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Abstract

Federated Learning (FL) has become a key choice for distributed machine
learning. Initially focused on centralized aggregation, recent works in FL
have emphasized greater decentralization to adapt to the highly heteroge-
neous network edge. Among these, Hierarchical, Device-to-Device and Gossip
Federated Learning (HFL, D2DFL & GFL respectively) can be considered as
foundational FL algorithms employing fundamental aggregation strategies.
A number of FL algorithms were subsequently proposed employing multiple
fundamental aggregation schemes jointly. Existing research, however, sub-
jects the FL algorithms to varied conditions and gauges the performance of
these algorithms mainly against Federated Averaging (FedAvg) only. This
work consolidates the FL landscape and offers an objective analysis of the
major FL algorithms through a comprehensive cross-evaluation for a wide
range of operating conditions. In addition to the three foundational FL
algorithms, this work also analyzes six derived algorithms. To enable a uni-
form assessment, a multi-FL framework named FLAGS: Federated Learning
AlGorithms Simulation has been developed for rapid configuration of mul-
tiple FL algorithms. Our experiments indicate that fully decentralized FL
algorithms achieve comparable accuracy under multiple operating conditions,
including asynchronous aggregation and the presence of stragglers. Further-
more, decentralized FL can also operate in noisy environments and with
a comparably higher local update rate. However, the impact of extremely
skewed data distributions on decentralized FL is much more adverse than
on centralized variants. The results indicate that it may not be necessary
to restrict the devices to a single FL algorithm; rather, multi-FL nodes may
operate with greater efficiency.
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1. Introduction

The critical challenges associated with centralization in Machine Learning
(ML), including data aggregation, privacy and security risks, and economy
of resources have accelerated interest in decentralized learning approaches.
Federated Learning (FL) is one such learning framework that enables dis-
joint devices to learn collaboratively without the need to share data. The
process entails devices to train models locally and share them for aggrega-
tion. Since its inception by Google researchers, Federated Learning (FL)
proposed in [1] as FedAvg has been the foremost avenue for distributed Deep
Learning (DL). Gboard-Google keyboard and Siri-Apple smart assistant, are
real-world applications that have benefited tremendously from FL [2].

While FL is a major avenue towards democratized learning, there still
exists a strong proclivity in FL research towards centralized orchestration.
Access to updates from a large number of devices, a global model, con-
siderable computational and storage resources have traditionally made a
strong case for Centralized FL (FedAvg). However, there exist a number
of challenges [2] to such an operation including adversarial attacks, mali-
cious participation, privacy preservation, heterogeneous devices and partic-
ipation, non-Independently and Identically Distributed (non-IID) data, and
communication issues. Simultaneously, next generation networks [3] envision
considerable serverless interaction between the devices. Advances, such as
application specific data rates, Network Function Virtualization (NFV) and
network slicing have enabled researchers to propose various FL algorithms
based on the permissible device interactions (see Fig.1 for the depiction of
these links). The proposed methods under various settings show multiple
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advantages over Centralized FL (FedAvg). Furthermore, current and future
devices come equipped with multiple communication links. This fact negates
the limitation of operating a single FL algorithm at all times. The challenge
then arises regarding the selection of FL algorithm to employ under various
conditions. The comparative characterization of FL algorithms conducted in
this work is aimed at bridging this gap. The analysis conducted here paves
the way for establishing economy of operation for these algorithms for various
operating scenarios in a particularly heterogeneous Network Edge.

Contributions. This work aims to contrast the performance of the major
FL algorithms under some of the most prevalent challenges to distributed
learning at the network edge, i.e., non-IID data, noisy communication and
asynchronous aggregation. The main goal is to pave the way for a multi-FL
system where devices may select the most suitable FL algorithm depending
on the operating characteristics.

1. A detailed comparative evaluation of the fundamental Federated Learn-
ing algorithms namely (a) Hierarchical FL (HFL) (b) Device-to-De-
vice FL (D2DFL) (c) Gossip FL (GFL) (d) Centralized FL (FedAvg)
has been conducted. In order to expand the scope of evaluation, this
work also considers other FL algorithms employing multiple aggrega-
tion strategies jointly. These include: (a) Hierarchical Device-to-De-
vice FL (HD2DFL) (b) Hierarchical Gossip FL (HGFL) (c) Clustered
Device-to-Device FL (CD2DFL) (d) Inter-Cluster FL (iCFL) (e) In-
ter-Cluster Device-to-Device FL (iCD2DFL)

Their performance is tested under ideal and noisy Device-Device (D2D),
Device-Edge (D2E) and Device/Edge-Cloud (D2C/E2C) communica-
tion links. The results indicate that even in the presence of non-IID
data, decentralized FL performs with a marginal loss in performance
compared to centralized variants despite operating entirely in the ab-
sence of any global information. Extremely skewed data distributions,
however, greatly impact decentralized FL drastically reducing conver-
gence rate as well as accuracy.

2. A detailed study of these algorithms under various levels of device
participation (such as active, inactive, stragglers) has been conducted.
Decentralized FL shows marginal loss in performance when compared
with centralized FL in the presence of degraded participation. Decrease
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in device participation and extremely skewed data distributions have a
confounding affect on all the algorithms, more so on the decentralized
ones.

3. An analysis using modified Few-Shot Learning, with considerably more
local updates before aggregation, has also been conducted for the FL
algorithms under consideration. Decentralized algorithms with show a
greater loss in accuracy than the centralized ones. However, clustered
operation helps mitigate the absence of a global server while restricting
all communications to the device level.

4. Finally, this work develops the FLAGS framework1 to simulate multiple
FL algorithms. The framework is designed to support ease of config-
uration of multiple FL algorithms and provides numerous options for
generating the edge network topology for a realistic assessment.

The remainder of this paper is organized as follows: Section-2 provides
some of the related developments in FL. An overview of the system model
and FL is presented in Section-3. The FLAGS framework and its modules
have been explained in Section-4. Details of the FL algorithms have been
provided in Section-5. This is followed by a description of the experiments
and performance analysis in Section-6 and 7. The paper concludes with a
summary of the important findings in Section-8.

2. Related Work

The FL process is envisioned for a highly heterogeneous environment. The
search of optimal application of FL has resulted in various FL algorithms
designed to uniquely benefit from edge network topology. The impact of
some of the most prevalent among these must first be characterized in order
to adapt FL accordingly. To this end, some of the representative works that
have focused on the FL algorithms and simulation frameworks have been
covered in this section.

2.1. Federated Learning Algorithms

Most of the current research in Federated Learning leans heavily towards
centralization. However, research indicates that careful selection of design

1https://github.com/ahnaflodhi/FLAGS-FL
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parameters may yield competitive results for decentralized FL as well. [4]
describes a fully decentralized FL algorithm with IID data distributed across
users interacting according to a directed graph. In [5], the authors present
a gossip-aggregation framework for FL. The research reports more favorable
results from gossip learning based FL with uniform data distribution across
the nodes. More recently, [6] suggests the application of the Decentralized
Stochastic Gradient Descent (DSGD) [7] for D2D belief aggregation in the
presence of wireless impairments. [8] proposes a Consensus-based Feder-
ated Averaging (CFA) for dense IoT networks. Their analysis suggests that
serverless cooperation between devices may also yields results comparable
to FedAvg. Extending their work, the authors in [9] evaluate Consensus-
based Federated Averaging (CFA) and CFA-Gradient Exchange (CFA-GE)
for dense IoT networks with D2D interaction. Their results support the orig-
inal hypothesis indicating that although slow to converge, CFA and CFA-GE
achieve performance similar to FedAvg with communication restricted only
to device level. In [10], the authors try to tackle the problem of data hetero-
geneity in a decentralized fit learning setting. The authors propose a peer-
to-peer model exchange method with model fusion using Mutual Knowledge
Transfer.

Other research has also proposed hybrid FL algorithms employing hierar-
chical aggregation in conjunction with D2D interaction. In [11], the authors
perform divergence based client grouping in a Hierarchical Federated Learn-
ing (HFL) scenario. [12] provide latency analysis of a hierarchical FL system
operating in a heterogeneous cellular network where the local aggregation
is conducted at Mobile Base Stations. The impact of HFL on training time
and energy consumption is investigated in [13]. The same work also indicates
that a trade-off between latency and computation may be achieved result-
ing in better performance than centralized FL. A two-time scale Hybrid FL
model is proposed in [14] which compliments device-device communication
with hierarchical server based aggregations. This work introduces a control
algorithm scheduling global aggregations, local interactions and learning rate
to achieve a convergence rate of O(1/t). The work in [15] uses gossip inter-
action between the devices before allowing them to upload their models to
the hierarchical servers. The resultant FL algorithm provides near-optimal
results even in the presence of reduced communication frequency and vol-
ume. [16] proposes clustering devices in the same network location using the
corresponding mobile edge nodes for local aggregation operations. Their sug-
gested method in conjunction with a cosine-similarity based device filtering
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attains higher convergence speeds using less number of local updates. Then
[17] experiment with FL using clustered devices where the Cluster Heads, se-
lected from the devices, are awarded reputation scores by the members and
may communicate with their one-hop neighbors. The results indicate that
the proposed configuration improves network efficiency.

The work in [18] compares the communication efficiency of split learning
and FL. This research evaluates the learning techniques for increasing client
population as well as increasing the size of the global dataset. The results
indicate that split learning favors the former whereas the latter is better
served by FL. In [19], the authors compare FedAvg, Federated Stochastic
Variance Reduced Gradient (FSVRG) and CO-OP FL algorithms to inves-
tigate the impact of non-IID distribution of various FL optimization tech-
niques. However, the comparison only considers centralized FL aggregation
for the mentioned optimization schemes. The results indicate that FedAvg
fares better than the other two techniques for non-IID data distribution. A
detailed empirical analysis of federated and gossip learning conducted in [20]
shows that gossip performs competitively with federated learning.

The aforementioned and most remaining body of FL works only use cen-
tralized FL as baseline. It therefore, remains to be seen where different FL
algorithms may show similar or better performance while being more efficient
in other aspects such as communication, energy etc.

2.2. Existing Frameworks

Benchmarking FL takes on greater significance as the envisioned operat-
ing environment is highly diverse and different from centralized or silo-based
distributed learning. It is therefore necessary that an effective benchmark
be capable of allowing heterogeneity in device behavior, data distribution
and connectivity. Additionally, the benchmark should be able to support
different cooperation schemes that form the basis of different FL algorithms.

Various benchmarking frameworks have taken different approaches to sat-
isfy the aforementioned objectives. These have been aimed at achieving rapid
prototyping [21], higher scalability [22, 23] and realistic data heterogeneity
[24, 25]. Among these options, FedML [26] additionally offers topology man-
agement by allowing configuration of multiple FL algorithms. However, it
is pertinent to note that these frameworks are designed to simulate either
FedAvg or a single FL algorithm for a given environment. This indicates
that greater work is involved in simulating various FL algorithms to capture
more accurate performance details.
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Figure 1: Network topology including Edge network levels and communication links.

This work presents the performance of key FL algorithms distinguished
in their ability to utilize various network levels (Fig. 1). In order to achieve
nuanced evaluation and ensure extensibility, this work presents the FLAGS
framework. The framework allows each network entity, whether a node or a
server, to separately emulate a realistic behavior. By implementing a range
of functionality associated with each entity, this framework allows diverse
network interactions enabling multiple FL algorithms to be simulated eas-
ily. Each device has a wide array of associated functions to enable multiple
operating conditions and device behaviors. During the experiments, the FL
algorithms are subjected to some of the key challenges facing general FL re-
search. The empirical analysis of the performance of these FL algorithms is
conducted by varying the operating parameters such as device participation,
communication noise and data distribution.

3. System Model

Federated Learning offers an efficient means of distributed learning at
the Edge Network. This section first establishes a System Model for the
interaction between network entities such as nodes and servers connected
by various communication links. The mathematical framework behind the
FedAvg algorithm is also presented which is extended in subsequent sections
to describe major FL algorithms.
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3.1. Network Topology

Each of the FL algorithms in this work is evaluated over the same system
model to ensure uniformity of conditions. The system model is defined using a
set of nodes, edge servers and a global cloud server. A stochastic formulation
is used to establish the interaction between the nodes at the device layer as
well as between the device and hierarchical servers at the edge layer. A set
of N static nodes are randomly distributed in C geo-proximal clusters (C)
representing natural grouping. Each cluster may be associated with its own
Cluster Head randomly selected from the cluster. Cluster Head selection
and Cluster membership are an active area of research, however, beyond
the scope of this paper. However, the behavior in the presence of one has
been replicated. One node from each cluster Ci is designated at random
as a Cluster Head. This work intends to evaluate the performance under
Clustered FL operation and thus assumes automatic membership of proximal
nodes.

Each node k is assumed to have a degree nk and possesses knowledge
about its neighborhood. However, it is pertinent to note that a device’s
neighborhood is not restricted to its cluster and devices can be connected
with those in other clusters. This ensures that the network topology at the
device layer is reachable without involving an entity from a higher edge layer.
This layout forms an undirected graph G = (N , ξ) with ξ representing device
links or graph edges at the device layer. The links density at the device level
is controlled by a set of two parameters (γ, υ).

The probability of a link between geographically proximal devices lying
within a cluster Ci is:

P (ξmn)
m,n∈Ci

= {γ | 0 < γ < 1}

Similarly, the probability of a device-level link between two nodes belong-
ing to distinct clusters Ci and Cj is:

P (ξpq)
p∈Ci,q∈Cj

= {υ | 0 < υ ≤ γ}

The parameters υ and γ are used to alter the network topology from a random
placement to a highly clustered setting depending upon the target environ-
ment. For these parameters, a setting of (γ → 1, υ << γ) indicates that the
proximal groups are densely connected with almost each device sharing a link

8



Param Description

θt Global model parameters at time t
θtk Model parameters of node k at time t
θ∗ Optimal parameters of the global model
L Global loss function
∇L Gradient of the loss
x,y Input feature vector, reference output
αk Learning rate at node k
ηk Aggregation weight associated with node k
D Global dataset partitioned among the nodes
Dk Dataset associated with node k
N Number of nodes in the network
lk Local loss function associated with node k
ξl,m Edge link between nodes l and m
Ci Cluster Head (CH) of the cluster i
C Number of geo-proximal clusters in the network
dk Neighbor cooperation probability of node k
pk Edge server cooperation probability of node k

Table 1: List of parameters used in the system model and the algorithmic description.

with the other within the group. On the other hand, only a few edges exist
between devices between different groups indicating a reduced probability
of the devices’ ability to communicate directly with devices that are farther
off. In contrast, (γ → 1, υ → γ) indicates a densely connected device layer
where each device is connected to a large number of other devices. Finally,
(γ → 1, υ = 0) indicates that devices only maintain connections within a
proximal group without any inter-group connectivity.

The framework can simulate both ideal and noisy links with zero-mean
Gaussian noise (N (0, σ)). Each device has a probability dk of participating
in a neighborhood aggregation and pk for an edge or cloud server-based ag-
gregation. These probabilities reflect the device status (active/inactive) as
well stragglers that may choose not participate in certain aggregation rounds.
Furthermore, the nodes are assumed to be fully capable of undertaking local
learning operations including adjusting hyperparameters.
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3.2. Federated Learning Methodology

The global objective in a Federated Learning setting is a weighted sum
of the local loss functions:

L(θt) =
N∑
k=1

ηkLk(θtk) (1)

where L(θt) represents the global loss function and Lk(θk) and ηk are the
local loss function and weight associated with node k at time t. The FL
objective is to minimize the weighted sum of the individual loses ofN devices

min
θ∈RM

L(θt) = min
θ

N∑
k=1

ηkLk(θtk) (2)

Each Lk(θtk) at time t is associated with an M -dimensional model parame-
terized by θtk ∈ RM and the weight ηk for node k. The initial parameters of
the model, θt, are shared with the devices through a server. The local loss
at a device is calculated through the training as follows

Lk(θtk) =
1

|Bk|
∑

(xi,yi)∈Bk

l(xi,yi;θ
t
k) (3)

where l(xi,yi;θ
t
k) represents the loss of the machine learning task (e.g cross-

entropy, mean squared error) calculated for the local model for the current
model parameters. This is calculated for each point (xi,yi) in the minibatch
Bk sampled from the local dataset Dk. Using the principles of Distributed
Stochastic Gradient Descent (DSGD), each device with the learning rate αkr
for a round r, updates its model as:

θt+1
k = θtk − αtk∇Ltk(xi, yi;θtk) (4)

where ∇Ltk(xi, yi;θ
t
k) are the gradients calculated by node k during the local

update round t and αtk is the learning rate associated with kth node at time
t. The updated model parameters from Eq. 4 or the gradients calculated
above are then shared with the server. The global model is obtained through
the weighted aggregation of the model parameters

θt+1 = θt +
N∑
k=1

ηkθ
t
k (5)
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For an alternate FL scheme employing gradient sharing, Eq. 5 can be for-
mulated as:

θt+1 = θt − αt
N∑
k=1

ηk∇Ltk(xi,yi;θtk) (6)

where θt refers to the parameters of the global model used at the start of
round t and αt is the learning rate employed by the server. The learning
rate αt is typically kept smaller [27] compared with centralized learning on
large datasets. As evident from Eq. 2-6, the entire Federated Learning pro-
cess bypasses the need for the devices to share data at any stage, offering a
strong privacy advantage over centralized forms of ML. It instead relies on
the communicating model parameters indicated in Eq. 5 and Eq. 6 to the
local server. The server is also required to share the aggregated model with
the connected nodes for the subsequent rounds adding to the overall commu-
nication volume needed to execute FL successfully. Such servers are typically
located at the network cloud level, offering multiple services. Thus, frequent
communication to and from these servers becomes an extremely expensive
operation in addition to straining the latency requirements of various edge
services in addition to subjecting the shared models to additional adversarial
risks.Table reftab:params presents the list of parameters used in this work.

4. FLAGS Framework

The FL algorithms are envisioned for a highly heterogeneous setting with
limited prior information. Accurate assessment of their performance requires
that the simulation framework provide repeatable and uniform conditions,
support easily configurable FL algorithms, possess flexibility to implement
new ones and cater to multiple types of communication links. This work
develops Federated Learning AlGorithms Simulation (FLAGS) framework
with the intent of making it easier to configure multiple FL algorithms under
a wide range of operating conditions.

4.1. FLAGS: Features

FLAGS is a lightweight FL prototyping framework allowing for an ac-
curate assessment of multiple FL algorithms for highly realistic network
topologies. Inherent in FLAGS are different levels of device participation
(controlled by parameters pk for participation in central aggregation and dk
for controlling neighborhood aggregation), device selection mechanism for
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Figure 2: FLAGS Framework Architecture

nodes and servers as well as generating multiple data distributions including
IID, non-IID and extremely-skewed non-IID data partitions. It also supports
synchronous and deadline-based asynchronous operation to replicate hetero-
geneous device behavior where devices training progresses at different paces.
The highlight of FLAGS lies in its capability to configure and subject multi-
ple FL algorithms to a realistic multi-tiered environment which allows users
to propose the best environment-FL fit.

4.2. FLAGS Architecture

FLAGS is developed so that multiple FL algorithms may be simulated
using a single framework and tested under a unified set of conditions. The
FLAGS architecture is highly modular and uses three different functional
blocks to control the respective set of operations, as depicted in Fig. 2.
These are the Environment, Algorithm and Node modules.

The Environment block is responsible for configuring the network topol-
ogy for FL operations. It controls the generation of the network topology
and the respective links while providing access to related information. Once
configured, this module enables interaction within various entities of the net-
work. The device layer is configured with the devices grouped into C prox-
imal cluster. Each of the devices is also connected to the respective server
at the Edge Layer. These hierarchical servers, in turn, are then connected

12



Flags D2D
Aggregation

Edge
Aggregation

Cluster
Aggregation

Inter-Cluster
Aggregation

FedAvg ’CServer’ False False False
HFL False True False False
D2DFL ’D2D’ False False False
GFL ’Random’ False False False
HD2DFL ’D2D’ True False False
HGFL ’Random’ True False False
CFL False False True False
iCFL False False True True
iCD2DFL ’D2D’ False True True

Table 2: FL Algorithms with the respective flag settings for the FLAGS framework

to a global server representing the cloud level. The overall configuration in
the environment module affords greater flexibility in conjunction with the
corresponding flags. This feature allows multiple FL algorithms to be simu-
lated by just changing the flags configuration. This distinguishes the FLAGS
framework from others since those have been designed to simulate a single
topology.

The Algorithm module manages the configuration and sequence of oper-
ations for all FL algorithms. It makes use of a set of flags to generate unique
interaction between various elements of the environment. FLAGS imple-
ments four different flags to generate the required interaction: (a) Device
Aggregation (b) Edge Aggregation (c) Cluster Aggregation and (d) Inter–
Cluster Aggregation. The Device Aggregation flags control whether a node
is allowed to share information with its peers or not. This may be within
the devices’ own neighborhoods or through random pairings including multi-
hop interactions. The Edge Aggregation, when enabled, enables the devices
to share their local models with the hierarchical servers. Cluster and Inter-
Cluster Aggregations have been included in the framework to support ex-
pandability for FL scenarios with device clusters. Employing a flag-based
mechanism allows the framework to remain configurable for addition of more
FL algorithms.The flag settings for the various FL algorithms covered within
this work have been shared under Table 2.

Finally, the Node block implements all device level operations including
training, testing and communication while maintaining records all perfor-
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(a) HFL

(b) D2DFL (c) GFL

Figure 3: Main Federated Learning Algorithms. Dashed lines represent links between
various entities whereas only solid lines in (c) depict active established-pair links in GFL.

mance metrics. This module enables the nodes to communicate with both
Environment and Algorithm blocks to obtain the required topological and
permissible-interaction information. The devices and servers both are gen-
erated using this block imbuing them with a range of functionality available
to modern devices for conducting the learning operations.

5. Federated Learning Algorithms

Federated Learning was initially conceived as a two-tiered learning frame-
work alternating between clients/nodes performing the training and the cloud
servers aggregating the local models to yield a global model. In order to in-
crease the efficiency, the envisaged FL was further spread over the Edge
Network to benefit not only from the Edge devices capabilities but also ad-
dress the challenges inherent with centralization. This evolution has yielded
various FL algorithms suitable to a variety of scenarios including vehicular-
networks, dense IoT networks, cross-silo operations between relatively large
data centers. These algorithms employ three different types of communica-
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Algorithm 1: Hierarchical Federated Learning

Input: Initial Model parameters θ0, S hierarchical servers with
device association

Output: Global model parameters θt→∞
1 Initialization by global server: θ0 received by each hierarchical server

Si and broadcast among the connected nodes
2 for Nodes k = 1 . . . . . .N (in parallel) do
3 Perform Local update for e epochs

4 θt+τk = θtk − αtk∇Lk(xm, ym;θtk)
5 TX: With a probability pk, send the θt+τk to the hierarchical

server for aggregation

6 for Servers Si ∀ i = 1 . . . . . .K (in parallel) do
7 AGG: Aggregate the models received from the ni nodes

8 θt+TSi
= θtSi

+
∑
j∈ni

wjθ
t+τ
j

9 if round % f == 0 then
10 for Servers Si ∀ i = 1 . . . . . .K (in parallel) do
11 Upload models to the global server

12 Global Aggregation

13 θt+1 = θt +
∑
j∈K

ηjθ
t+T
j

14 Send model back to Edge Servers Si
15 Edge Servers Si broadcast model parameters θt+1 to all nodes

connected respectively

tion links as shown in Fig. 1 associated with different communication costs:
(a) Device-to-Device (D2D) (b) Device-to-Edge (D2E) (c) Edge-to-Cloud
(E2C)

D2D link are limited to the device level whereas D2E links connect the
nodes with the edge servers. Finally, E2C links connect the edge servers to the
core network. While D2D links and D2E links operate independently, E2C
links require the latter for information to be transmitted from the devices to
the edge server for onward transmission to the core network. All subsequent
communication analyses in this work use this fact to establish effectiveness
of a particular form of communication in FL operations.

A key aspect in major FL literature is the absence of cross-configuration
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comparison and evaluation of FL algorithms. Such an analysis promises to
identify optimal employment of these FL algorithms based on the operating
environment and nature of the problem being addressed. This section first
provides a description of these algorithms followed by details of the experi-
ments in the subsequent sections.

5.1. Hierarchical Federated Learning

Hierarchical Federated Learning (HFL) introduces intermediate model
aggregation closer to the data origin using an edge server [13]. This FL
algorithm introduces F aggregation layers between the nodes and the global
cloud server, F increasing toward the cloud layer. Cellular base stations or
Mobile Edge Computing (MEC) Servers are envisioned to realize this role
[28] for their respective connected devices. Each network level, as depicted
in Fig. 3(a), aggregates the models received from the previous layer and
passes them to the next layer in the hierarchy. This scheme offers reduction
in the overall upstream communication as well progressively offloading the
computational load at the edge network.

Each hierarchical layer F houses KF edge servers. Each server at layer
F = 1 aggregates models from the devices linked to it respectively. The
pseudocode for HFL have been laid out in Alg. 1. The initial model pa-
rameters i.e. θ0 are initialized by the global server Sg and shared with the
nodes. The nodes in turn update the model over a mini-batch of size M to
yield θt+1

k . After completing e local updates, each node shares its updated
parameters with the hierarchical server Si with a probability pk. The servers
aggregate the received models which is then shared with the servers in the
next layer/global server after f aggregation rounds. At this stage, the global
server aggregates the input models from the K hierarchical servers and gen-
erates the global model θt+τ which are then shared through the local servers
with the associated nodes.

5.2. Device-to-Device Federated Learning

With Device-to-Device (D2D) communication [29], FL can be operated
without the requirement of a central aggregator [9]. In a purely serverless
FL framework, the nodes communicate with their immediate neighbors and
resort to local aggregation Fig. 3(b). At a given time t, the nodes share their
locally learned parameters θtk with their neighborhood nk. The recipients
in turn perform aggregation of the received models combining the incoming
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Algorithm 2: Device-to-Device Federated Learning

Input: Model parameters θk for each node, degree nk
Output: D2D Aggregated Models

1 for Nodes k = 1 . . . . . .N in parallel do
2 Update local model for e epochs

3 θt+τk = θtk − αtk∇Lk(xm, ym;θtk)
4 Send model to 1-hop neighbors nk with probability dk
5 Receive models from nk 1-hop neighbors
6 Perform weighted aggregation for the received models
7 θt+1

k = θt+τk +
∑
j∈nk

ηjθ
t+τ
j

parameters θtk with corresponding weights {ηj∀j ∈ nk} to generate θt+1
k : The

entire operation of D2DFL is depicted in Alg. 2.

Algorithm 3: Gossip Federated Learning

Input: Model parameters θk, optimization parameters
Output: Gossip-aggregated model

1 for Nodes k = 1 . . . . . .N in parallel do

2 θt+τk ←− Model-Update(θ
(
kt))

3 θt+1
k ←− Gossip Exchange (θt+τk )

4 Function Model-Update(θtl):
5 for batch b of size M∈ Dl do
6 ξb = (xb, yb) is the data sample pairs in b

7 θt+τl = θtl − αt∇Ll(ξb;θtl )
8 return θt+τl

9 Function Gossip Aggregate(θtl):
10 Perform aggregation handshake with a random node
11 Exchange models for aggregation between the pair
12 Aggregate received model

13 θt+Tl = θt+τl + ηjθ
t+τ
j

14 return θt+Ti
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5.3. Gossip Federated Learning

Gossip communication is another form of decentralized communication
wherein the nodes communicate with randomly selected peer nodes. Gos-
sip Federated Learning (GFL) was among the early fully decentralized FL
frameworks to have been proposed [30]. For a network with N nodes, the
nodes form random pairs with other nodes from the network forming a gos-
sip pair (i, j ∀ i, j ∈ N ) as shown in Fig. 3(c). Once the connection
has been established, the pair exchange their locally updated models θti , θ

t
j

and in turn aggregate with the received model parameters to generate θt+1
i

and θt+1
j . The process results in considerably curtailed communication costs.

The details of the operation have been provided in Alg. 3.

5.4. Hierarchical Device-to-Device Federated Learning

Hierarchical D2DFL employs aggregation at the device levels, edge servers
and cloud servers. Thus the D2D, D2E and E2C links all are employed to
enable such operation [14]. The proposed mechanism allows for devices to
perform local updates on their model parameters θtk and share them with
their nk neighbors leading to device level aggregation. Simultaneously, the
devices also share the model parameters with the connected servers Si. The
servers in turn aggregate the received models and share along the hierarchy
F eventually leading up to the global server Sg as indicated in Fig. 3(d). The
global model θt+τ gets disseminated back to the nodes through the respective
servers and the process is continued till convergence. The details of the entire
process has been outlined in Alg. 4. While greater cooperation is envisioned
with this algorithm, the learning requires communication at both device and
upstream level.

5.5. Hierarchical Gossip Federated Learning

Hierarchical FL, as described in Alg.1, allows device layer to interact with
Edge Servers to aggregate local models resulting in sub-global models. These
models are then passed onto global server for generating the global model θt.
HD2DFL builds on this configuration by allowing devices layer entities to
interact among themselves before sharing the local aggregated models with
the higher edge layers. The performance as shall be seen in Sec-7 indicate
better performance albeit at the communication volume which is almost the
joint sum of HFL and D2DFL. This observation led the researchers in [15]
to introduce gossip steps at the device level instead of the full neighborhood
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aggregation as indicated in Alg 5.

Algorithm 4: Hierarchical-D2D Federated Learning

Input: Initial Model parameters θ0, Neighborhood information
Gk = {N , ξk}, Hierarchical servers K with device association

Output: Global model parameters θt→∞
1 Initialization by global server: θ0 received by each hierarchical server

Si and broadcast among the connected nodes ni
2 for Node k = 1 . . . . . .N in parallel do
3 θt+τk ←−Model Update(θtk)

4 θt+δk ←− D2D Aggregate(θt+τk , nk) ;

5 if aggregation round % f == 0 then
6 for Servers Si ∀ i = 1 . . . . . . H (in parallel do
7 Sample q from the associated nodes and request parameters
8 Aggregate received parameters: θt+τSi

= θtSi
+

∑
j∈q

wjθ
t
j

9 for Servers Si ∀ i = 1 . . . . . . H in parallel do
10 Upload model θtSi

to the global server

11 Global Aggregation : θt+1 = θt +
∑
j∈Si

ηjθ
t
j

12 Send model back to nodes through respective Edge Servers Si

13 Function Model-Update(θtl):
14 for batch b of size M∈ Dl do
15 ξb = (xb, yb) is the data sample pairs in b

16 θt+τl = θtl − αtl∇Ll(ξb;θtl )
17 return θt+τl

18 Function D2D-Aggregate(θtk, nl):
19 Exchange model with 1-hop neighbors nl with probability dl
20 Perform weighted aggregation for the received models

21 θt+δl = θt+τl +
∑
j∈nl

ηjθ
t+τ
j

22 return θt+δl

The nodes communicate at the device level using random pairings re-
sulting in gossip communication. These random node pairs exchange lo-
cal models during this stage to perform local aggregation yielding θt+τk for
k = 1 . . . . . .N network nodes. Subsequently, these gossip-aggregated models
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are shared with the edge servers for hierarchical aggregation and subsequently
cloud aggregation respectively.

Algorithm 5: Hierarchical-Gossip Federated Learning

Input: Initial Model parameters θ0, Neighborhood information
Gk = {N , ξk}, Hierarchical servers K with device association

Output: Global model parameters θt→∞
1 Initialization by global server: θ0 received by each hierarchical server

Si and broadcast among the connected nodes ni
2 for Node k = 1 . . . . . .N in parallel do
3 θt+τk ←−Model Update (θtk)

4 θt+δk ←− Gossip Exchange (θt+τk )

5 if aggregation round % f == 0 then
6 for Servers Si ∀ i = 1 . . . . . . H (in parallel do
7 Sample q from the associated nodes
8 for j ∈ Sampled Nodes do
9 Share model parameters θt+δj with the server

10 Aggregate the received parameters

11 θt+TSi
= θt+δSi

+
∑
j∈q

wjθ
t+δ
j

12 for Servers Si ∀ i = 1 . . . . . . H (in parallel do
13 Upload model θt+TSi

to the global server

14 Global Aggregation : θt+1 = θt +
∑
j∈Si

ηjθ
t+T
j

15 Send model back to the nodes through respective Edge Servers Si

16 Function Model-Update(θtl):
17 for batch b of size M∈ Dl do
18 ξb = (xb, yb) is the data sample pairs in b

19 θl+τl = θtl − αtl∇Ll(ξb;θtl )
20 return θt+τl

21 Function Gossip Aggregate(θtl):
22 Perform aggregation handshake with a random node
23 Exchange models for aggregation between the pair

24 Aggregate received model : θt+ζl = θt+τl + ηjθ
t+τ
j

25 return θt+ζl
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5.6. Clustered Federated Learning

Clustered FL (CFL) builds on the fully decentralized Federated Learning
while aiming to reduce communication volume by clustering operations. The
nodes in proximal locations are grouped into Clusters formed around a Clus-
ter Head (CH). The devices become a Cluster-Member (CM) by associating
with a Cluster Head Ci, itself a device. During the training phase, the device
perform local updates of their own models i.e θtk. At the aggregation stage,
each CM i shares its local model with the CH i.e Ci, with a probability dk.
Subsequently, all the received models are aggregated to generate the sub-
global model θtCi . The aggregated model is shared with the respective CMs
of ith cluster. The process continues until an acceptable threshold is reached.
The details of the entire operation are presented in Alg. 6.

Algorithm 6: Clustered Federated Learning

Input: Model parameters θk for each node, degree nk
Output: D2D Aggregated Models

1 Devices i = 1......C chosen as Cluster Head (CH) of cluster Ci
2 for free nodes k = 1......N −C do
3 Join Ci ∀ i ∈ C as a Cluster-Member (CM)

4 for Cluster Head Ci∀ i = 1 . . . . . .C in parallel do
5 Send model to CM {p : p ∈ Ci}
6 for Nodes k = 1 . . . . . .N in parallel do
7 θt+τk ←− Model-Update (θtk)

8 Receive models from CM {p : p ∈ Ci} with probability dp
9 Perform weighted aggregation of received models

10 θt+1
Ci = θt+τCi +

∑
j∈Ci

ηjθ
t+τ
j

11 Function Model-Update(θtl):
12 for batch b of size M∈ Dl do
13 ξb = (xb, yb) is the data sample pairs in b

14 θt+τl = θtl − αtl∇Ll(ξb;θtl )
15 return θt+τl

5.7. Clustered Device-to-Device Federated Learning (CD2DFL)

Clustered D2DFL (CD2DFL) builds on the fully decentralized Federated
Learning while aiming to reduce communication volume by clustering oper-
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ations. The devices join a cluster by associating with a Cluster Head (CH)i,
itself a device. The Cluster-Members (CMs) in this case, continue local
updates and D2D aggregating models over their respective neighborhoods.
After a number of local aggregation rounds, each CH orchestrates a cluster-
level aggregation wherein the CMs share their respective models with the
CH. Once aggregated, the CMs receive the aggregated model θt+1

Ci from the
CH and continue with the D2DFL. Alg. 7 outlines the overall procedure for
CD2DFL.

Algorithm 7: Clustered Device-to-Device Federated Learning

Input: Model parameters θk for each node, degree nk
Output: D2D Aggregated Models

1 Devices i = 1......C chosen as Cluster Head (CH) of cluster Ci
2 for free nodes k = 1......N −C do
3 Join Ci ∀ i ∈ C as a Cluster-Member (CM)

4 for Cluster Head Ci∀ i = 1 . . . . . .C in parallel do
5 Send model to CM {p : p ∈ Ci}
6 for Nodes k = 1 . . . . . .N in parallel do
7 θt+τk ←− Model-Update (θtk)

8 θt+Tk ←− D2D-Aggregate (θt+τk , nk)

9 Receive models from CM {p : p ∈ Ci} with probability dp
10 Perform weighted aggregation

11 θt+1
Ci = θt+TCi +

∑
j∈Ci

ηjθ
t+T
j

12 Function Model-Update(θtl):
13 for batch b of size M∈ Dl do
14 ξb = (xb, yb) is the data sample pairs in b

15 θt+τl = θtl − αtl∇Ll(ξb;θtl )
16 return θt+τl

17 Function D2D-Aggregate(θtl , nl):
18 Exchange models with 1-hop neighbors nl with probability dl
19 Perform weighted aggregation : θt+δl = θt+τl +

∑
j∈nl

ηjθ
t+τ
j

20 return θt+δl
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5.8. Inter-Cluster Device-to-Device Federated Learning

Clustered FL in the presence of D2D interactions significantly improves
local cooperation. In this regard, the devices ability to interact within its
neighborhood and subsequent consolidation at Cluster Head (CH) results in
a greater participation in the overall aggregation scheme. In order to further
expand this functionality, this algorithm allows the Cluster Heads to com-
municate the other CH’s using a gossip mechanism. While the rest of the
learning and aggregation process remains similar to CD2DFL, the aggrega-
tion at the cluster head level is followed by the CH exchanging the locally
aggregated cluster model θtCi with other CH {Cj|i 6= j} using randomized
gossip. Each CH Ci is allowed a limited number of gossip steps before shar-
ing the gossip-aggregated model θt+τCi with its respective CMs. As shown in
Alg. 8, this allows the both of communication to remain restricted to prox-
imal locations while still enabling models learned in farther clusters to be
acquired.

5.9. Centralized to Decentralized Spectrum

The FedAvg is on the centralized end of the FL algorithms spectrum
whereas GFL, D2DFL and CD2DFL are on the decentralized end. HFL,
HD2DFL and HGFL avail a mix of centralized and decentralized operations.
iCFL and iCD2DFL, despite being fully decentralized, mimic hierarchical
behavior at the device level. The boundaries between centralized and de-
centralized operations FL algorithms thus remain fluid allowing present and
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future algorithms to benefit from both types of interactions.

Algorithm 8: Inter-Cluster Device-to-Device Federated Learning
(iCD2DFL)

Input: Model parameters θk for each node, degree nk
Output: D2D Aggregated Models

1 Devices i = 1......C chosen as Cluster Head (CH) of cluster Ci
2 for free nodes k = 1......N −C do
3 Join Ci ∀ i ∈ C as a Cluster-Member (CM)

4 for Cluster Head Ci∀ i = 1 . . . . . .C in parallel do
5 Send model to CM {p : p ∈ Ci}
6 for Nodes k = 1 . . . . . .N in parallel do
7 θt+τk ←− Model-Update (θtk)

8 θt+Tk ←− D2D-Aggregate (θt+τk , nk)
9 Share model with CH Ci with probability dk

10 Aggregate models received from CM {p : p ∈ Ci}
11 θt+βCi = θt+TCi +

∑
j∈Ci

ηjθ
t+T
j

12 θt+1
Ci ←− Gossip Exchange (θt+1

Ci )

13 Function Model-Update(θts):
14 for batch b of size M∈ Ds do
15 ξb = (xb, yb) is the data sample pairs in b
16 θt+τs = θts − αts∇Ls(ξb;θts)
17 return θt+τk

18 Function D2D Aggregate(θtl , nl):
19 Exchange models with 1-hop neighbors nl with probability dl
20 Perform weighted aggregation : θt+δl = θt+τl +

∑
j∈nl

ηjθ
t+τ
j

21 return θt+δl

22 Function Gossip Aggregate(θtC):
23 for g = 1 . . . . . . ζ gossip rounds do
24 Perform aggregation handshake with a randomly selected Cj
25 Exchange and aggregate models between the pair
26 θt+1

i = θt+τi + ηjθ
t+τ
j

27 return θt+1
i
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Figure 4: Synthetic data distributions for MNIST dataset across 40 nodes derived from
Dirichlet Distribution for different α values.

6. Experiments and Evaluation

A uniform evaluation strategy was devised to conduct an objective as-
sessment of the various FL algorithms. The experiments performed in this
work use the MNIST [31] and FashionMNIST datasets. [32] A non-IID data
distribution remains of primary interest in this work. The experimentation
included subjecting the FL algorithms to ideal and noisy communication,
probabilities of participation, data distribution and aggregation frequency.
Additionally, these algorithms were also subjected to Few-Shot Learning de-
tails of which have been shared subsequently.

Non-IID Distribution. The non-IID data partitions are generated using the
Dirichlet Distribution [33] parametrized by its concentration parameter α.
The value of α controls the degree of non-IID sampling spread across the
clients with lower values resulting in higher imbalance. Lower values of α
result in more skewed datasets as shown in Fig. 4. A value of α between 1
and 10 results in a typically non-IID data distribution whereas lower values
of α < 1 result in extreme non-IID distributions. On the other end, values of
α > 100 result in increasingly IID distributions. The evaluation in this work
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uses α = 0.1 and α = 1.0 for generating highly non-IID distributions.

Extremely Skewed non-IID Distribution. This work also employs an extremely
skewed 2-class and 3-class non-IID cases where each node is trained using
data samples from two and three classes only respectively. Each node is ran-
domly assigned the determined number of classes and the individual class
data is grouped into shards of 50 images each. The nodes are then assigned
a randomly chosen number of shards sampled from their respective classes.

Neural Network and Development Environment. The DNNs used for evalu-
ations based on MNIST and Fashion MNIST datasets are comprised of two
2D–Convolutional blocks followed by a Dropout and two linear layers. The
modes are instantiated with the same weights while training is conducted us-
ing the SGD optimizer with a learning rate η = 0.01. The entire framework
has been developed in Python whereas the learning algorithms were imple-
mented using PyTorch. The neural network trained for MNIST and Fashion
MNIST contains approximately 2 million parameters oth neural networks
use Rectified Linear Unit (ReLU) activations with all layers except the final
layer which uses Log-Softmax activation to generate the class probabilities.

Training Regime. The training environment assumes a network of 40 nodes,
all initiated with similar weights. Our framework allows for each node to
control the number of local updates as well as the learning rate and other
hyperparameters. However, for this work, only variation in number of train-
ing epochs has been conducted across the devices.

Operating Characteristics. The network topology generated for the experi-
ments consists of N = 40 nodes that are divided into C = 7 clusters. In
order to ensure reachability, γ = 0.95 and υ = 0.1 have been used. The
former ensures that each device has a direct link to 95% of the devices from
the same cluster. Additionally, 10% of each devices’ neighbors lie outside the
cluster. This ensures that the groups have sufficiently dense intra-device con-
nections as well as having links with nodes outside the current group. This
resulting network graph remains reachable. The experiments conducted dur-
ing the course of this work encompass two different participation scenarios:
(a) Upstream participation with probability pk and (b) Neighborhood partic-
ipation with probability dk The participation probabilities of pk = {0.9, 0.6}
and dk = {0.9, 0.6} have been used during the course of this work. The two
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conditions have also been tested jointly to mimic scenarios of frequent strag-
glers and communication limitations.The channel conditions for both D2D
and D2E communication have been subjected to zero-mean Gaussian noise
N (µ = 0, σ2)2 with σ2 = 0.01, 0.0025, 0.0001.

Few-Shot Federated Learning. One-Shot FL [34] suggests training local mod-
els to completion before sharing with the global server. The resulting mech-
anism enables significant reduction in communication frequency. Extending
the idea, this work subjects the FL algorithms to Few-Shot FL. The nodes
perform significantly more local updates before sharing their models. The
scheme works with significantly reduced aggregation rounds and communi-
cation at both device and edge level. However, it also results in higher client
drift.

Asynchronous Operation. FL envisions autonomy of operation at the device
level. By extension, this implies that not all of the devices perform same
number of update operations during the training phase. This may be caused
by device being active (or inactive) or a straggler. This work assumes that
the devices are required to work with a deadline after which they are re-
quired to share their respective models for aggregation. This deadline-based
asynchronous aggregation behavior is replicated for the FL algorithms by
allowing each device to undergo a range-limited random number of training
epochs.

7. Performance Analysis

The following section encapsulates the findings for each of the mentioned
simulation conditions. The final test accuracies of each algorithm, averaged
over three runs and over all the nodes have been reported in Figures 5-9.
Since, one of the aims of decentralized FL is to reduce the communication
cost, we also present the number of messages for each link type for each
algorithm in Fig. 10.

2N(0, σ2) noise instead of more detailed fading models and frequency-selective channel
impairments has been considered since the primary aim remains to gauge the impact of
noisy updates being used for aggregation.
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(a) α = 1.0 (b) α = 0.1

(c) α = 1.0 (d) α = 0.1

Figure 5: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST for maxi-
mal participation pk, dk = 0.9 with asynchronous communication for Non-IID distributions
with Dirichlet parameter α = 10 and α = 0.1

7.1. FL with Maximal Participation and Ideal Communication

The ideal scenario assumes noise-free communication and a 90% device
participation probability i.e. pk, dk > 0.9. As expected, greater non-IID
distribution across device adversely affects the convergence rate and perfor-
mance. The impact is reflected across all algorithms. However, results for
FashionMNIST depict more loss in performance. This indicates a strong cor-
relation between the performance degradation jointly due to a DNN’s ability
to learn and greater non-IID levels. The results in Fig. 5 indicate that decen-
tralized FL performs on par with their more centralized counterparts. The
results also show that as distributions become more non-IID, GFL, D2DFL
and CD2DFL lag in learning performance when compared to the other algo-
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(a) α = 1.0 (b) α = 0.1

(c) α = 1.0 (d) α = 0.1

Figure 6: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST for limited
participation pk, dk = 0.6 with asynchronous communication for Non-IID distributions
with Dirichlet parameter α = 1.0 and α = 0.1

rithms. However, GFL also incurs the least communication volume among
all the considered FL schemes since it only uses the least costly communica-
tion link as shown in Fig. 10.
The decentralized algorithms also indicate a slightly slower convergence rate
exacerbated as the training progresses. However, clustered operations, par-
ticularly iCD2DFL and iCFL indicate better convergence and consistently
perform better than D2DFL and GFL. This indicates that inter-cluster co-
operation orchestrated by these algorithms helps in the learning performance
and may help in arresting overtraining even in the absence of global informa-
tion. This is particularly evident from iCFL where D2D interaction at the
device level is absent.
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(a) 2-class non-IID (b) 3-class non-IID

(c) 2-class non-IID (d) 3-class non-IID

Figure 7: Average Test Accuracy for (a)-(b) MNIST and (c)-(d) FashionMNIST for lim-
ited participation pk, dk = 0.6 with for extremely skewed (2-class and 3-class) Non-IID
distributions.

7.2. FL with Limited Device Participation

The results in Fig. 6 present the results with reduced device participa-
tion. Less number of devices joining an aggregation round may be caused
due to stragglers or busy devices. All the algorithms suffer from conver-
gence issues as the device participation is decreased. This implies that data
distribution and device participation have confounding effects on the learn-
ing performance of these algorithms. The difference in performance of the
D2DFL, GFL and CD2DFL becomes more pronounced than the rest as the
training proceeds. The performance suffers clearly from overtraining com-
pounded by lower number of devices as well highly non-IID data. The con-
vergence rate of these three algorithms slows more evidently than the others
as the training proceeds. On the other hand, inter-cluster operations allow
iCFL and iCD2DF to perform better than the others even with 60% device
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participation.
The results from Fig. 6 are reinforced by testing the FL algorithms under

limited device participation and extremely skewed data distribution as shown
in Fig. 7. When subjected to 2-class and 3-class non-IID data distributions,
the localized operation in D2DFL, GFL and CD2DFL suffers more than the
others. Lesser number of classes result in almost 20% performance difference
between these algorithms and the rest as indicated in Fig. 7(a) and (c). The
performance of iCFL and iCD2DFL, however, remains remarkably robust
even in the presence of these extremely adverse conditions. Both algorithms,
supported by inter-CH operation, perform within 5% of the centralized and
hierarchical algorithms. The convergence rate of these algorithms retains its
trajectory while other decentralized algorithms show greater divergence as
the training proceeds. It may therefore be inferred that gossip operations by
the CHs partially offset the degradation caused by the lesser device partici-
pation and extremely non-IID data and acts akin to DropOut operations in
a DNN. Table. 3 provides an accuracy-based performance overview of all the
algorithms both with maximal and limited participation conditions.

Algorithm
pk = 0.6, dk = 0.6 pk = 0.9, dk = 0.9

α = 1.0 α = 0.1 α = 1.0 α = 0.1

FedAvg 0.9794 0.8736 0.9786 0.8810
D2DFL 0.9758 0.8454 0.9752 0.8849

HFL 0.9805* 0.9022* 0.9808 0.9257*
HD2DFL 0.9798* 0.8980 0.9831* 0.9189

GFL 0.8744 0.3824 0.9753 0.8398
HGFL 0.9801* 0.9015* 0.9800 0.9241
iCFL 0.9762 0.8972 0.9791 0.9142

CD2DFL 0.9694 0.8651 0.9730 0.8855
iCD2DFL 0.9803* 0.8983 0.9800 0.9162

Table 3: Accuracy comparison of FL algorithms for two sets of pk, dk values and different
values of the Dirichlet parameter α (lower values indicate increased non-IID distribution).
Highest accuracies within ∆ = 0.001 have been marked with asterisk (*)

7.3. FL with Noisy Communication

The largest application of Federated Learning is envisioned in wireless
spectrum. However, wireless media is subject, among other challenges, to
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(a) σ2 = 0.0001 (b) σ2 = 0.0025 (c) σ2 = 0.01

(d) σ2 = 0.0001 (e) σ2 = 0.0025 (f) σ2 = 0.01

Figure 8: Average Test Accuracy for (a)-(c) MNIST and (d)-(f) FashionMNIST for
N(0, σ2) noisy communication with pk, dk = 0.9 and Dirichlet parameter α = 0.1.

a significant presence of noise. With FL requiring to exchange hundreds
of thousands of parameters, presence of noise may cause the convergence
to slow down considerably. The FL algorithms during the current research
were subjected to the presence of Gaussian Noise N (0, σ2) both at the de-
vice communication level and during D2E and E2C communication. From
Fig. 8 it can be observed that the addition of noise at the aggregation stage
mildly slows down convergence. HGFL progressively shows reduction in per-
formance as σ2 is increased. However, clustering operation in iCFL and
iCD2DFL allow them to closely follow the performance by HD2DFL and
HFL. In contrast, GFL shows reduced convergence as compared to D2DFL.
However, as training progresses, D2DFL and CD2DFL both also indicates a
plateauing convergence rate.

7.4. Few Shot Learning

Few-Shot FL offers one way of reducing the communication cost when
applied properly. The devices undergo multiple local updates before sharing
their models for aggregation. Fig. 9 shows the result of Few-Shot learn-
ing applied under maximal and limited device participation scenario with
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(a) α = 0.1 MNIST (b) α = 0.1 FashionMNIST

(c) α = 0.1 MNSIT (d) α = 0.1 FashionMNIST

Figure 9: Average Test Accuracy for Few-Shot Learning for MNIST and FashionMNIST
with (a)-(b) pk, dk = 0.9 and (c)-(d) pk, dk = 0.6 with r = 20 aggregation rounds and
epochs in range [15, 20] with asynchronous communication for Non-IID distributions with
Dirichlet parameter α = 0.1

pk, dk = 0.9 in Fig. 9(a)-(b) and pk, dk = 0.6 in Fig. 9 (c)-(d). The ad-
ditional difference in performance can be attributed to greater non-IIDness
in figures (c) and (d). The impact of client drift on all algorithms causing
the learning to plateau earlier than regular learning regime is evident when
its results are compared with the ones shown in Fig. 5-6. Overall, the de-
centralized variants are impacted worse than the centralized and hierarchical
algorithms. Additionally, the performance of D2DFL, GFL and CD2DFL
lags further than the rest as training progresses. The performance of iCFL
and CD2DFL while showing relatively bigger drop than when subjected to
normal training scheme, still achieves an accuracy within 5% of the central-
ized algorithms. The overall performance suggests scenarios where Few-Shot
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Figure 10: Average FL Algorithm Accuracy and per-Node Communication Volume for
asynchronous aggregation for 30 rounds with the MNIST dataset.

learning may be considered practicable when communication costs become
prohibitive especially or shared updates are infrequent.

7.5. Communication Cost and Volume

When dealing with different FL algorithms, it is essential that the differ-
ence between links employed during the operation is kept in purview. The
work in [35] suggest that D2D links like LTE-Direct, WiFi Direct or DSRC are
more energy efficient than Device-Edge cellular links like LTE. Furthermore,
the same research also indicates that the mentioned D2D links offer reduced
latency when compared with cellular communication. E2C links must be be
preceded by D2E links for any communication meant for the cloud. It may
therefore be inferred that the energy cost and latency of uploading to the
cloud may well be more than both D2D and D2E communications. It is with
this understanding that Fig.10 considers D2D links as least costly and E2C
links as most expensive both in terms of energy and latency.

Fig-10 shows the communication volume required by different FL algo-
rithms. This is calculated by identifying the number of aggregation rounds
required by each of the FL algorithms and are categorized according to the
target level (device, edge or cloud). The centralized variants employ more ex-
pensive cellular communication for D2E communication. The additional load
on network backbone in form of E2C links is bound to significantly increase
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the cost for FL albeit its improved performance. Fig.10 shows the communi-
cation volume in terms of communication rounds for various FL algorithms
with the accuracy achieved by the respective algorithms under non-IID data
settings. The highest performing algorithms use the most expensive forms of
communication. On the contrary, decentralized FL variants indicate slower
convergence but also incur less communication cost.

Comparably, decentralized scheme with inter-cluster aggregations show
appreciable performance, falling slightly short of the accuracy of HGFL and
HD2DFL.

8. Conclusion

This work presents a comprehensive comparison of various FL algorithms
that have so far been viewed only from the perspective of Centralized FL.
The FLAGS framework developed for this purpose enables configuring mul-
tiple FL architectures expeditiously. The contrasting highlight of this work
is a detailed comparison of major FL algorithms under some of the most
dominant challenges in this domain. frameworks. The analysis conducted
here indicates that decentralized FL performs comparatively well despite
no or minimal upstream communication. Even though noisy communication
and irregular participation negatively impacts decentralized FL performance,
such modes are still capable of achieving acceptable performance thresholds.
However, extremely skewed data distributions degrade fully decentralized
FL considerably more than centralized ones. The results indicate that FL
modes may be used interchangeably depending on the network conditions
and the communication costs. As part of the future work, we also intend to
investigate the performance of the FL algorithms for feature skewed non-IID
distributions. Furthermore, based on the results presented here, the next
milestone would be to formulate an adaptive mechanism based on the oper-
ating and environment characteristics where the nodes may be suggested to
follow a particular FL algorithm for efficient operation.
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