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Abstract

This paper considers a weak simulation preorder for Markov chains that allows for stuttering. Despite the seco
quantification in its definition, we present a polynomial-time algorithm to compute the weak simulation preorder of
Markov chain.
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1. Introduction
This paper considers a Milner-styleweak simu-
Markov chains [20,21] are one of the most impor-
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tant classes of stochastic processes. They are us
described by higher-level formalisms such as stoch
tic variants of Petri nets, process algebras, or autom
networks. As the size of the Markov chain typica
grows exponentially with the size of the high-lev
description, the infamous state-space explosion p
lem is frequently encountered in practice. To com
this problem, reduction techniques based onlumpabil-
ity [20] are often employed. This allows for the com
putation of steady-state and transient-state proba
ties on the quotient of the Markov chain under lum
ing equivalence.
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in [5]. Whereas lumpability relates states that mutua
mimic all individual steps, weak simulation requir
that one state can mimic all stepwise behavior of
other, but not the converse, and—in contrast to str
simulation relations—only requires this for certa
(“observable”) transitions and not for other (“silent
transitions. This allows for a more radical reduction
the state space than using lumpability, while prese
ing (non-trivial) cumulative transient-state probab
ties such as the probability to reach a set of goal st
within a given time bound [5].

Efficient algorithms to construct the quotient spa
under (strong or weak) lumpability can be obtain
with a variant of the partitioning-splitter technique f
labeled transition systems [23,16,11]. The strong s
ulation preorder can be computed by solving a n
work flow problem [2]. The major contribution of thi

.
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paper is a polynomial-time decision algorithm for the
weak simulation preorder on Markov chains. The crux
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of the algorithm is to consider the check whethe
state simulates another one as a linear programm
(LP) problem. By showing that also the decision pro
lem for weak simulation belongs to the complex
class P, a complete picture on the complexity of
ciding branching-time relations on Markov chains
obtained. This result is more surprising than the c
responding one in the non-probabilistic setting as
definition of weak simulation on Markov chains reli
on a second-order quantification over partitionings
the direct successors of states (rather than the tra
tive closure of the transition relation).

The results are presented for weak simulation
continuous-time Markov chains (CTMCs) and ca
over in a straightforward manner to weak simulat
for discrete-time Markov chains (DTMCs).

2. Markov chains

Definition 1. A distribution on countable setS is a
functionµ :S → [0,1] with

∑
s∈S µ(s) � 1. Distribu-

tion µ onS is called stochastic if
∑

s∈S µ(s) = 1. Let
Dist(S) denote the collection of all distributions onS.

States of Markov chains are labeled by atom
propositions, i.e., elementary statements about s
referring to, e.g., the number of customers in a que
the state color, or the like. LetAP be a fixed, finite se
of atomic propositions.

Definition 2. A (labeled) CTMCM is a tuple(S,R,L)

where:

• S is a finite set of states,
• R :S × S → R�0 is therate matrix,
• L :S → 2AP is a labeling function that assigns

each states ∈ S the setL(s) of atomic proposi-
tions that are valid ins.

For states ∈ S, the exit rateE(s) is defined by:

E(s) =
∑
s ′∈S

R(s, s′).

A state s for which E(s) = 0 is calledabsorbing,
otherwise it is called non-absorbing. It should
s �=s

CTMCs. The usualinfinitesimal generator matrixQ is
obtained from the rate matrix by subtracting the ro
sums from the diagonal:

Q(s, s′) =
{

R(s, s) − E(s) if s = s′,
R(s, s′) otherwise.

In the traditional interpretation, at the end of a s
in states, the system will move to a different stat
According to Definition 2, states has a self-loop if
Q(s, s) > 0. We thus allow the system to occupy t
same state before and after taking a transition.
inclusion of self-loops neither alters the transient
the steady-state behavior of the CTMC and is a
treated in this way in, among others, the textbook [2

The rates intuitively specify the average dela
of the transitions. More precisely, the exit rateE(s)

denotes that the probability of taking a transition fro
s within t time units equals 1− e−E(s)·t . R(s, s′) =
λ > 0 means that with probability 1− e−λ·t the
transition froms to s′ is enabled within the nextt time
units—provided the current state iss. If R(s, s′) =
0 then there is no transition possible from states

to s′. Let Post(s) = {s′ ∈ S | R(s, s′) > 0} the set
of successor states of states. If R(s, s′) > 0 for
more than one states′, a race between the outgoin
transitions froms exists. The probability that th
transition from the current states to s′ is taken within
the nextt time units is:

R(s, s′)
E(s)

· (1− e−E(s)·t).
P (s, s′) = R(s, s′)/E(s) denotes the probability tha
the delay of going froms to s′ “finishes before” the
delay of any other outgoing transition froms. Hence,
P (s, s′) is the time-abstract probability of movin
from s to s′ in a single step.

Important equivalence notions on CTMCs are lum
ing equivalences, also known as bisimulations.
M = (S,R,L) be a CTMC andR an equivalence re
lation onS. R is astrong bisimulation[9,15] onM if
for (s1, s2) ∈ R:

L(s1) = L(s2) and R(s1,C) = R(s2,C) (1)

for all C in S/R, whereR(s,C) = ∑
s ′∈C R(s, s′).

s1 and s2 in S are strongly bisimilar if there exists
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strong bisimulationR onM with (s1, s2) ∈ R. R is a
weak bisimulation[7,4] onM if for all (s1, s2) ∈ R:
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L(s1) = L(s2) and R(s1,C) = R(s2,C)

for all C �= [s1]R.

3. Weak probabilistic simulation

For labeled transition systems, states′ simulates
s if for each successort of s there is a successo
t ′ of s′ that simulatest . Simulation of two states i
thus defined in terms of simulation of their succes
states [22,17]. In the probabilistic setting, the tar
of a transition is in fact a probability distribution
and thus, the simulation relation� needs to be lifted
from states to distributions. This is done usingweight
functions[19,18].

Definition 3. Let µ ∈ Dist(X) andµ′ ∈ Dist(Y ) and
� ⊆ X × Y . Thenµ � µ′ if and only if there exists a
weight function∆ :X × Y → [0,1] for � such that:

(1) ∆(x,y) > 0 impliesx � y,
(2) µ(x) = K1 · ∑y∈Y ∆(x, y) for anyx ∈ X,
(3) µ′(y)= K2 · ∑x∈X ∆(x, y) for anyy ∈ Y ,

whereK1 = ∑
x∈X µ(x) andK2 = ∑

y∈Y µ′(y).

Intuitively, ∆ distributes a probability distributio
over a setX to a distribution over a setY such that
the total probability assigned by∆ to y ∈ Y equals
the original probabilityµ′(y) on Y (up to a factor
1/K2). In a similar way, the total probability mas
of x ∈ X that is assigned by∆ must coincide with
the probabilityµ(x) on X (up to a factor 1/K1).
(Note thatK1 = K2 = 1 for stochasticµ and µ′.)
∆ is a probability distribution onX × Y such that
the probability to select(x, y) with x � y is one.
In addition, the probability to select an element
� whose first component isx equalsµ(x), and the
probability to select an element in� whose second
component isy equalsµ′(y).

Example 4. Let X = {s, t} and Y = {u,v,w} with
µ(s) = 2

9, µ(t) = 2
3 and µ′(u) = 1

3, µ′(v) = 4
9 and

µ′(w) = 1
9; K1 = K2 = 8

9. Note thatµ andµ′ are both
sub-stochastic. Let� = (X × Y ) \ {(s,w)}. We have
Fig. 1. Weight function for�.

µ � µ′, as, e.g., weight function∆ (cf. Fig. 1) defined
by ∆(s,u) = ∆(s, v) = ∆(t,w) = 1

8, ∆(t, v) = 3
8 and

∆(t,u) = 1
4 satisfies the constraints of Definition 3.

The intention of a simulation preorder on CTMC
is to ensure that states2 simulatess1 if and only if (i) s2
is “faster than”s1 and (ii) the time-abstract behavio
of s2 simulates that ofs1. This is achieved by the
following definition that additionally incorporates
notion ofstuttering[8,13].

Definition 5 [5,4]. Let M = (S,R,L) be a CTMC.
Relation� ⊆ S × S is a weak simulationif and only
if for all statess1, s2 ∈ S with s1 � s2 we have that
L(s1) = L(s2) and there exist functions∆ :S × S →
[0,1], δi :S → [0,1] and setsUi,Vi ⊆ S (for i = 1,2)
with:

Ui = {
ui ∈ Post(si) | δi(ui) > 0

}
and

Vi = {
vi ∈ Post(si ) | δi(vi) < 1

}
such that:

(1) v1 � s2 for any v1 ∈ V1 and s1 � v2 for any
v2 ∈ V2,

(2) ∆(u1, u2) > 0 impliesui ∈ Ui andu1 � u2,
(3) if K1 > 0 andK2 > 0 then for anyw ∈ S:

K1 ·
∑

u2∈U2

∆(w,u2) = δ1(w) · P (s1,w)

and

K2 ·
∑

u1∈U1

∆(u1,w) = δ2(w) · P (s2,w),

(4) K1 ·E(s1) � K2 ·E(s2),

whereKi = ∑
ui∈Ui

δi(ui) · P (si , ui) for i = 1,2.
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Fig. 2. Simulation scenario.

In the sequel,� denotes a weak simulation. D
finition 5 can be justified as follows. The succes
states ofsi are grouped into the subsetsUi andVi .
Although it is not required thatUi andVi are disjoint,
to understand the definition first considerUi ∩Vi = ∅.
(The fact that we allow a nonempty intersection h
technical reasons that will be explained below.)Ki de-
notes the total probability to move fromsi within one
transition to a state inUi . Vice versa, with probabil
ity 1 − Ki , in statesi a transition to some state inVi

is made (cf. Fig. 2). The first condition states that
grouping of successor states intoVi andUi is such that
any state inV2 simulatess1 and thats2 simulates any
state inV1. Intuitively, we interpret the moves fromsi
to aVi -state as silent transitions. The first condition
Definition 5 thus guarantees that any such transi
is a “stutter” step. The second and third condition
quire the existence of a weight function∆ that relates
the conditional probabilities to move froms1 to aU1-
state and the conditional probabilities fors2 to move
to a U2-state. Thus,∆ is a weight function for the
probability distributionsδi(·) ·P (si , ·)/Ki . Intuitively,
the transitions fromsi to aUi -state are considered a
observable moves and the second and third cond
are the continuous versions of similar conditions
strong simulation in the discrete-time case [19].
nally, the fourth condition states thats2 is “faster than”
s1 in the sense that the total rate to move froms2 to a
U2-state is at least the total rate to move froms1 to a
U1-state.

In most casesδi(s) ∈ {0,1} for any states, i.e.,
δi is the characteristic function ofUi , and the sets
Ui andVi are disjoint. In general, though,Ui andVi

may containfragmentsof states. That is, we deal wit
functionsδi where 0� δi(s) � 1. Intuitively, theδi(s)-
fragment of states belongs toUi , while the remaining
part (the(1−δi(s))-fragment) ofs belongs toVi . The
use of fragments of states is discussed in the follow
example. It is needed to guarantee the transitivity
the weak simulation preorder.
Fig. 3. An example of simulation using fragments of states.

Example 6. Consider the two CTMCs depicted
Fig. 3, whereL(s1) = L(s3) = L(s′

1) = L(s′
3) = {a};

the other states are labeled byb. Intuitively, s1 is
“slower than”s′

1. However, when we require the se
Ui , Vi in Definition 5 to be disjoint, thens1 �� s′

1. This
can be seen as follows. We haves1 �� s′

3 (and hence
V2 = ∅) ass1 moves with rate 1 to ab-state while the
total rate fors′

3 to move to ab-state is smaller (i.e.
1
2). Hence, the only chance to define the compon
in Definition 5 isV2 = ∅ andU2 = {s′

2, s
′
3}. Because

s′
3 ands2 are not comparable using the simulation p

order (as they have different labels), we would have
defineU1 = {s2, s3} andV1 = ∅. But then, the weight
function condition (i.e., condition (3) of Definition 5
is violated becauses1 moves with probability1

2 to a
b-state while the probability fors′

1 to reach ab-state
within one step is23.

On the other hand, when we allows3 to be split: one
half of s3 belongs toU1, one half toV1, i.e.,δ1(s3) = 1

2
and U1 = {s2, s3}, V1 = {s3} then we get that with
δ1(s2) = δ2(s

′
2) = δ2(s

′
3) = 1, U2 = {s′

2, s
′
3}, V2 = ∅,

and � = {(s1, s
′
1), (s2, s

′
2), (s3, s

′
1), (s4, s

′
4), (s3, s

′
3),

(s2, s
′
4), (s4, s

′
2)} the conditional probabilities for th

Ui -states are related via�. Note thatK1 = 1
2 + 1

4 = 3
4

andK2 = 1. Hence, we may deal with∆(s2, s
′
2) = 2

3
and∆(s3, s

′
3) = 1

3.

Remark 7. Supposes1 � s2 and one of the states
absorbing. Ifs2 is absorbing (i.e.,E(s2) = 0) then
K1 · E(s1) = 0. Hence, eithers1 is absorbing orK1 =
0. In the latter case,U1 = ∅, i.e., all successor states
s1 belong toV1 and are simulated bys2 (by condition
(1) in Definition 5). If s1 is absorbing, thens2 may be
an arbitrary state withL(s1) = L(s2). The observation
that absorbing states1 is simulated by any states2

with the same labeling is natural for any type
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simulation that abstracts from silent moves. Note that
in absorbing states of a CTMC just time advances.
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4. Algorithm for weak simulation

Theorem 1. Given a CTMC with finite state spaceS,
the quotient space with respect to the weak simula
preorder � can be computed in time and spa
O(poly(|S|)).

This result is proven by presenting a polynomi
time algorithm that computes the weak simulat
preorder of a given CTMC. Let(S,R,L) be a CTMC.
The main procedure of our algorithm (cf. Algorithm
computes the weak simulation preorder in an itera
manner as for the non-probabilistic case. Starting fr
the trivial preorder

R = {
(s1, s2) ∈ S × S | L(s1) = L(s2)

}
pairs (s1, s2) are successively removed fromR if s1
has a transition that cannot be “simulated” by a tran
tion of s2 where simulation is understood with respe
to the current relationR. This process is continued un
til no such pair of states is left inR. The loop invariant
of this procedure is thatR is coarser than�.

(* Input: CTMC with finite state spaceS *)
(* Output: the weak simulation preorder� *)

R := {(s1, s2) ∈ S × S | L(s1) = L(s2)};
while ∃(s1, s2) ∈ R such thats1 �� s2 do

R := R \ {(s1, s2)}
od
return R (* R = � *)

Algorithm 1. Schema for computing�.

Several improvements of this naive schema
possible, e.g., in the style of [14]. However, in th
paper we concentrate on the differences to the n
probabilistic setting. The computational proced
explicitly relies on a test whethers2 simulates (under a
fixedR) s1. In order to do so, according to Definition
we need a method to check whether componentsδi ,
Ui , Vi , Ki , ∆ can be constructed for(s1, s2). We
show that this problem can be reduced to alinear
programming(LP) problem. Thus, checking whethe
one state weakly simulates another one amount
(s1, s2) ∈ R. Note that by construction ofR, s1 ands2
are equally labeled. Let:

s↓R = {
s′ ∈ S | (s′, s) ∈ R

}
be the downward closure ofs with respect toR, and
similarly

s↑R = {
s′ ∈ S | (s, s′) ∈ R

}
be the upward closure ofs with respect toR.

First, distinguish the following cases:

(1) Post(s1) ⊆ s2↓R . Then, the conditions in Defini
tion 5 are fulfilled for(s1, s2) by setting:

V1 = Post(s1), U1 = ∅, and U2 = Post(s2).

(2) E(s2) = 0, i.e., s2 is absorbing. Then the ob
servations in Remark 7 can be applied to ch
whether the conditions of Definition 5 are fulfille
for (s1, s2).

Note that these checks can be done in polynom
time. We now consider the remaining case. Assums2
is non-absorbing ands1 has at least one successor st
u1 ∈ Post(s1) such thatu1 /∈ s2↓R. As u1 �� s2, and
all states inV1 have to be simulated bys2 (cf. condi-
tion (1) of Definition 5), stateu1 ∈ U1. Thus,K1 > 0,
and, by condition (4) of Definition 5,K2 > 0.

Consider the following variables:

• x andy which stand for the valuesx = 1/K1 and
y = 1/K2, respectively.

• xu for u ∈ S with (u, s2) ∈ R which stands for the
valuexu = δ1(u)/K1.

• yu for u ∈ S with (s1, u) ∈ R which stands for the
valueyu = δ2(u)/K2.

• zu1,u2 for each pair of states(u1, u2) ∈ R.

We write∆(u1, u2) instead ofzu1,u2, and put:

xu = x if u /∈ \ s2↓R,

yu = y if u /∈ \ s1↑R.

This is justified as follows. Each stateu in Post(s1) \
s2↓R has to be put completely inU1. Thus,δ1(u) = 1,
and hence:

xu = x = 1

K1
= δ1(u)

K1
.

By a symmetric argument, we putyu = y if u /∈ s1↑R .
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The linear program now consists of the following
equations and inequalities:
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∑
u1∈u2↓R

∆(u1, u2) = P (s2, u2) · yu2 for u2 ∈ S,

∑
u2∈u1↑R

∆(u1, u2) = P (s1, u1) · xu1 for u1 ∈ S,

∑
u1∈S

xu1 · R(s1, u1) = E(s1),

∑
u2∈S

yu2 · R(s2, u2) = E(s2),

x � 1,

y � 1,

x � xu � 0 if u ∈ s2↓R,

y � yu � 0 if u ∈ s1↑R,

y ·E(s1) � x ·E(s2).

This LP problem has O(|S|2) variables and 4· |S| + 5,
i.e., O(|S|) equations. It is justified as follows. Th
first two equations correspond to condition (3)
Definition 5, rewritten as:

∑
u1∈U1

∆(u1, u2) = δ2(u2) · P (s2, u2)

K2

= P (s2, u2) · δ2(u2)

K2︸ ︷︷ ︸
=yu2

and similar for the symmetric condition foru2. The
range ofu1 can be restricted tou2↓R as—due to
condition (2) of Definition 5—for the other case
∆(u1, u2) = 0. The third and fourth equations forma
ize the requirements forKi :∑
ui∈S

δi(ui) · R(si , ui) = Ki ·E(si), i = 1,2.

The requirementsx � 1 andy � 1 guarantee that

0<K1 � 1 and 0<K2 � 1

while the conditionsx � xu � 0 and y � yu � 0
ensure that 0� δi(u) � 1, for i = 1,2. Finally, the last
inequality is obtained by rewriting the rate condition

K1 · E(s1) � K2 ·E(s2) by

1

K2
· E(s1) � 1

K1
·E(s2).
and ∆ such that the conditions in Definition 5 a
fulfilled. Vice versa, componentsδi , Ui , Vi , Ki and∆
as in Definition 5 induce a solution of the above line
program.

Example 8. The linear equations obtained for chec
ing whethers1 is simulated bys′

1 for the CTMCs in
Fig. 3 given thatR equals� are as follows. For illus-
tration purposes we use a particular solution (witne
ing thats1 � s′

1) in our explanations. The state spa
is comprised of the disjoint union of the two CTMC
The variables solving the system are:x = 4

3, y = 1,
xs1 = 0, xs2 = xs4 = x = 4

3, xs3 = 2
3, andys ′

1
= ys ′

2
=

ys ′
3

= ys ′
4

= y = 1. For any other statet , xt and yt
equal 0. The side conditions onx, y andxs andys ′ and
the rate condition (last equation, i.e., 1· 2 � 4

3 · 6) are
straightforwardly fulfilled. The condition on the ex
rate of states′

1 (fourth equation) amounts to

ys ′
2
· R(s′

1, s
′
2)+ ys ′

3
· R(s′

1, s
′
3) = E(s′

1)

which is satisfied asys ′
2

= ys ′
3
. In a similar way we

obtain for the exit rate condition ofs1 (third equation):

xs2 · R(s1, s2)+ xs3 · R(s1, s3) = E(s1).

To illustrate the weight function condition, consid
the second equation. The interesting cases occur fs1
throughs4. Foru1 = s1 we obtain:∑
u2∈{s ′

1}
∆(s1, u2)

︸ ︷︷ ︸
=0

= P (s1, s1) · xs1︸ ︷︷ ︸
=0

.

A similar equation is obtained for states4. Foru1 = s2
we yield, usings2↑R = {s′

2, s
′
4}:

∆(s2, s
′
2)︸ ︷︷ ︸

= 2
3

+∆(s2, s
′
4)︸ ︷︷ ︸

=0

= P (s1, s2) · xs2︸ ︷︷ ︸
= 1

2 · 4
3

.

Finally, it can be checked that fors3 with s3↑R = {s′
3}

the obtained equation is also satisfied. To summa
the LP problem has a solution, and therefores′

1
simulatess1 underR.

Using efficient well-known methods for solving L
problems, the test whether a state weakly simul
another one can be performed in polynomial tim
Note that it suffices to check whether the LP probl
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has a solution; the solution itself is not needed. In the
main algorithm where pairs(s1, s2) are successively
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discrete-time case, checking strong bisimulation takes
O(m · logn) time [16], whereas weak bisimulation
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removed fromR, the number of iterations is bounde
|S|2. Thus, one has to solve|S|2 LP problems, each
of size quadratic inS and solvable in polynomia
time. To summarize, the weak simulation preorder
CTMCs can be computed in polynomial time. T
weak simulation preorder of a DTMC (see [4]) c
be computed with a slightly adapted version of t
algorithm.

Note thatanysolution of the above linear inequa
ity system is sufficient for our purposes (i.e., yields
componentsδ1, δ2 and∆ and the derived setsUi , Vi

and valuesKi ). That is, we do no have to solve an o
timization problem. However, it is well known that th
problem of solving linear programming problems a
the problem of solving linear inequalities are polyn
mial equivalent, i.e., can be solved with the same a
rithms plus a polynomial-time transformation [24,2

For computing thestrongsimulation preorder on
can use the same schema (Algorithm 1) where a
work flow algorithm can be applied to check wheth
the current relationR is a strong simulation [2]. The
question arises whether for the weak simulation p
order, the presented linear inequalities can be rew
ten as a network flow problem (and thus, can be so
with simpler algorithms than those for solving gene
linear programming problems). Of course, under c
tain circumstances, this is possible, e.g., for CTM
without stutter steps as then the strong and weak
ulation preorder coincide. However, in general,
above linear inequalities do not have the form o
network flow problem. The question whether there
general technique that transforms the above linea
equality system into a network flow problem (or a
other problem-type for which simpler solutions exis
is open.

5. Related work

Decision algorithms for equivalences and preord
have been reported in the literature for various varia
of Markov chains. Checking lumpability (or: stron
bisimulation) on Markov chains can be done in tim
O(m · logn), wheren is the number of states an
m is the number of transitions [11]. This algorith
can also be employed for weak bisimulation. In t
takes O(n3) time [1,3]. The incorporation of nonde
terminism may yield an exponential time comple
ity [10], however, for special models with probabili
and nondeterminism or variants of weak bisimulati
polynomial-time algorithms can be established [6,
25]. The computation of the strong simulation p
order, i.e., a stuttering-free simulation, for DTMC
(and Markov decision processes) can be reduced
maximum flow problem [2] and has a worst case ti
complexity of O((m · n6 + m2 · n3)/ logn).

6. Conclusions

This paper presented a polynomial-time algorit
for computing the weak simulation preorder (�) of a
finite-state Markov chain. The crux of our algorithm
to consider the check whether a state simulates ano
one as a linear programming problem. Improveme
to our basic algorithm are not considered here, but
expect that techniques from, e.g., [12,14,28], can
employed to speed up the algorithm.

Weak simulation has some interesting propert
The kernel of �, i.e., � ∩ �−1, is coarser than
weak bisimulation. Moreover,� preserves bounds o
probabilistic reachability properties in the followin
sense [5]. LetT ⊆ S be a nonempty set of state
s1, s2 ∈ S be states of the CTMC andd a positive real
number. Then:

s1 � s2 ⇒ Prob
(
s1

�d❀ T
)
� Prob

(
s2

�d❀ T
)
,

where Prob(s
�d❀ T ) denotes the probability to reac

some state inT within d time units when starting in
states.
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