Noldus Observer (Noldus, et 
al, 1999) help the observer to code behavioral 
events, record times, and associate events with 
video capture. This and other programs also have 
facilities to sort, organize, and analyze the data, 
but still require more manual labor than seems 
appropriate.  Why aren’t the observations 
recorded automatically?  The reasons become 
obvious when one looks at the process.  The 
software being tested is often an application that 



cannot be easily modified to capture and record 
the user interactions.  Consequently, one has to 
resort to recording the interaction using video 
cameras, scan converters, or screen capture 
programs.  Some of these approaches capture the 
user’s input, but they do not capture the user’s 
focus of attention or the user’s goals and 
intentions.  These require other labor-intensive 
methods. 
  
The most ambitious attempts at automation of 
usability testing come from the artificial 
intelligence (AI) community.  The idea is to 
totally automate user testing by running 
surrogate users in the form of artific ial intelligent 
user agents that model the perceptual and 
cognitive processes of real users.  These 
approaches are extremely compelling and 
interesting but doomed to fail for a variety of 
reasons.  The first is that we really have not been 
able to generate truly autonomous user agents 
that act like humans.  Past and current attempts 
have been extremely costly, overly simplistic, 
and totally specific to the task and application 
(Norman, 1991). 
 
More modest approaches to automation attempt 
to record, analyze, and interpret interface events 
of real users performing either simulated tasks in 
the laboratory or real tasks in an environment.  
Software that records a history file is being 
developed more and more for this purpose 
(Cugini, 2000), but again it has the problem of 
leaving out the user’s goals and intentions and 
much of the user’s focus of attention when not 
actually clicking on a button or typing in a field.  
Subjective ratings of usability have appeared in 
both paper and pencil form (low automation) and 
in on-line form (high automation).  Analysis of 
the data has also spanned the range from low to 
high levels of automation. 
 
Number of Participants 
Usability methods by their nature have been 
associated with either very small samples or 
large samples.  Since think-aloud methods are so 
labor intensive, they have leaned toward very 
small samples and researcher have tried to justify 
the use of small samples (Lewis, 1994; Virzi, 
1992).  Subjective assessments either in paper-
and-pencil mode or online have leaned toward 
large samples especially when statistical methods 
are used.  History files, which record interface 
events, can be used with both small and large 
samples, but since they are highly automated and 
involve substantial effort to set up, are usually 

used with moderate to large samples as shown in 
Figure 1. 
 
Presence of Observer 
Finally, although we have referred to this factor 
repeatedly in preceding sections, we must 
consider the factor of whether a human observer 
is required. The question of whether an observer 
is needed depends on the extent to which (a) the 
user in conjunction with the usability system can 
self-administer the test and (b) the user and/or 
the system can record diagnostic events on their 
own.  
 
The think-aloud method, of course, requires a 
human observer whether onsite or in a 
teleconferencing mode.  The human observer is 
generally also the task administrator who 
instructs the user as to what tasks to perform. 
The subjective rating method is generally self-
administered and the history file is totally 
automated so neither of these methods requires a 
human observer as shown in Figure 1. 
 
Other Related Factors 
One can think of a number of additional factors 
that vary among usability testing methods.  For 
example, one important dimension is whether 
one does the testing in a controlled laboratory 
setting as opposed to a field study in the natural 
environment.  There are advantages and 
disadvantages associated with each end of this 
factor.  The usability laboratory has testing 
equipment and space for observation.  
Laboratory testing reduces variability and allows 
for controlled experimental designs, but it is 
often artificial and changes the context of testing 
for the user.  Laboratory testing also requires the 
users to travel to the testing facilities often 
making it inconvenient for the user and more 
costly for the client.  There are some solutions, 
such as portable usability labs, that try to 
maximize the benefits of both the laboratory and 
the field.  Portable equipment can be taken to the 
user in the home, office, factory, or public space.   
 
Another factor is the presence of video cameras, 
recording devices, and other control equipment.  
But this factor is associated with the laboratory, 
whether fixed or portable.  The factor of the 
availability of subjects, whether coming to the 
lab or the lab going to them, is associated with 
field-testing.  Think-aloud methods are more 
likely to be associated with laboratory testing.  
Subjective ratings, whether on paper or online, 
are generally independent of location.  History 



files are more likely in controlled laboratory 
settings where the software can be modified to 
record interactions.  However, for Web-based 
applications, this is not an issue since the 
software can be modified on the Web server. 

 
Of course, cost is an important factor in usability 
methods, but cost is an integral function of many 
other factors and how those factors are 
implemented.  One can also imagine a factor on 
which the user testing is either done in a quick 
and dirty manner or in painstaking and thorough 
manner.  Finally, there are performance factors 
that vary among method including the 
diagnosticity of the test for identifying problems 
and the statistical reliability of the test for 
hypothesis testing.  Since these factors are really 
outcomes of the test and the result of how other 
factors are implemented, they do not need to be 
considered on their own. 
 
NEW MIXES OF USABILITY METHODS 
The question then is how to generate a user 
testing/evaluation method that achieves an 
optimal mix of automation and human effort, 
structure and lack of structure, specificity, and 
level of user involvement.  In this section, we 
will outline a method that attempts to do just this 
with the assumptions (a) that one can attach or 
plug in software that records user and system 
interactions, (b) that the user is sufficiently 
motivated to make a number of judgments and 
evaluations during the session, (c) that the user 
can inform the system of his or her goals and 
intentions even as they change, (d) that the user 
can convey to the system his or her focus of 
attention, and (e) that sufficient structure can be 
added to the evaluation to allow for automation 
of the analysis. 
 
The last bar on each scale in Figure 1 shows 
what we consider to be the ideal level or levels 
for the factor.  For user involvement, we believe 
that the user should be involved to an extent, but 
neither too taxed by the assessment nor totally 
ignored.  A moderate level of involvement 
engages the user as a participant and helps to 
provide information about goals and focus of 
attention.  While assessments of overall 
satisfaction are important and useful for 
motivating change, they do not indicate what 
should be changed.  Ideally, we would like to 
acquire more specific information about the 
interface and problems with particular elements. 
Thus, new methods need assessments linked to 
specific screen elements (e.g., illegibility of a 

part of text on a particular screen) and actions 
rather than overall assessments.   
 
We believe that evaluation structure should 
include both pre-planned structure (specific 
questions and tasks) that can be modified and 
open-ended parts that capture events that were 
not foreseen by the evaluators.  But the system 
must be dynamic to handle changes in the 
structure over time, dropping out or modifying 
questions and tasks throughout testing and 
adding new items as they appear in the open-
ended comments of the users. 
 
Knowledge of user’s goals is important.  The 
knowledge of the user’s goal at any one time 
may be determined either by instructing the user 
to perform certain tasks with specific goals or by 
asking users what they are trying to do.  
Similarly, knowledge of the user’s focus of 
attention is important.  The question is whether 
expensive hardware is needed or whether we can 
gather this information in a different way. 
 
Obviously, we would like to increase the level of 
automation in a usability system to reduce the 
load on human observers, increase the efficiency 
of the test, manage dynamic aspects of the test, 
record the data, analyze the data, and report the 
results.  To the extent that more can be 
automated, we can increase the number of 
participants without incurring large increases in 
the cost of the evaluation.  Although one can 
justify small samples in usability testing, it will 
always be the case that one can learn more from 
larger samples particularly when the user 
population is diverse and one would like a 
sufficient representation of each type or category 
of user in the population. 
 
New methods can in many cases eliminate the 
need for human observers and in other cases they 
cannot.  Therefore, we must consider both cases 
in the implementation of new methods.  The 
question is how to make user testing more 
productive and efficient when an observer is 
definitely required and how to replace or make 
up for this information when an observer is not 
present.  We will propose solutions to these 
problems in the next section. 
 
IMPLEMENTATION 
In this section, we present the potential 
implementation of the new methods suggested.  
We will first consider the new methods that 
involve a human observer and then methods that 



involve a self- or user-administered test.  The 
user-administered test will employ some of the 
same ideas for automation that help to manage 
the observer administered test.  Finally, we 
recommend the use of tracking software to 
record history files but as well as methods to 
associate these events to observations recorded 
by human observers and/or users. 

 
Methods Involving a Human 
Observer/Administrator 
Human observers are often needed to record 
events in user testing and to write comments and 
evaluations as the tasks are performed.  In many 
cases, there is no way around the need for a 
human observer who is able to detect complex 
and often unanticipated interactions and to 
classify them into categories of events.  
Particularly for time critical tasks where users 
need to respond quickly and cannot act as their 
own observers, human observers are a necessity.  
No automated method can be obtained at this 
point that could replace the human observer.  
However, the task of observation, recording and 
commenting on events and classifying 
observations could be aided by automation.   

 
Observation  Records 
Currently, a variety of software packages have 
been written to help support  the observation task 
(e.g., Noldus et al, 1999).  In general, these 
applications, facilitate recording by 
automatically time stamping the records and by 
providing preprogrammed “hotkeys” or menus 
for behavioral events.  Few, if any of these 
programs are Web-based and all require 
considerable effort to configure and set up before 
testing and considerable time to post-process the 
results.  Even with careful pre-programming, one 
often misses important and frequent events that 
should have been planned.  The result is that the 
observer must repeatedly add written comments 
for the same event and later have to count the 
frequency of these events. 
 
Our approach is to strike a balance between pre-
programming and a dynamic modification of 
classification of behavioral events.  We start with 
a small set of obvious events that the observer 
might code B = {event1, event2, …, eventn} on a 
Web-based form.  During a user testing session, 
the observer can either select from among this 
set or add either new events or write new 

comments.  Following each user testing session, 
the new events are automatically moved to set B; 
and if desired, the observer can select written 
comments and move them to set B.  As testing 
progresses, efficiency will increase since the 
observer will have fewer written comments to 
make.  However, as set B gets larger, it will be 
harder and harder to find and select the 
appropriate behavioral code.   
 
At this point, it will be necessary to dynamically 
organize and cluster set B to facilitate a selection 
of codes.  First, the set could be organized by 
frequency of past occurrence.  This would allow 
the observer fast access to frequent codes.  
Second, it could be organized by temporal 
position in the testing session, if that position 
tends to be consistent from one session to 
another.  This would allow the observer to 
position the list temporally during the session.  
Finally, it may be observed that some codes are 
either behaviorally equivalent and can be 
combined or that they are subsets of other codes 
and can be hierarchically clustered and 
organized.  One may have codes for general 
behaviors (e.g., confusion) and sub-codes to 
identify specific aspects of the behavior (e.g., 
confusion about navigation, confusion about 
input format).  If time permits, immediate post-
processing of the codes will take advantage of 
better memory for the behavioral events on the 
part of the observer and avoid memory loss and 
retrieval bias later on. Figure 2, shows a 
schematic diagram of the process of adding, 
clustering, and organizing events over a series of 
user testing sessions.  Session 1 starts with only a 
few events selectable.  During or after Session 1, 
the observer can convert comments to selectable 
events and can combine and cluster events.  The 
system may automatically convert new events 
that are of a general nature (labeled “new 
behavioral event” in Figure 2) into selectable 
events for the next session.  Comments of a 
particular nature (labeled “new comment” in 
Figure 2) would only be recorded for future 
processing.  After all of the users have been 
tested, the process results in a hierarchy of events 
with associated frequencies and other 
information.  The result is that most of the post-
processing of the events and comments has 
already been done in the course of testing. 
 



 
Figure 2.  Diagram of the observer logging form from one session to the next with post-session processing. 
 
Initially, events are organized by order of entry 
into the form; however, when a sufficient 
number of events have been observed, it will be 
possible to organize them by frequency and by 
temporal position in the testing session.  Events 
may be given a temporal order in two ways.  
First, some events may be associated to tasks 
that are performed in a sequential order.  Second, 
other events may be found to occur consistently 
at relative points in the session (e.g., near the 
beginning, in the middle, near the end).  To order 
events by temporal position, the time of 
occurrence of events is recorded and its relative 
position between the start and end of the session 
is calculated.  If over a number of sessions, this 
temporal position is relatively consistent, the 
events can be placed in a reasonable temporal 
order.  Figure 3 shows the enhanced observer 
form that will facilitate the selection of events 
with sorting by frequency and temporal position. 
Adaptive Tasks 
Most usability testing involves the selection of a 
set of target tasks for the users to perform during 

the testing session.  These tasks are often 
selected to be representative of typical tasks that 
users will perform in the field.  In addition, some 
tasks may be selected for testing because they 
are critical to the health or mission of the system;  
whereas, other tasks are highly destructive or 
unusually error prone.  Task administrators try to 
select tasks that will prove diagnostic in 
revealing user interface problems, but it is often 
hard to second guess and to predict what the best 
tasks are.  Some tasks can be omitted and the 
need to test other tasks becomes apparent only 
after the testing has  commenced.  Unfortunately, 
the convention generally adopted from 
experimental methods has been to run all of the 
users through the same set of tasks and to not 
vary any conditions.  However, in the spirit of 
Bayesian and adaptive testing, there is no reason 
to continue to run tasks that are not diagnostic or 
that have already proven their point.  Moreover, 
once tasks have been dropped new tasks can be 
added to replace the old.   



 
Figure 3. Diagram of the observer logging form showing three different methods of sorting the events. 
 
In our approach, we consider a set of user tasks 
T = {task1, task2, …, taskk }.  This set can be 
altered depending on the results.  Figure 4 shows 
a diagram of tasks and sessions.  We start with 
four tasks.  Some tasks drop out because they are 
not diagnostic and do not reveal any problems.  
When tasks fail to report any negative events 
over a series of tests, they should be dropped.  
The question is how to set the criterion for the 
number of sessions before a task is dropped.  We 
suggest using the Negative Binomial 
distribution, which gives the probability of no 
occurrences for X sessions.  Thus, for example, if 
we set the probability of the occurrence of an 
event on any one session at p = .20, and no 
occurrences over sessions P(X = N)  = .10, we 
would drop the task after N = 8 no event 
sessions.   
 
Other tasks may be dropped out because they 
have consistently revealed the same problem.  In 
this case, one needs to confirm that the event 
occurs for a sizable proportion of the user 
population (e.g., p > .20).  This could be 
established by using a one-sided confidence 
interval on the proportion of occurrences.  When 

the lower limit of the interval exceeds the 
criterion (.20), then the task can be dropped. 
 
Other tasks may be introduced as the task 
administrators discover new issues and problems 
with the system.  These tasks are submitted to a 
pool in the database with estimations of the time 
to complete each task and priority values for 
inclusion.  As testing time opens up, the system 
would insert new tasks from this list.  Figure 4 
shows a diagram of the task database starting 
with the initial set of tasks and showing tasks 
being dropped and added over sessions. 
 
Methods Involving the User 
In this section, we discuss new methods that 
involve input from the user.  First, we will 
present methods for the user to serve as the 
observer and to report events and subjective 
assessments.  Second, we will present methods 
to complete the information missing in observer 
records and history files about goals and focus of 
attention. 
 
 



 
Figure 4.  Diagram of the tasks presented to users over sessions. 
 
Self Reporting of Events and Subjective 
Assessments 
In the previous section, we presented methods of 
providing dynamic forms for the observer; in this 
section, we drop the observer and ask the users 
themselves to fill out the forms.  The only 
change needed in the software and the database 
of events is to phrase the questions in terms of 
the first person and to add subjective ratings for 
the user to complete.  In addition, for most tests, 
users can suggest new events and write 
comments, but they will not be automatically 
added to the form.  All post-processing and 
changes to the form will be done by usability 
administrators.  The only exception might be in 
cases were the user community itself is 
essentially in charge of the usability test. 
In general, for Web-based interfaces, a second 
window or a second frame will be used to 
present the questions and ratings.  The elements 
of the evaluation screen will be tied to the 
elements of the screen being evaluated and the 
database will store these associations.  The 
primary limitation of this approach is screen real 
estate.  If multiple windows are employed, the 
user must flip between windows that will 
probably occlude one another.  If frames are 
used, they may not be big enough to display all 
of the elements without scrolling.  Large screen 
systems or two monitor set-ups would be ideal, 
but are not prevalent in the user community.  
Consequently, users will have to make an extra 
effort to manage this problem. 
 
Dynamic and Self Reported User Tasks 
When testing requires the user to perform a 
series of tasks, these can be generated from the 
task database discussed in the preceding section 
and presented in a task window or frame.  An 
example is shown in Figure 5.  The user may be 
required to indicate the starting and ending time 
of the task, whether it was successfully 

completed, and answer a question regarding the 
task. 
 

 
 
Figure 5.  Illustration of a sequence of windows 
for task administration. 
 
Alternatively, in cases where users are working 
on their own tasks, we can ask them to specify 
what they are doing at any point and to indicate 
when they change to a different task.  Again, a 
new window or frame would allow users to input 
this task or goal information.  Figure 6 gives an 
illustration of such a window.    
 

 
 
Figure 6.  Illustration of a sequence of windows 
requesting the user to specify the current task. 



Mouse Tracking as a Proxy for Eye Tracking 
The user’s focus of attention is a theoretical 
construct that is not directly observable.  In 
usability testing, it has been associated with gaze 
and assessed using eye-tracking devices.  
However, there are other proxies for the user’s 
focus of attention.  The most obvious and easy to 
capture is where the user is pointing on the 
screen.  Consequently, we propose to use mouse 
tracking to follow the focus of attention of the 
users.  Mouse tracking is easy to record and will 
serve as a proxy for the user’s focus of attention 
rather than eye tracking. But, it should be noted 
that while eye tracking may capture rapid 
preconscious attention processes, mouse tracking 
would only capture attention that follows 
consciousness.  The question is whether the user 
can be instructed to continually move the mouse 
to the location of gaze and hence, focus of 
attention.  Figure 7 shows a set of instructions to 
the user.   
 

 
 

Figure 7.  Focus of attention instructions for the 
user. 
 
Mouse tracking can be recorded using screen 
capture or it can be directly stored in the history 
file as x-y coordinates.  The problem to be 
solved in the later case, is the association of the 
x-y coordinates to objects and text on the screen 
particularly in resizable browser windows.  
 
Application 
We are currently developing the software and 
database to implement the new methods 
described in the preceding section.  This system 
will run on a Web server and will be assessable 
anywhere; it is based on an automatic form 
generator (Panizzi). 

User and observer forms  
We use a form generator to define both user 
forms and observer forms. Our generator is a 
server-side application capable of storing an 
unlimited number of form descriptions, 
displaying these forms on web pages, and 
collecting input data in a database.  The form 
description is given through a web-based user 
interface.  We use this interface for setting up the 
initial observer forms and the user’s subjective-
rating and dynamic task forms.  We are currently 
adding a new feature to the form generator in 
order to store alternate phrasing of the labels of 
the form fields.  This will allow us to use the 
same form description to collect data both from 
the observer  when present and from the user 
when the test is self-administered. 
 
Dynamic observer form 
We are currently working on the development of 
a software module capable of automatically 
modifying the description of the observer form 
by interacting directly with the form generator.  
In fact, when the observer submits the form at 
the end of each test, our module will read the 
declaration of new behavioral events (see Figure 
2, column 1) and will add the corresponding new 
fields to the form description. The database 
tables will be altered accordingly.  Thus, in the 
next session, the form generator will produce a 
different, enhanced form (see Figure 2, column 
2).  
  
Adaptive tasks 
Adaptive tasks will be managed in a similar way 
by modifying the user form description as well 
as the database tables.  In this case, however, 
there is no automatic updating in response to 
user.  The test administrator will use the form 
generator interface to drop old tasks and to add 
new tasks.  The generator will then update the 
form description and modify the database tables 
appropriately.  
 
Empirical Verification 
The new methods proposed here seem like good 
ideas to improve the usability and effectiveness 
of usability testing.  However, in the spirit of 
usability testing, one really needs to run 
empirical tests on the proposed methods and 
interfaces.  Consequently, we propose a number 
of experiments to verify the effectiveness and 
usability of these methods as listed below: 
 
 
 



• Automation of observer’s form:  
o Will observers find the form easy to 

use? 
o Will the automatic addition of events to 

the form increase efficiency and 
effectiveness of the usability test 

o Will observers find post-session 
processing of the events and comments 
easy and useful?  

o Will the alternative methods of sorting 
the events help the observers to find 
events more quickly? 

• Effectiveness of dropping and adding tasks 
o Will usability testing be more efficient? 
o Will testing be able to examine more 

tasks and detect more problems with the 
interface? 

• Self-Administration of usability testing 
o Will users find the evaluation form easy 

to use? 
o Will users be too distracted by having to 

fill out the forms? 
• Knowledge of user’s goals  

o Will users find the screens for task 
specification easy to use? 

o Will users be able to identify their 
current tasks and goals? 

• Mouse tracking 
o Will users be able to reliably follow the 

instructions regarding their focus of 
attention? 

o Is the mouse tracking reliably correlated 
with eye tracking data? 

• Level of user involvement 
o Will users be able to manage the 

additional windows required for the 
self-administration of the evaluation? 

o How much extra time will it take to do 
self-administration of the testing? 

 
CONCLUSION 
As usability testing becomes more and more a 
part of the lifecycle of software, particularly for 
web-based applications, it will be more and more 
important that testing methods are efficient, 
effective, inexpensive, and easy to use.  
Consequently, continual development of new 
methods is important to move from expensive, 
labor intensive methods to inexpensive, 
automated methods while maintaining a high 
level of diagnosticity.  The new methods 
described here are attempts to do just that.  
Finally, it is clear that usability testing methods 
like many other applications need to transition to 
the WWW.  The software that we propose does 

this to take advantage of server-side generation 
of rating forms, task administration, and data 
collection. 
 
ACKNOWLEDGEMENTS 
We thank the U.S. Census, Statistical Research 
Division for support during this project and 
particularly the Dipartimento di Informatica, 
Universita di Roma "La Sapienza", Rome, Italy 
for hosting the first author during his sabbatical 
leave Spring 2004. 
 
REFERENCES 
Chin, J. P., Diehl, V. A. & Norman, K. L. 

(1988).  Development of an instrument for 
measuring user satisfaction of the human-
computer interface.  Proceedings of CHI '88, 
213-218.  

Cugini, J. (2000).  Web usability logging: Tools 
and formats.  Presented to the Tools to 
Support Faster and Better Usability 
Engineering workshop, August 15, 2000, 
Asheville, NC. 
(http://www.itl.nist.gov/iaui/vvrg/cugini/web
met/paper-aug2000.html) 

Dix, A., Finlay, J. E., Abowd, G. D., & Beale, R. 
(2003). Human-computer interaction (3rd 
Ed). New York: Prentice Hall. 

John, B. E., & Marks, S. J. (1997).  Tracking the 
effectiveness of usability evaluation 
methods.  Behaviour and Information 
Technology. 16, 4, 188-202. 

Kirakowski, J, and Corbett, M. (1990).  Effective 
methodology for the study of HCI, North-
Holland, Amsterdam. 

Lewis, C. (1982).  Using the `thinking-aloud’ 
method in cognitive interface design, 
(Research Report RC9265), IBM T. J. 
Watson Research Center. 

Lewis, J. R. (1994).  Sample sizes for usability 
studies: Additional considerations.  Human 
Factors, 36, 368 - 378. 

Nielsen, J. & Mack, R. L. (eds.), (1994).  
Usability Inspection Methods, New York: 
John Wiley. 

Noldus, L., Kwint, A., ten Hove, W., Derix, R. 
(1999).  Softwa re tools for collection and 
analysis of observational data.  In: Human-
Computer Interaction: Communication, 
Cooperation and Application Design.  Proc. 
8th Int. Conf. on Human-Computer 
Interaction, Vol. 2 (Eds. Bullinger, H.J.; 
Ziegler, J.), pp. 1114-1118. 

Norman, K. L. (1991).  Models of mind and 
machine:  Information flow and control 
between humans and computers.  In M. C. 



Yovits (Ed.) Advances in Computers,   New 
York:  Academic Press, pp. 201-254. 

Norman, K. L., & Murphy, E. B. (2004).  
Usability testing of an Internet form for the 
2004 Overseas Enumeration Test: A 
comparison of think-aloud and retrospective 
reports. Proceedings of the Human Factors 
Society 48 th Annual Meeting.  New Orleans, 
LA:  Human Factors Society. 

Panizzi, E. An object-oriented system for 
automatic web-form generation and 
processing. In preparation. 

Rhenius, D., and Deffner, G. (1990).  Evaluation 
of concurrent thinking aloud using eye-
tracking data.  Proceedings of the Human 
Factors Society 34th Annual Meeting (pp. 
1265-1269).  Santa Monica, CA:  Human 
Factors Society. 

Ritchey, T. (1998).  General morphological 
analysis:  A general method for non-
quantified modeling.  16th EURO Conference 
on Operational Analysis, Brussels. 

Shneiderman, B. & Plaisant, C. (2003).  
Designing the user interface: Strategies for 
effective human-computer interaction (4th 
Ed).  Reading, MA: Addison-Wesley. 

Virzi, R. A. (1992).  Refining the test phase of 
usability evaluation: How many subjects is 
enough?  Human Factors, 34, 457- 468. 

Zwicky, F. (1969).  Discovery, Invention, 
Research - Through the Morphological 
Approach, Toronto: The Macmillian 
Company. 

Zwicky, F. & Wilson A. (eds.), (1967).  New 
Methods of Thought and Procedure: 
Contributions to the Symposium on 
Methodologies.  Berlin: Springer. 


