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Abstract

This note presents a quantum protocol that demonstrates that weak coin flipping with bias ≈ 0.239,
less than 1/4, is possible. A bias of 1/4 was the smallest known, and followed from the strong coin
flipping protocol of Ambainis [2] (also proposed by Spekkens and Rudolph [10]). Protocols with yet
smaller bias ≈ 0.207 have independently been discovered [4, 11]. We also present an alternative strong
coin flipping protocol with bias 1/4 with analysis simpler than that of [2]. A similar analysis for a class
of cheating strategies has been given by [10].

1 Quantum weak coin flipping

Often in applications based on this primitive, coin-flipping is used to choose one of two competing parties
as the “winner”. In the classic example from [5], Alice and Bob are getting a divorce, and would like to
decide who gets the car. They decide to toss a coin for that purpose, but don’t trust each other. In such
a scenario, they could instead play any fair game to decide the issue. Motivated by this, we consider the
following weaker version of coin-flipping.

A weak coin flipping protocol with bias ǫ, is a two-party communication game in the style of [12], in which
the players start with no inputs, and compute a value cA, cB ∈ {0, 1} respectively or declare that the other
player is cheating. The protocol is deemed successful if Alice and Bob agree on the outcome, i.e. cA = cB .
Then, the outcome 0 is identified with Alice winning, and 1 with Bob winning. The protocol satisfies the
following additional properties:

1. If both players are honest (i.e., follow the protocol), then they agree on the outcome of the protocol:
cA = cB , and the game is fair: Pr(cA = cB = b) = 1/2, for b ∈ {0, 1}.

2. If one of the players is honest (i.e., the other player may deviate arbitrarily from the protocol in
his or her local computation), then the other party wins with probability at most 1/2 + ǫ. In
other words, if Bob is dishonest, then Pr(cA = cB = 1) ≤ 1/2 + ǫ, and if Alice is dishonest, then
Pr(cA = cB = 0) ≤ 1/2 + ǫ.
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In a strong coin flipping protocol, the goal is instead to produce a random bit which is biased away from
any particular value 0 or 1. Clearly, any strong coin flipping protocol with bias ǫ leads to weak coin flipping
with the same bias. We may also derive a strong coin-flipping protocol from a weak one. A simple way to
do this is to have the winner of the game flip the coin. This results in an increase in the bias of the protocol,
however: if when one player, say Alice, is dishonest, and the other (Bob) honest, the probability of Alice
winning is pw ≥ 1/2, and the probability of Bob winning is pℓ, then the coin will have bias pw+(pℓ− 1)/2.

The primitive of quantum strong coin flipping has been studied in, e.g., [7, 8, 1, 2, 10]. The best known
protocol, with bias 1/4 = 0.25, is due to Ambainis [2], also independently proposed by Spekkens and
Rudolph [10]. This note presents a protocol that demonstrates that weak coin flipping with bias ≈ 0.239,
less than 1/4, is possible. This protocol is obtained by modifying the protocol of [2] especially so that
the winning party is checked for cheating. We also describe a related strong coin flipping protocol with
bias 1/4 that has the advantage over [2] that the analysis is considerably simpler. A similar analysis for a
class of cheating strategies has been given by [10].

Since the discovery of the abovementioned protocol, we have learnt of several exciting developments.
Kitaev [6] has shown that in any protocol for strong coin flipping, the product of the probabilities with
which each of the players can achieve outcome (say) 0, has to be at least 1/2. Hence the protocols with
arbitrarily small bias are not possible; the bias is always at least 1/

√
2 − 1/2 ≈ 0.207. (Previous lower

bounds applied only to certain kinds of protocol [2, 10, 9].) Furthermore, Ambainis [4] and Spekkens
and Rudolph [11] have constructed a family of protocols for weak coin flipping, where the product of the
winning probabilities is exactly 1/2. By making the winning probabilities equal, they get protocols in which
each player wins with probability at most 1/

√
2, and hence the bias is 1/

√
2− 1/2 ≈ 0.207. Subsequently,

Ambainis [3] proved a lower bound of 1/2 for the product of the winning probabilities for the specific class
of protocols considered in [11]. We note that the lower bound of Kitaev for strong coin flipping does not
apply here and hence quantum games of the weaker variety with even smaller bias may be possible.

2 A game with small bias

Below, we describe a weak coin flipping game that has bias less than 1/4. The game is derived from the
protocol of [2], which achieves the previously best known bias of 1/4.

The protocol is parametrised by α ∈ [0, π], which we will optimise over later. For x, s ∈ {0, 1}, define the
state |ψx,s〉 = |ψx,s(α)〉 in a Hilbert space Ht = C

3, and |ψx〉 = |ψx(α)〉 ∈ Hs ⊗Ht = C
2 ⊗ C

3 as:

|ψx,s〉 = cos
α

2
|0〉+ (−1)s sin α

2
|x+ 1〉 (1)

|ψx〉 =
1√
2
(|0〉|ψa,0〉+ |1〉|ψa,1〉). (2)

The protocol has the following rounds:

1. Alice picks a ∈R {0, 1}, prepares the state |ψa〉 in Hs ⊗Ht (i.e., over one qubit and one qutrit) and
sends Bob the right half of the state (the qutrit).

2. Bob picks b ∈R {0, 1} and sends it to Alice.

3. Alice then reveals the bit a to Bob. Let c = a⊕ b.
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If c = 0, then cA ← 0 and she sends the other part of the state |ψa〉 (the sign qubit). Bob checks
that the qutrit-qubit pair he received in the first and the current rounds are indeed in state |ψa〉. If
the test is passed, Alice wins (cB ← 0 as well), else Bob concludes that Alice has deviated from the
protocol, and aborts.

4. If, on the other hand, c = a⊕ b = 1, then cB ← 1, and Bob returns the qutrit he received in round 1.
Alice checks that her qubit-qutrit pair are in state |ψa〉. If the test is passed, Bob wins the game
(cA ← 0), else, Alice concludes that Bob has tampered with her qutrit to bias the game, and aborts.

If the two players follow this protocol, the game is fair. We now analyse the situation where one of the
players cheats.

Lemma 2.1 If Bob is honest, then the probability that Alice wins Pr(cB = 0) ≤ 1

2
(1 + cos2 α

2
).

Proof: We assume w.l.o.g. that a dishonest Alice tries to maximize her probability of winning, and
therefore sends a = b (so that c = a ⊕ b = 0) in round 3. Her cheating strategy then takes the following
form. Alice uses some ancillary space H and prepares some state |ψ〉 ∈ H⊗Hs⊗Ht. She keeps the part of
the state in H⊗Hs and sends the qutrit part in Ht to Bob. Let σ denote the density matrix of Bob after
the first round of the protocol (i.e., of the qutrit). Let ρa be the density matrix he would have if Alice had
prepared the honest state |ψa〉:

ρa = TrHa
|ψa〉〈ψa| =

1

2
(|ψa,0〉〈ψa,0|+ |ψa,1〉〈ψa,1|) = cos2

α

2
|0〉〈0| + sin2

α

2
|a+ 1〉〈a+ 1|.

In the second round, Bob replies with a random bit b. So that she wins, Alice sends a = b to Bob and
subsequently tries to pass his check. For that, she performs some unitary operation Ub on her part of the
state, and gets |ψ̃b〉 = (Ub ⊗ I)|ψ〉. After that, she sends the part of the state in Hs (the sign qubit) to
Bob. The final joint state can be written now as

|ψ̃b〉 =
∑

i

√
pi|i〉|ψ̃i,b〉.

As we see, at the end of the protocol Bob has the density matrix σb =
∑

i pi|ψ̃i,b〉〈ψ̃i,b|.
The probability that Alice wins the game is equal to the probability that she passes Bob’s check at the
end of the protocol, i.e. that Bob measures his part of the joint state and gets |ψb〉 as the outcome

Pr[Alice wins | Bob sends b] =
∑

i

pi|〈ψb|ψ̃i,b〉|2

= F (σb, |ψb〉〈ψb|)
≤ F (TrHs

(σb),TrHs
|ψb〉〈ψb|)

= F (σ, ρb),

where F (·, ·) is the fidelity of two density matrices. Here, we have used the fact that the fidelity between
two states can only increase when we trace out a part of the states. Note also that the state TrHs

(σb) is
equal to σ, which is independent of b.
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Finally we have,

Pr[Alice wins] ≤ 1

2
[F (σ, ρ0) + F (σ, ρ1)]

≤ 1

2
[1 +

√

F (ρ0, ρ1) ]

=
1

2
(1 + cos2

α

2
).

The second inequality is due to [10, Lemma 2], [9, Lemma 3.2]. Also F (ρ0, ρ1) =
∥

∥

√
ρ0
√
ρ1

∥

∥

2

tr
= cos4 α

2
.

This completes the proof.

Note that the analysis above is tight in the sense that Alice can cheat with probability equal to 1

2
(1+cos2 α

2
).

She does this by preparing the state |ψ0〉 + |ψ1〉 (normalised) and sending the qutrit to Bob in the first
round. In the third round, she sends a = b, and the sign qutrit from the above state.

If Bob is the dishonest player, we can show the following bound.

Lemma 2.2 If Alice is honest, then Pr(cA = 1) ≤
(

1√
2
cos2 α

2
+ sin2 α

2

)2

.

Proof: A cheating Bob tries to infer the value of the bit a that Alice picked from the qutrit he receives
in round 1 so that he can send b = ā. However, he has to minimize the disturbance caused to the over
all state |ψa〉. Suppose that Bob applies the unitary transformation U on Ht ⊗ H ⊗ C

2 to the qutrit he
receives from Alice, some ancillary qubits, and a qubit reserved for his reply, and that:

U : |i〉|0̄〉|0〉 7→ |φi,0〉|0〉+ |φi,1〉|1〉. (3)

He measures the last qubit, and sends that across in round 2. If the XOR of the bit he sent and the one
that Alice picked is 1 (i.e., b = ā), in round 4 he sends one qutrit (the Ht part) from the above state across
to Alice.

Assuming that Alice had picked a, Bob’s probability of winning is:1

∥

∥

∥

∥

〈ψa|
1√
2

(

|0〉
(

cos
α

2
|φ0,ā〉+ sin

α

2
|φa+1,ā〉

)

+ |1〉
(

cos
α

2
|φ0,ā〉 − sin

α

2
|φa+1,ā〉

))

∥

∥

∥

∥

2

=
1

4

∥

∥

∥
〈ψa,0|

(

cos
α

2
|φ0,ā〉+ sin

α

2
|φa+1,ā〉

)

+ 〈ψa,1|
(

cos
α

2
|φ0,ā〉 − sin

α

2
|φa+1,ā〉

)
∥

∥

∥

2

=
1

4

∥

∥

∥
cos2

α

2
〈0|φ0,ā〉+ cos

α

2
sin

α

2
〈0|φa+1,ā〉+ cos

α

2
sin

α

2
〈a+ 1|φ0,ā〉+ sin2

α

2
〈a+ 1|φa+1,ā〉

+ cos2
α

2
〈0|φ0,ā〉 − cos

α

2
sin

α

2
〈0|φa+1,ā〉 − cos

α

2
sin

α

2
〈a+ 1|φ0,ā〉+ sin2

α

2
〈a+ 1|φa+1,ā〉

∥

∥

∥

2

=
∥

∥

∥
cos2

α

2
〈0|φ0,ā〉+ sin2

α

2
〈a+ 1|φa+1,ā〉

∥

∥

∥

2

≤
(

cos2
α

2
‖ 〈0|φ0,ā〉 ‖+ sin2

α

2
‖ 〈a+ 1|φa+1,ā〉 ‖

)2

≤
(

cos2
α

2
‖φ0,ā ‖+ sin2

α

2
‖φa+1,ā ‖

)2

≤
(

cos2
α

2
‖φ0,ā ‖+ sin2

α

2

)2

.

1In the following, for a vector |u〉 ∈ H, and a vector |v〉 ∈ H ⊗ K, by 〈u|v〉 we will mean the projection of v under the

operator |u〉〈u| ⊗ I .
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Now, consider Pr[Bob wins], which is the average of the above expression over a ∈ {0, 1}. This is maximised
when ‖φ0,0 ‖ = ‖φ0,1 ‖ = 1/

√
2 (recall from equation (3) that ‖φ0,0 ‖2+‖φ0,1 ‖2 = 1). Thus, the probability

of Bob winning is bounded by
(

1√
2
cos2

α

2
+ sin2

α

2

)2

,

as claimed.

There is a cheating strategy for Bob that achieves the above probability of success. Bob can use the
following transformation on the qutrit he receives and an ancillary qubit:

|0〉|0〉 7→ |0〉 ⊗ 1√
2
(|0〉 + |1〉), and

|x+ 1〉|0〉 7→ |x+ 1〉|x〉, for x ∈ {0, 1}.

He then measures the ancilla to get the bit b he is supposed to send in the second round.

As we vary the parameter α from 0 to π Alice’s cheating probability decreases from 1 to 1/2 and Bob’s
cheating probability increases from 1/2 to 1. The bias is minimized when the two probabilities are made
equal:

1

2
(1 + cos2

α

2
) =

(

1√
2
cos2

α

2
+ sin2

α

2

)2

(4)

By choosing α to satisfy the above equation, we get a protocol in which no player can win the game with
probability greater than 0.739. The bias is then 0.239 < 1/4.

3 A strong coin flipping protocol

Finally, we present a variant of the strong coin flipping protocol of [2], which has the same bias, but is
much more simple to analyse. The protocol has the following three rounds:

1. Alice picks a ∈R {0, 1}, prepares the state |ψa〉 ∈ Hs ⊗ Ht as in equation (2) and sends Bob the
qutrit.

2. Bob picks b ∈R {0, 1} and sends it to Alice.

3. Alice then reveals the bit a to Bob and sends the second half of the state |ψa〉. Bob checks that the
qutrit-qubit pair he received are indeed in state |ψa〉. If the test is passed, Bob accepts the outcome
c = a⊕ b, else Bob concludes that Alice deviated from the protocol, and aborts.

The analysis for Bob’s cheating strategy is the same as in [2] and his cheating probability is at most

1

2
+
‖ ρ0 − ρ1 ‖tr

4
=

1

2
(1 + sin2

α

2
).

The analysis for Alice’s cheating strategy is the same as in Lemma 2.1 above, and the same bound of 1

2
(1+

cos2 α
2
) holds here as well. This analysis is considerably simpler and does not require the symmetrization

in [2] for the state sent in the first round.
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By making the two cheating probabilities equal

1

2
(1 + cos2

α

2
) =

1

2
(1 + sin2

α

2
)

we achieve the bias of 1/4 for α = π/2.
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