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Francisco J. Perales a

aUniversity of the Balearic Islands, Department of Mathematics and Computer

Science, Palma de Mallorca, Spain
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Abstract

In most of the existing human-computer interfaces, enactive knowledge as new nat-

ural interaction paradigm has not been fully exploited yet. Recent technological

advances have created the possibility to enhance naturally and significantly the in-

terface perception by means of visual inputs, the so-called Vision-Based Interfaces

(VBI). In the present paper, we explore the recovery of the user’s body posture by

means of combining robust computer vision techniques and a well known inverse

kinematics algorithm in real-time. Specifically, we focus on recognizing the user’s

motions with a particular mean, that is, a body gesture. Defining an appropriate

representation of the user’s body posture based on a temporal parameterization, we

apply non-parametric techniques to learn and recognize the user’s body gestures.

This scheme of recognition has been applied to control a computer videogame in

real-time to show the viability of the presented approach.
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1 Introduction

Enactive knowledge represents the kind of knowledge learned by doing, based

on the experience of perceptual responses to action, acquired by demonstra-

tion and sharpened by practice. Although until now human-computer interac-

tion technologies have not fully exploited the potential of enactive knowledge,

recent technological advances have created the possibility to significantly en-

hance the interface perception by means of visual inputs, the so-called Vision-

Based Interfaces (VBI) proposed by Turk and Kolsch (2004).

Vision-based interfaces use computer vision in order to sense and perceive the

user and their actions within an HCI context. Computer Vision technology ap-

plied to the human-computer interface has notable success to date (Moeslund

et al., 2006a). From a human-computer interaction point of view, we are espe-

cially interested in obtaining user motions in order to recognize those that can

be interpreted as system’s events. In this sense, the approaches used for recog-

nition and analysis of human motion in general can be classified into three ma-

jor categories: motion-based, appearance-based, and model-based approaches.

Motion-based approaches attempt to directly recognize the gestures from the

motion without any structural information about the physical body (Bobick

and Davis, 2001; Efros et al., 2003). Appearance-based approaches use two di-
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mensional information such as gray scale images, edges or body silhouettes (El-

gammal et al., 2003). In contrast, model-based approaches focus on recovering

the three dimensional configuration of articulated body parts (Ren et al., 2004;

Kojima et al., 2000).

It is clear that recovering the user posture should be more useful than the

other approaches as it gives a complete description of the user motions in 3D.

However, model-based approaches are often difficult to apply to real-world

applications. This fact is mainly due to the difficulty of capturing and track-

ing the requisite model parts, the user’s body joints that take part in the

considered gestures. Besides, in order to use this approach for interaction,

the algorithms must work in real-time and the majority of model-based ap-

proaches perform in an off–line fashion. A partial solution is to simplify the

capture by reducing the number of body parts and using its temporal trajec-

tories in order to recognize the gestures of interest (Wu and Huang, 1999). For

example, Rao et al. (2002) analyze the problem of learning and recognizing

actions performed by a human hand. They target affine invariance and apply

their method to real image sequences using skin color to find the hands. They

characterize a gesture through dynamic moments, which they define as max-

ima in the spatio-temporal curvature of the hand trajectory that is preserved

from 3D to 2D. Their system does not require a model; in fact, it builds its own

model database by memorizing the input gestures. Other approaches of hand-

based gesture recognition methods use hand poses as gestures for navigating

in virtual worlds (O’Hagan et al., 2002). Nevertheless, exploiting the sole 3D

location of one or two hands is indeed not sufficient to recognize complex

gestures in order to control interactive applications. Instead of proposing an-

other partial solution, this paper presents a model-based approach founded on
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the user’s posture recovery in real-time. Our approach presents a vision-based

system to obtain user’s motions through a combination of the analysis of the

images provided by two cameras (observation) and a real-time implementa-

tion of a known inverse kinematics algorithm (control). This system combines

video sequence analysis and visual 3D tracking to deliver the user’s motions

in real-time. This allows the end user to make large upper body movements

naturally in a 3D scene.

In addition, the system is able to process, not only the 3D position of the

user’s joints, but also to report a set of body gestures and hence offering a

richer user interface. We define as a capable gesture recognition system when a

gesture of interest is recognized to generate the desired computer event in real-

time. To achieve this objective, we address the main problems in the gesture

recognition challenge: temporal, spatial and style variations between gestures.

Temporal variations are due to the difference in the speed of gestures between

different users. Spatial variations are due to physical constraints of the human

body such as different body sizes. Style variations are due to the personal

way in which users makes their movements. To cope with spatial variations

we normalize the computed joints positions. Temporal variation is managed

using a temporal gesture representation. Finally, the most difficult challenge,

style variations, are solved using a non-parametric scheme for learning and

recognition.

In order to show the viability of this scheme of recognition, an enactive inter-

face to control a computer videogame in real-time has been developed. With

this application, the user’s body acts as a new device to interact with the

computer showing its adaptive flexibility to the particular way of creating

the gestures of each user. This simple example opens a rich potential of intu-
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itive manipulation of entities through the presented approach in new complex

scenarios of natural interaction.

This paper is organized as follows. The real-time full-body motion capture

system used to obtain the user’s motions is presented in section 2. Next, in

section 3, our motion recognition approach is described, that is, how the recog-

nition challenges explained above are solved. The application of our system in

a real-time interactive application and the obtained results are described in

section 4. The obtained results are discussed in the last section to demonstrate

the viability of this approach.

2 Obtaining user motions

This section describes the proposed methods used to obtain user’s motions in

real-time. Our system is based on the combination of visual cues and inverse

kinematics (IK). Therefore, the images from two synchronized colour cameras

represent the input of the system. Usually, these images can be noisy or incom-

plete (some joints or limbs aren’t visible). Therefore, we can only estimate the

user’s posture. IK approaches can solve the body posture from known positions

of the end-effectors (hands and face for the upper body case). We propose a

scheme where these end-effectors are automatically located in real-time and

fed into a robust algorithm of Inverse Kinematics. This algorithm allows the

definition of a set of constraints to guide the estimated user’s posture toward

plausible balanced human body configurations in few convergence steps to

ensure a real-time response.
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2.1 Visual cues

For each instant in time, we must locate the user’s end-effectors in each image.

We use skin-color segmentation, 2D-tracking and 3D-tracking algorithms to

estimate the 3D positions of both hands and face in the scene. First, we use a

skin-color detection module to find the skin-color pixels present in the images.

The results of this skin-color detection will be skin-color blobs, which are the

input of a 2D-tracking module. This module labels the blob’s pixels using a

hypothesis set from previous frames (Varona et al., 2005).

Once we have the end-effectors’ 2D positions in each image of the stereo

pair, we can now estimate their 3D position using the mid-point triangula-

tion method. With this method, the 3D position is computed projecting each

end-effector 2D position to infinity and subsequenlty taking the nearest point

to these two lines (Trucco and Verri, 1998). However, in order to execute

this 3D point reconstruction process, an extra computational step is required,

which will robustly relates to the stereo pair measurements of the end-effectors.

In the case of severe occlusion, the end-effectors labels do not agree in both

images. The result is that the 3D point reconstruction for these limbs is not

correct. However, since the positions of the end-effectors are in the 3D world,

we can use a physical model to track them. A limb in time t is characterized

by its position, which is represented by a state vector xt. The imaging system

observes the projected limb 3D position in the vector zt (i.e. the triangulated

position from the two different views). The limb’s dynamics is assumed to be

described by the difference equation:

xt = ft,t−1(xt−1) + wt, (1)

6



where ft,t−1(·) is a vector function describing the transition of the state vector

from t−1 to t, and w represents the error model. The state transition function

for a limb is a kinematics polynomial model assuming constant velocity. The

measurement equation describes the relation between the observed positions

and the state variables of the dynamic system:

zt = mt,t−1(xt) + nt, (2)

where mt,t−1(·) is the measurement function and n is the measurement noise.

The Kalman filtering equations allow computing the optimal estimates of the

state vector recursively from the measurements and the initial estimation.

In order to do this, we first triangulate all the possible combinations of 2D

measurements from the two images to obtain the 3D position candidates of

each end-effector. Subsequently for each end-effector we select the candidate

nearest to the position predicted by the estimation filter. Figure 1 shows the

results of this process by backprojecting the corrected associate end-effectors

3D position in the 2D images of the stereo pair after a severe occlusion.

2.2 User’s body model and adjustment

Due to our interest in the posture recovery for interaction purposes, we use an

articulated body model with 15 degrees of freedom that is enough to analyze

the user’s motions. Specifically, our user’s body model consists of a Virtual

foot (2 dofs), that roots the body to the floor with frontal and lateral axes

of rotation, a Back (2 dofs), that corresponds to the beginning of the spine

with frontal and lateral axes of rotation, the Thorax (3 dofs), which has all

the rotation axes, the Shoulders (2 × 3 dofs) and the Elbows (2 × 1 dof), see
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Fig. 1. Corrected end-effectors tracked 3D positions backprojected in both images

(up from left camera and down from right camera). The white line starting in the

right boundary image corresponds to right hand and vice versa.

Figure 2. We use an initial manual joint location of the shoulders, the elbows

and the hands for computing the lengths of the segments that remain constant

for the rest of the session. We can derive the location of the other joints as a

relative proportion of the lower body segment and the back segment, which

are considered constant.
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Fig. 2. Human body model.

As explained before, we apply the computer vision algorithms to obtain the 3D

measurements of the user end-effectors. However, locating all the user body

joints to recover the posture is not possible with only computer vision algo-

rithms. This is mainly due to the fact that most of the joints are occluded by

clothes. Therefore, if we can clearly locate visible body parts (the hands), In-

verse Kinematics approaches can solve the body posture from its 3D position.

We propose a scheme where the hands are automatically located in real-time

and fed into an Inverse Kinematics module which in turn can provide a 3D

feedback to the vision system.

The multiple Priority IK (also called Prioritized IK, or PIK) is exploited to

reconstruct an anatomically correct posture of the user (i.e. its joint state, θ)

using the 3D location of selected end-effectors (noted x) measured with the

vision system and used to constrain the posture. The PIK algorithm is based

on the linearization of the set of equations expressing Cartesian constraints x

as functions of the joints’ degrees of freedom θ. We denote J the Jacobian ma-

trix and use its pseudo-inverse, noted J+, to build the projection operators on

the kernel of J, noted N(J). Our approach relies on an efficient computation

of projection operators that allow splitting the constraints set into multiple
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constraint subsets associated with a strict individual priority level (Baerlocher

and Boulic, 2004). The solution guarantees that a constraint associated with

a high priority will be achieved as much as possible while a low priority con-

straint will only be optimized only on the reduced solution space that does

not disturb all higher priority constraints.

Hence, it is very important to identify which constraint has the higher impact

on the quality of the convergence and the visual appearance of the recon-

structed posture. As we address the posture recovery of a standing person,

the believability of the recovered posture is mostly governed by the correct-

ness of its balance. For these reasons, we propose to exploit a skeleton able to

model a simplified mass distribution of the whole body and to offer a control

of the whole body centre of mass. The prior observations on believability and

reachability lead us to assign the highest priority to the centre of mass position

constraint: this constraint ensures that the centre of mass projects over the

root node (the virtual foot in Figure 2) to guarantee balance. Subsequently,

the next most important constraint is the hand position recovered through

the vision system. Immediately under the hand constraint we activate two low

level constraints respectively on the shoulders (attracted to the initial loca-

tion in space that were obtained at the calibration stage) and on the elbow

(attracted towards their lowest possible position to produce a more natural

posture).

2.3 Performance evaluation

The system has been implemented in Visual C++ using the OpenCV li-

braries (Bradski and Pisarevsky, 2000) and it has been tested in a real-time
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interaction context on an AMD Athlon 2800 + 2.083 GHz under Windows

XP. The images have been captured using two DFW-500 Sony cameras. The

cameras provide 320 × 240 images at a capture rate of 30 frames per second.

In our laboratory tests we have found that the system operates at 48Hz (24

fps for each camera) if we don’t iterate the PIK. If we use 5 iterations the

system’s performance decreases to 22 fps and for a maximum of 20 iterations

the system operates at 19 fps. These results ensure a real-time response of the

system.

First, the computer vision algorithms are validated to measure the accuracy

of the results of our algorithm, the end-effectors’ 3D position. The 3D position

is found by an ultrasound positioning device, the IS-900 MiniTrax Wireless

Wand from the InterSense Company (InterSense Inc. Website, Last accessed

2008). In this experiment, the user holds the device with one hand, see Fig. 3.

Then, we obtain the positions tracked by our system and the reported positions

of the IS-900 device at the same time instants. With the two point sets in the

same reference system, we apply as error measure the root mean-squared error

(RMSE):

E =
1

n

∑

i

‖~yi − ~zi‖. (3)

where ~zi is the 3D position tracked by our computer vision algorithms, and

~yi is the 3D position detected by the ultrasound device. In order to make a

thorough testing we perform a set of different experiments:

• Comparison of static key positions.

• Comparison of predefined movements (”moving arm”).

• Comparison of short sequences of random movements.
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Fig. 3. Configuration to evaluate computer vision algorithms.

Table 1

Evaluation results of the end-effectors 3D tracking.

Experiment RMSE (in cm) Num of frames

Static (Jitter) 0.48 376

Moving arm 1.24 116

Random movements (short) 4.03 849

Random movements (long) 5.43 2465

• Comparison of long sequences of random movements.

Table 1 shows the mean errors (in centimetres) obtained in different tests with

different users for the four experiments. First, the experiment with a static

position is useful to measure the jitter error from the two devices. As it is

shown in Table 1, the jitter can be quantified in 5 millimetres (in fact, this

value is the minimum accuracy reported by the InterSense ultrasound sensor).

In the experiments, it can be viewed that the mean error grows and stabilizes

in a maximum of 5.5 cm. This error is mainly due to the hand shape, that

is, the hand is imaged from the cameras at different sizes and then the centre

of gravity varies with the shape. This is the main deviation of the ultrasound
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Fig. 4. Left: 3D trajectories of a predefined movement. Right: 3D trajectories of

random movements. Ultrasound sensor in red, our system in blue.

device. In Fig 4, the tracks in 3D-space for the two positioning systems in two

different experiments are shown. It can be viewed in these figures that the

tracks are equal to some deviation due to the different hand shape imaged.

In order to evaluate the complete system including PIK, we test the appli-

cation’s results versus ground-truth using annotated sequences. We compare

the elbows’ positions between annotated points and our detected points. For

comparison, positions of the elbows were chosen as they are the joints of the

human upper body that move in these two scenes (without considering the

end-effectors) and because their values are estimated by means of the combina-

tion between the vision-guided end-effectors tracking and the joint estimation

from PIK. The first sequence has 450 frames corresponding to 15 seconds of

real-time. In this sequence, human motions are smooth and there are no dif-

ficult occlusions between end-effectors that can distract the motion capture

process. In this test, the mean error of the estimation of both elbows ver-

sus the ground truth data is similar and can be quantified around 5cm. The

second sequence is composed of 600 frames, corresponding to 20 seconds of

real-time. In this sequence the user moves his arms freely without any con-

straint. The motions are fast and important end-effectors occlusions exist, for

example when the user crosses his arms, see Fig. 5. In this case, the error

13



Fig. 5. Second test sequence. In this sequence the user moves his arms freely without

any constraint, the motions are fast, and important end-effectors occlusions are

noticed.

produced by both elbows is also similar and can be quantified around 12cm.

The error can be high if the performer raises his elbow up high because the

PIK attracts the elbow downward as we assume this is more natural and we

have no other information to control the elbow.

Finally, we also test our application performing several predefined arm motions

and comparing the results with the desired final positions between motions.

In order for the hierarchy to function correctly, the initial posture of the user’s

arm must be fully extended along the body so it can be determined the maxi-

mum extension of the arm. Firstly the user must flex one elbow until maximum

flexion (this is not easy for inverse kinematics because the initial posture is

singular); secondly, the centre of mass influence can be tested by using only

one shoulder joint to move the arm laterally: when the arm is horizontal try to

reach the furthest lateral point. This will force the user to counter balance the

upper body posture with the lower body. How the elbow test and the centre

of mass task work properly in these cases can be seen in Figure 6.
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Fig. 6. Estimated postures for several predefined arm motions.

3 Recognizing motions

In general, we could classify the variations in which users perform their motions

in three types: spatial, temporal and style variations. In this section, we explain

how to cope with these types of variations. In order to make data invariant to

different body sizes, the first step is to change the reference system because the

calibration process of the Vision-PIK algorithm defines the reference system.

In our system we use a planar pattern for computing the intrinsic and extrinsic

parameters of the camera stereo pair (Zhang, 2000). Using this approach, the

coordinate system is placed in the world depending on the location of the

calibration object. Therefore, joints’ positions are referenced from an unknown

world origin. To solve this problem, the coordinate system is automatically

aligned with the user’s position and orientation in the first frame. The reference

system origin is placed in the virtual foot position of the user’s model. Next,

the y-axis is aligned to the unit vector that joins the user’s foot and back

and the x-axis is aligned to the unit vector that joins the user’s right and left

shoulder, setting the y component to zero.

Once the reference system is aligned with the user’s position and orientation,

3D positions of the joints become environment independent because the origin
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reference is aligned with the user’s body and does not depend on the calibra-

tion process. However, the data still depends on the size of the user’s limbs. A

possibility to make data size invariant is given by the use of motion informa-

tion of the joints through Euler angles (Moeslund et al., 2006b). Nevertheless,

in this case, motion information is unstable, i.e., small changes of these values

could give wrong detections. Alternatively, we propose a representation of each

body limb by means of a unit vector, which represents the limb orientation.

Formally, the unit vector that represents the orientation of limb, l, defined by

joints J1 and J2, ~ul, is computed as follows

~ul =
J2 − J1

‖J2 − J1‖
, (4)

where Ji = (xi, yi, zi) is the i-th joint 3D-position in the user’s centered ref-

erence system. In this way, depending on the desired gesture alphabet, it is

only necessary to compute the unit vector for the involved body limb. This

representation causes data to be independent from the user’s size and it solves

spatial variations.

Once data is invariant, the next step is to represent a posture. We build

the posture representation by using unit vectors of the limbs involved in the

gesture set. The idea is to represent the user’s body posture as a feature

vector composed by all the unit vectors of the user’s limbs. Formally, the

representation of the orientation of a limb, l, is

ql = (u+

x , u−

x , u+

y , u−

y , u+

z , u−

z ), (5)

where u+
x and u−

x are respectively the positive and negative magnitudes of

the x-component of unit vector, ux, note that ux = u+
x − u−

x and u+
x , u−

x ≥
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0. The same applies for components uy and uz. In this way, the orientation

components of the limb unit vector are half-wave rectified into six non-negative

channels. Therefore, by linking limb poses, we build the feature vector which

represents the complete orientations of the user’s limbs, see Eq. 6.

q = {ql}l=1..n

n∑

l=1

ql = 1, (6)

where n is the number of limbs involved in the motions to be recognized.

If we consider that a gesture is composed by several body postures, the mo-

tion feature vector is composed by the cumulative postures involved in its

performance, that is

q̂t =
1

T

t∑

u=t−T

qu, (7)

where T is its periodicity, and could be interpreted as a temporal window

of cumulative postures. We state that this process encapsulates the temporal

variations of gestures by means of detecting the periodicity of each user’s

motion performance in order to fix the T value, that is, its temporal extent.

Finally, for recognition, the key is to take advantage of the system’s overall

possibility of working in real-time. Therefore, before the recognition process

starts it is possible to ask the user to perform several of the allowable motions

in order to build a training set in real-time. Therefore, it is reasonable to as-

sume that training motions near an unclassified motion should indicate the

class of this motion. On the other hand, a motion is natural depending on the

user’s experience, as it has been shown in several experiments with children

by Höysniemi et al. (2005). For this reason, we use the non-parametric tech-

nique of k-nearest neighbors. We employ a (k, v) nearest neighbor classifier that

17



Fig. 7. Interpretations of the rotation command by different users.

finds the k example motions closest to the current motion being performed by

the user, and classifies this motion with the class that has the highest number

of votes, as long as this class has more than v votes; otherwise the system

considers that a significant motion has not been performed. Besides, we have

tested how the users interpret each of the commands, mainly the complex

commands, which are performed by users in completely different ways, see

Fig. 7. This fact reinforces the selection of non-parametric techniques in order

to make specific motion models easy for each user.

We measure similarity between the current motion, q̂t, and the exemplars, p̂i

with the Earth Mover’s Distance (EMD), this is the measure of the amount of

work necessary to transform one weighted point set into another. Moreover,

it has been shown that bin-by-bin measures (e.g., Lp distance, normalized

scalar product) are less robust than cross-bin measures (e.g., the Earth Mover’s

Distance (EMD), which allows features from different bins to be matched) for

capturing perceptual dissimilarity between distributions (Rubner et al., 2000).
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Fig. 8. Scheme of the gesture-based interface to generate the system’s events.

4 A case study: videogame control through body gestures

In order to test our approach we have proposed to play a computer videogame

interacting through user body gestures. Specifically, a free version of the classi-

cal Tetris videogame which has four different forms of control: left, right, down

and rotate. Using the previously defined scheme of recognition, summarized in

Fig. 8, it is possible to build an enactive interface that is flexible (taking into

account the particular way of making gestures by each user), natural, intuitive

and responsive to his actions.

The user is located in an interactive space that consists of a projection screen

and is instrumented with a stereo camera pair. This configuration allows the

user to view the videogame while performing its commands. Gestures occur

in the workspace defined by the screens and the user.
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The interface requirements are:

• Only one person shall be present in the space.

• The color of the users clothes should not be similar to skin color.

• The skin colored body parts, other than the hands and face, shall not be

visible. For example, the user should not roll up his sleeves.

• In order to learn the motions in which user perform the commands, previ-

ously to starting the game, the system asks the user to make several isolated

performances of each command. This is a way to automatically build the

training set, i.e., the gesture models database.

The enactive interface was tested by three different users that had never expe-

rienced the application. We acquired three different sessions while producing

all the necessary commands during the videogame. At this point, our dataset

is formed by a training set composed of three performances for each command

and for each different user, and a testing set with a total of 4500 frames con-

taining different motions of each user playing the videogame. In addition, for

comparison purposes, we also have conduced experiments using a Gaussian

model to represent commands by computing the mean and variance of each

user’s learning motions. Results of both methods for a gesture periodicity of

10 frames, T = 10, are shown in Table 2.

The first interpretation of the results presented in Table 2 is that a user with

no preparation can play this videogame in a natural way using only their

own body motions (Fig. 9). In addition, the majority of errors are due to

errors of the Vision-PIK estimation of the user’s body joints. This fact implies

that improving the system for capturing the user motions leads to better

recognition performances.
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Table 2

Gesture recognition results.

Method Commands Correct Wrong Non-Rec

Gaussian 86 72.09% 11.63% 16.28%

3-NN 86 86.05% 3.49% 10.46%

Fig. 9. Videogame control by recognizing the user motions in real-time.
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5 Conclusions

Nowadays, there is a considerable effort in the research of human motion

recognition methods due to its potential application in human-computer in-

teraction. The majority of the previous works are based on using directly

image values for recognition due to the difficulty of finding 3D body poses

in real-time. Using image data implies the application of complex statistical

models for recognition, which are difficult to use in practical applications.

We have presented an approach to obtain user’s motion in a 3D-space. The

main advantage of our system is that we avoid specifically invasive methods

such as markers and that we allow the user to perform a broad range of mo-

tions. Moreover, the whole process is done in real-time to achieve a reliable

interaction. By using an inverse kinematics based model, the system is poten-

tially more accurate and robust to occlusion effects than approaches based on

detection of pixel changes. This is because the model provides additional con-

straints that can be used to resolve any discrepancies between measured and

predicted positions. We have tested the complete system with experiments to

measure the accuracy of the end-effectors 3D tracking and the internal joint

estimations and with an experiment where the users have to do several prede-

fined motions. The quality of the results is sufficient for our objective, which is

to open the way to exploit a non-invasive wide and coherent full-body postural

space for real-time 3D interactions.

We have shown the potential of the system through an enactive interface. The

novelty lies in the representation of pose that allows the interface to generalize

over body shape differences in the population of users. Our approach is original
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and it could be extended to represent more complex gestures and human

activities. The complete system has been tested in a real-time application, a

motion-based videogame control. The key idea is the use of a non-parametric

technique, the k-nearest neighbor, for learning and recognition. Experiments

have shown that, from a practical point of view, this technique of classification

is appropriated for real world problems due to its simplicity in learning and

on-line classification. Besides, the system adapts itself to each particular user’s

way of performing motions, avoiding a previous user’s off-line training to learn

the motions that can be recognized by the system.

As future work, this approach can be extended to more complex gestures

than the ones shown in the presented application adding more limbs to the

gesture representation. It is important to point out that our approach needs

further testing. Specifically, it should be tested in real sessions with more users.

These sessions should test how the number of learning exemplars affect the

recognition of user’s motions.
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