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Abstract

This paper considers a weak simulation preorder for Markov chains that allows for stuttering. Despite the second-order
quantification in its definition, we present a polynomial-time algorithm to compute the weak simulation preorder of a finite
Markov chain.
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1. Introduction . . . .
This paper considers a Milner-stylgeak simu-

Markov chains [20,21] are one of the most impor- lation preorder on Markov chains, first introduced
tant classes of stochastic processes. They are usuallyin [5]. Whereas lumpability relates states that mutually
described by higher-level formalisms such as stochas- mimic all individual steps, weak simulation requires
tic variants of Petri nets, process algebras, or automatathat one state can mimic all stepwise behavior of the
networks. As the size of the Markov chain typically other, but not the converse, and—in contrast to strong
grows exponentially with the size of the high-level simulation relations—only requires this for certain
description, the infamous state-space explosion prob- (sghservable”) transitions and not for other (“silent”)
lem is frequently encountered in practice. To combat yansitions. This allows for a more radical reduction of

this problem, reduction techniques basedwnpabil- ¢ state space than using lumpability, while preserv-
ity [20] are often employed. This allows for the com- 1101 trivial) cumulative transient-state probabili-

putanon of stea@y—state and tran3|entjstate probabili- ties such as the probability to reach a set of goal states
ties on the quotient of the Markov chain under lump- . hi . ime bound
ing equivalence. within a given time bound [5].
Efficient algorithms to construct the quotient space
under (strong or weak) lumpability can be obtained
" Supported by the VOSS (Validation of Stochastic Systems) with a variant of the partitioning-splitter technique for
project, funded by the NWO (Netherlands Organization for Scien- . .
tific Research) and the DFG (German Research Council). Iabgled transition systems [23,16,11]. The s_trong sim
" Corresponding author. ulation preorder can be computed by. so!vmg a net-
E-mail addresskatoen@cs.utwente.nl (J.-P. Katoen). work flow problem [2]. The major contribution of this
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paper is a polynomial-time decision algorithm for the
weak simulation preorder on Markov chains. The crux
of the algorithm is to consider the check whether a

C. Baier et al. / Information Processing Letters 89 (2004) 123-130

noted that Definition 2 does not requiR(s, s) =
— Y g2 R(s,s"), as is often found in textbooks on
CTMCs. The usudhfinitesimal generator matrixQ is

state simulates another one as a linear programmingobtained from the rate matrix by subtracting the row-

(LP) problem. By showing that also the decision prob-
lem for weak simulation belongs to the complexity
class P, a complete picture on the complexity of de-
ciding branching-time relations on Markov chains is
obtained. This result is more surprising than the cor-
responding one in the non-probabilistic setting as the
definition of weak simulation on Markov chains relies
on a second-order quantification over partitionings of

sums from the diagonal:

R(s,s) — E(s)
R(s,s)

if s =5,
otherwise

Q(S,S’)={

In the traditional interpretation, at the end of a stay
in states, the system will move to a different state.
According to Definition 2, state has a self-loop if

Q(s,s) > 0. We thus allow the system to occupy the

the direct successors of states (rather than the transi-g;me state before and after taking a transition. The

tive closure of the transition relation).

The results are presented for weak simulation on
continuous-time Markov chains (CTMCs) and carry
over in a straightforward manner to weak simulation
for discrete-time Markov chains (DTMCs).

2. Markov chains

Definition 1. A distribution on countable sef is a
functiony : S — [0, 1] with > ¢ u(s) < 1. Distribu-
tion . on S is called stochastic i ¢ u(s) = 1. Let
Dist(S) denote the collection of all distributions ¢h

States of Markov chains are labeled by atomic
propositions, i.e., elementary statements about state
referring to, e.g., the number of customers in a queue
the state color, or the like. L&P be a fixed, finite set
of atomic propositions.

Definition 2. A (labeled) CTMCM is atuple(S, R, L)
where:

e S is afinite set of states,

e R:S xS — Ryqistherate matrix

e L:S — 2AP s a labeling function that assigns to
each state € S the setL(s) of atomic proposi-
tions that are valid in.

For states € S, the exit rateE (s) is defined by:
E(s)=) R(s.s).
s'eS

A state s for which E(s) = 0 is calledabsorbing
otherwise it is called non-absorbing. It should be

inclusion of self-loops neither alters the transient nor

the steady-state behavior of the CTMC and is also

treated in this way in, among others, the textbook [26].
The rates intuitively specify the average delays

of the transitions. More precisely, the exit rafis)

denotes that the probability of taking a transition from

s within 7 time units equals + e 267 R(s,s') =

A > 0 means that with probability + e™*’ the

transition froms to s’ is enabled within the nexttime

units—provided the current state is If R(s,s’) =

0 then there is no transition possible from state

to s'. Let Post(s) = {s' € S | R(s,s’) > 0} the set

of successor states of state If R(s,s’) > 0 for

more than one staté€, arace between the outgoing

transitions froms exists. The probability that the

Stransition from the current stateto s’ is taken within

' the nextt time units is:

R(s,s)
E(s)

P(s,s’) = R(s,s’)/E(s) denotes the probability that
the delay of going frony to s’ “finishes before” the
delay of any other outgoing transition fromHence,
P(s,s’) is the time-abstract probability of moving
from s to s’ in a single step.

Important equivalence notions on CTMCs are lump-
ing equivalences, also known as bisimulations. Let
M= (S, R, L) beaCTMC andR an equivalence re-
lation onS. R is astrong bisimulatiorf9,15] on M if
for (s1, s2) € R:

(1 e EOy,

L(s1) =L(s2) and R(s1,C)=R(s2,C) 1)

for all C in S/R, whereR(s,C) =) .- R(s,s").
s1 andsz in S are strongly bisimilar if there exists a



C. Baier et al. / Information Processing Letters 89 (2004) 123—-130

strong bisimulationrR on M with (s1,s2) € R. Ris a
weak bisimulatiorf7,4] on M if for all (s1, s2) € R:

L(s1)=L(s2) and R(s1,C) = R(s2, C)
forall C # [s1]r-

3. Weak probabilistic simulation

For labeled transition systems, statesimulates
s if for each successor of s there is a successor
t' of s’ that simulates. Simulation of two states is
thus defined in terms of simulation of their successor
states [22,17]. In the probabilistic setting, the target
of a transition is in fact a probability distribution,
and thus, the simulation relatian needs to be lifted
from states to distributions. This is done usingight
functions[19,18].

Definition 3. Let u € Dist(X) and i’ € Dist(Y) and
C C X x Y. Thenu < u/ if and only if there exists a
weight functionA : X x Y — [0, 1] for C such that:

(1) A(x,y)>0impliesxC y,
2) u(x) =Ky - Zer A(x,y) foranyx € X,
B) W(y)=K2-Y ,cx Alx,y) foranyye?,

whereK1 =3,y u(x) andKp = Z},EY w ().

Intuitively, A distributes a probability distribution
over a setX to a distribution over a sef such that
the total probability assigned by to y € Y equals
the original probabilityu’(y) on Y (up to a factor
1/K>?). In a similar way, the total probability mass
of x € X that is assigned byt must coincide with
the probability u(x) on X (up to a factor 1Kj).
(Note thatK1 = K> = 1 for stochasticu and u'.)

A is a probability distribution onX x Y such that
the probability to selec(x, y) with x C y is one.
In addition, the probability to select an element in
C whose first component is equalsu(x), and the
probability to select an element im whose second
component is equalsu’(y).

Example 4. Let X = {s,¢t} and Y = {u, v, w} with
u(s) = § n) =5 and /() = 3, '(v) = 5 and
' (w) = 3; K1= K2 = §. Note thatw andy’ are both
sub-stochastic. LeC = (X x Y) \ {(s, w)}. We have

125

Fig. 1. Weight function foc.

u=<u,as, e.g., weight function (cf. Fig. 1) defined
by A(s, u) = A(s, v) = A(t, w) = 3, A(t,v) = 3 and
A(t,u) = ;11 satisfies the constraints of Definition 3.

The intention of a simulation preorder on CTMCs
is to ensure that state simulates if and only if (i) s2
is “faster than”s1 and (ii) the time-abstract behavior
of sp simulates that ofs1. This is achieved by the
following definition that additionally incorporates a
notion of stuttering[8,13].

Definition 5 [5,4]. Let M = (S, R, L) be a CTMC.
RelationC C S x § is aweak simulationf and only
if for all statess1, so € S with s1 C so we have that
L(s1) = L(s2) and there exist functiond:§ x S —
[0,1],6;:S — [0,1] and setdJ;, V; C S (fori =1, 2)
with:

Ui = {u; € Post(s;) | §;(u;) > 0} and
Vi = {vi € Post(s;) | 8 (vi) < 1}
such that:

(1) v1 E 52 for any v1 € V1 and s1 C vp for any
vo € Vo,

(2) A(u1,u2) > 0impliesu; € U; andu1 C us,

(3) if K1 > 0andK> > 0 then for anyw € S:

Ki- ) A(w,uz)=81(w) - P(s1, w)
uxels

and

K- ) Alug, w)=82(w) - P(s2, w),
u1ely

(4) K1-E(s1) < K2- E(s2),

wherek; =) 8;i(u;) - P(sj,u;)fori=1,2.

u;jeU;
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Fig. 2. Simulation scenario.

In the sequel= denotes a weak simulation. De-
finition 5 can be justified as follows. The successor
states ofs; are grouped into the subselis and V;.
Although it is not required thal/; andV; are disjoint,
to understand the definition first considérn V; = @.
(The fact that we allow a nonempty intersection has
technical reasons that will be explained belok; )Jde-
notes the total probability to move fros within one
transition to a state i/;. Vice versa, with probabil-
ity 1 — K;, in states; a transition to some state ¥
is made (cf. Fig. 2). The first condition states that the
grouping of successor states ifoandU; is such that
any state inV» simulatess; and thatso simulates any
state inVy. Intuitively, we interpret the moves from
to aV;-state as silent transitions. The first condition of
Definition 5 thus guarantees that any such transition
is a “stutter” step. The second and third condition re-
quire the existence of a weight functianthat relates
the conditional probabilities to move from to aUs-
state and the conditional probabilities fgrto move
to a Uy-state. ThusA is a weight function for the
probability distributions; (-) - P (s;, -)/ K;. Intuitively,
the transitions from; to a U;-state are considered as

C. Baier et al. / Information Processing Letters 89 (2004) 123—-130

Fig. 3. An example of simulation using fragments of states.

Example 6. Consider the two CTMCs depicted in
Fig. 3, whereL(s1) = L(s3) = L(s}) = L(s3) = {a};
the other states are labeled by Intuitively, sy is
“slower than”s]. However, when we require the sets
U;, V; in Definition 5 to be disjoint, thesy Z s/l. This
can be seen as follows. We haweZ s5 (and hence,
Vo = () assy moves with rate 1 to &-state while the
total rate fors; to move to ab-state is smaller (i.e.,
%). Hence, the only chance to define the components
in Definition 5 is V> = ¢ and Uz = {s5, s3}. Because
s3 ands; are not comparable using the simulation pre-
order (as they have different labels), we would have to
definelU1 = {s2, s3} andVy = @. But then, the weight-
function condition (i.e., condition (3) of Definition 5)
is violated becausg; moves with probability% toa
b-state while the probability fos; to reach ab-state
within one step is5.

On the other hand, when we allowto be split: one
half of s3 belongs taJ1, one half tovy, i.e.,81(s3) = %
and U1 = {s2, 53}, V1 = {s3} then we get that with

observable moves and the second and third condition 81(52) = 2(sh) = 82(s5) = 1, Up = {sh, s5}, Vo=,

are the continuous versions of similar conditions for
strong simulation in the discrete-time case [19]. Fi-
nally, the fourth condition states thatis “faster than”
s1 in the sense that the total rate to move frgmo a
Up-state is at least the total rate to move frento a
U;-state.

In most cases;(s) € {0, 1} for any states, i.e.,
8; is the characteristic function df/;, and the sets
U; andV; are disjoint. In general, though; andV;
may contairfragmentsof states. That is, we deal with
functionss; where 0< §; (s) < 1. Intuitively, thes; (s)-
fragment of state belongs toU;, while the remaining
part (the(1-; (s))-fragment) ofs belongs toV;. The

and C = {(s1,57), (52, 55), (53, 57), (54, 54), (53, 53),
(s2,53), (54, 55)} the conditional probabilities for the
U;-states are related via. Note thatk; = 5 + = 3
andK, = 1. Hence, we may deal witi (s2, s5) = §
andA(s3, s3) = %

Remark 7. Supposes; C s> and one of the states is
absorbing. Ifsy is absorbing (i.e..E(s2) = 0) then
K1 - E(s1) = 0. Hence, eithesq is absorbing oK1 =
0. Inthe latter casd/1 =@, i.e., all successor states of
s1 belong toV; and are simulated byp (by condition
(1) in Definition 5). Ifs1 is absorbing, them, may be

use of fragments of states is discussed in the following an arbitrary state witlk(s1) = L(s2). The observation

example. It is needed to guarantee the transitivity of
the weak simulation preorder.

that absorbing state; is simulated by any state
with the same labeling is natural for any type of
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simulation that abstracts from silent moves. Note that
in absorbing states of a CTMC just time advances.

4. Algorithm for weak simulation

Theorem 1. Given a CTMC with finite state space
the quotient space with respect to the weak simulation
preorder C can be computed in time and space

O(poly(|S1)).

This result is proven by presenting a polynomial-
time algorithm that computes the weak simulation
preorder of a given CTMC. L4iS, R, L) be a CTMC.
The main procedure of our algorithm (cf. Algorithm 1)
computes the weak simulation preorder in an iterative
manner as for the non-probabilistic case. Starting from
the trivial preorder

R={(s1,52) € S x S| L(s1) = L(s2)}

pairs (s1, s2) are successively removed froRiif s;
has a transition that cannot be “simulated” by a transi-
tion of s where simulation is understood with respect
to the current relatio®. This process is continued un-
til no such pair of states is left iR. The loop invariant

of this procedure is thak is coarser tham.

(* Input CTMC with finite state spacg *)
(* Output the weak simulation preorder *)

R:={(s1,52) € S x §| L(s1) = L(s2)};

while 3(s1, s2) € R such that1 Z 52 do
R := R\ {(s1,52)}

od

return R *R=C?)

Algorithm 1. Schema for computing.

Several improvements of this naive schema are
possible, e.g., in the style of [14]. However, in this
paper we concentrate on the differences to the non-
probabilistic setting. The computational procedure
explicitly relies on a test whethes simulates (under a
fixed R) s1. In order to do so, according to Definition 5
we need a method to check whether componénts
U;, Vi, K;, A can be constructed fofs1, s2). We
show that this problem can be reduced tdirear
programming(LP) problem Thus, checking whether
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check whether a certain set of linear inequations and
equations has a solution. This is done as follows. Let
(s1, s2) € R. Note that by construction a?, s1 ands>

are equally labeled. Let:

si,Rz{s/eSl(s/,s)eR}

be the downward closure ofwith respect tor, and
similarly

str=1{s"€S|(s.s)eR}

be the upward closure afwith respect tar.
First, distinguish the following cases:

(1) Post(s1) < s2{ . Then, the conditions in Defini-
tion 5 are fulfilled for(s1, s2) by setting:

Vi=Post(s1), Up1=@, and U= Post(s2).

(2) E(s2) = 0, i.e., s2 is absorbing. Then the ob-
servations in Remark 7 can be applied to check
whether the conditions of Definition 5 are fulfilled
for (s1, s2).

Note that these checks can be done in polynomial
time. We now consider the remaining case. Assugne
is non-absorbing ang has at least one successor state
uy € Post(s1) such thatuy ¢ s2| . As u1 Z s2, and
all states inV1 have to be simulated hgp (cf. condi-
tion (1) of Definition 5), state:; € U;. Thus,K; > 0,
and, by condition (4) of Definition 5> > 0.

Consider the following variables:

x andy which stand for the values=1/K1 and
y =1/K>, respectively.

x, for u € S with (u, s2) € R which stands for the
valuex, =81(u)/K1.

yu for u € § with (s1, u) € R which stands for the
valuey, = 82(u)/K>.

Zuy,u, TOr €ach pair of state@e1, uo) € R.

We write A(u1, up) instead ot .,, and put:

xy=x ifug\salg,

yu=y ifug¢\sitp.

This is justified as follows. Each statein Post(s1) \
s2) g has to be put completely iti1. Thus,§1(u) =1,
and hence:

_ 1 aw

T K1 K1

Xu

one state weakly simulates another one amounts toBy a symmetric argument, we put = y if u ¢ s11 5.
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The linear program now consists of the following
equations and inequalities:

> A uz) =Pls2,u2) - yu, foruzes,
urcuzd g

Z A(ug, up) = P(s1,u1) -x,, foruges,

uz€urt g

> xuy - R(s1,u1) = E(s1),

ures
> Yup - R(sa,u2) = E(s2),
uzes

xz1

y=1
x2x,20 ifuesg,
y=2y, =20 ifuesity,
y- E(S1)<x~E(sz)-

This LP problem has QS|?) variables and 4|S| + 5,
i.e., (|S]) equations. It is justified as follows. The
first two equations correspond to condition (3) in
Definition 5, rewritten as:

d2(u2) - P(s2,u2)

Z Auy, up) = —
u1ely 2

82(u2)

K>
~——
=Yuy

= P(Szv MZ) :

and similar for the symmetric condition faf,. The
range ofuj; can be restricted tap|, as—due to
condition (2) of Definition 5—for the other cases
A(u, uz) = 0. The third and fourth equations formal-
ize the requirements fdk;:

> 8iGui) - Risi, ui) = Ki - E(si),

u,'ES

i=12

The requirements > 1 andy >
O0<K1<1l and 0<K2<1

1 guarantee that

while the conditionsx > x, >0 andy > y, > 0
ensure that & §; (u) < 1, fori =1, 2. Finally, the last
inequality is obtained by rewriting the rate condition:

Ki1-E(s1) < K2-E(s2) by

1
— E(s1) <

1
= E(s).
Ko x, £
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It is not difficult to see that any solution to the
above LP problem induces componefjtsU;, V;, K;
and A such that the conditions in Definition 5 are
fulfilled. Vice versa, componenss, U;, V;, K; andA
as in Definition 5 induce a solution of the above linear
program.

Example 8. The linear equations obtained for check-
ing whethers; is simulated bys; for the CTMCs in
Fig. 3 given thatR equalsC are as follows. For illus-
tration purposes we use a particular solution (witness-
ing thats; C s7) in our explanations. The state space
is comprised of the disjoint union of the two CTMCs.
The variables solving the system are= 3, y =1,
=0,x5, =X, =x = ‘31, Xg3 = 3, andyy/ =y =
yv/ =Yy, =y = 1. For any other state, x; and v
equal 0.'The side conditions any andx; andy, and
the rate condition (last equation, i.e.,; 2< 4 - 6) are
straightforwardly fulfilled. The condition on the exit
rate of state; (fourth equation) amounts to

5, R(s1.59) + vy - R(s1, 53) = E(s7)

wh|ch is satisfied agy = Yy In a similar way we
obtain for the exit rate condition of (third equation):

Xg, - R(51,52) + X553 - R(51,53) = E(51).

To illustrate the weight function condition, consider
the second equation. The interesting cases occuj for
throughss. Foru; = s1 we obtain:

D Alst,uz) = P(s1,81) - Xy, -
N e’

uze{sy) )

=0
A similar equation is obtained for statg Forui = s2
we yield, usings21 g = {55, s}

A(s2,55) + A(s2, s5) = P(s1,52) - Xg, .
—_— —— ——————

=2 =0 -1
Finally, it can be checked that feg with s31 ¢ = {s3}

the obtained equation is also satisfied. To summarize,
the LP problem has a solution, and therefate
simulatess; underR.

Nl=
Wi

Using efficient well-known methods for solving LP
problems, the test whether a state weakly simulates
another one can be performed in polynomial time.
Note that it suffices to check whether the LP problem
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has a solution; the solution itself is not needed. In the discrete-time case, checking strong bisimulation takes
main algorithm where pairésy, s2) are successively  O@m - logn) time [16], whereas weak bisimulation
removed fromr, the number of iterations is bounded takes @r3) time [1,3]. The incorporation of nonde-
|S|2. Thus, one has to solvig§|2 LP problems, each  terminism may yield an exponential time complex-
of size quadratic inS and solvable in polynomial ity [10], however, for special models with probability
time. To summarize, the weak simulation preorder on and nondeterminism or variants of weak bisimulation,
CTMCs can be computed in polynomial time. The polynomial-time algorithms can be established [6,10,
weak simulation preorder of a DTMC (see [4]) can 25]. The computation of the strong simulation pre-
be computed with a slightly adapted version of this order, i.e., a stuttering-free simulation, for DTMCs
algorithm. (and Markov decision processes) can be reduced to a
Note thatany solution of the above linear inequal- maximum flow problem [2] and has a worst case time
ity system is sufficient for our purposes (i.e., yields the complexity of Q(m - n® + m? - n3)/logn).
components1, §2 and A and the derived sets;, V;
and value<K;). That is, we do no have to solve an op- .
S o 6. Conclusions
timization problem. However, it is well known that the

problem of solving linear programming problems and This paper presented a polynomial-time algorithm
the problem of solving linear inequalities are polyno- g, computing the weak simulation preorder)(of a
mial equivalent, i.e., can be solved with the same algo- fjnjte-state Markov chain. The crux of our algorithm is
rithms plus a polynomial-time transformation [24,27].  tg consider the check whether a state simulates another
For computing thestrong simulation preorder one  gne as a linear programming problem. Improvements
can use the same schema (Algorithm 1) where a net- o our basic algorithm are not considered here, but we
work flow algorithm can be applied to check whether expect that techniques from, e.g., [12,14,28], can be
the current relatiorR is a strong simulation [2]. The employed to speed up the algorithm.
question arises whether for the weak simulation pre-  \Weak simulation has some interesting properties.
order, the presented linear inequalities can be rewrit- The kernel ofC, i.e., © N =~1, is coarser than
ten as a network flow problem (and thus, can be solved weak bisimulation. MoreoveE preserves bounds on
with simpler algorithms than those for solving general probabilistic reachability properties in the following
linear programming problems). Of course, under cer- sense [5]. LetT € S be a nonempty set of states,

tain circumstances, this is possible, e.g., for CTMCs g, s, € § be states of the CTMC antla positive real
without stutter steps as then the strong and weak sim- number. Then:

ulation preorder coincide. However, in general, the
above linear inequalities do not have the form of a
network flow problem. The question whether there is
general technique that transforms the above linear in-
equality system into a network flow problem (or an-

s1Csy = Prob(sy X 7) < Prob(s; & 1),

where Prols S T) denotes the probability to reach
some state i within d time units when starting in

. . . . States.
other problem-type for which simpler solutions exists)
is open.
References
5. Related work [1] S. Andova, J. Baeten, Abstraction in probabilistic process

algebra, in: T. Margaria, W. Yi (Eds.), Tools and Algorithms for

.. . . the Construction and Analysis of Systems, in: Lecture Notes in
Decision algorithms for equivalences and preorders Comput. Sci., Vol. 2031, Springer, Berlin, 2001, pp. 204-219.

have been reported in the literature for various variants [2] C. Baier, B. Engelen, M. Majster-Cederbaum, Deciding bisim-

of Markov chains. Checking lumpability (or: strong ilarity and _similarity for probabilistic processes, J. Comput.
bisimulation) on Markov chains can be done in time System Sci. 60 (1) (2000) 187-231. .
o o heren is the number of states and [3] C. Baier, H. Hermanns, Weak bisimulation for fully probabilis-
('." -logn), w nl . u . . tic systems, in: O. Grumberg (Ed.), Computer-Aided Verifica-
m is the number of transitions [11]. This algorithm tion, in: Lecture Notes in Comput. Sci., Vol. 1256, Springer,

can also be employed for weak bisimulation. In the Berlin, 1997, pp. 119-130.



130

[4] C. Baier, H. Hermanns, J.-P. Katoen, V. Wolf, Comparative
branching-time semantics for Markov chains, in: R. de Simone,
D. Lugiez (Eds.), Concurrency Theory, in: Lecture Notes in
Comput. Sci., Vol. 2761, Springer, Berlin, 2003, pp. 492-508.

[5] C. Baier, J.-P. Katoen, H. Hermanns, B. Haverkort, Simulation
for continuous-time Markov chains, in: L. Brim, et al. (Eds.),
Concurrency Theory, in: Lecture Notes in Comput. Sci.,
\ol. 2421, Springer, Berlin, 2002, pp. 338-354.

[6] C. Baier, M. Stoelinga, Norm functions for probabilistic
bisimulations with delays, in: J. Tiuryn (Ed.), Found. of
Software Science and Computation Structures, in: Lecture
Notes in Comput. Sci., Vol. 1784, Springer, Berlin, 2000,
pp. 1-16.

[7] M. Bravetti, Revisiting interactive Markov chains, in:
W. Vogler, K.G. Larsen (Eds.), Models for Time-Critical Sys-
tems, in: BRICS Notes Series NS-02-3, 2002, pp. 60-80.

[8] M. Brown, E. Clarke, O. Grumberg, Characterizing finite
Kripke structures in propositional temporal logic, Theoret.
Comput. Sci. 59 (1988) 115-131.

[9] P. Buchholz, Exact and ordinary lumpability in finite Markov
chains, J. Appl. Probab. 31 (1994) 59-75.

[10] S. Cattani, R. Segala, Decision algorithms for probabilistic
bisimulation, in: L. Brim, et al. (Eds.), Concurrency Theory,
in: Lecture Notes in Comput. Sci., Vol. 2421, Springer, Berlin,
2002, pp. 371-385.

[11] S. Derisavi, H. Hermanns, W.H. Sanders, Optimal state-space
lumping in Markov chains, Inform. Process. Lett. 87 (6) (2003)
309-315.

[12] R. Gentilini, C. Piazza, A. Policriti, Simulation as coarsest
partition problem, in: J.-P. Katoen, P. Stevens (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems, in:
Lecture Notes in Comput. Sci., Vol. 2280, Springer, Berlin,
2002, pp. 415-430.

[13] R.J. van Glabbeek, W.P. Weijland, Branching time and abstrac-
tion in bisimulation semantics, J. ACM 43 (3) (1996) 555-600.

[14] M.R. Henzinger, T. Henzinger, P.W. Kopke, Computing simu-
lations on finite and infinite graphs, in: IEEE Symp. on Foun-
dation of Comp. Sci., 1995, pp. 453-462.

C. Baier et al. / Information Processing Letters 89 (2004) 123—-130

[15] J. Hillston, A Compositional Approach to Performance Mod-
elling, Cambridge Univ. Press, Cambridge, 1996.

[16] T. Hyunh, L. Tian, On some equivalence relations for proba-
bilistic processes, Fund. Inform. 17 (1992) 211-234.

[17] B. Jonsson, Simulations between specifications of distributed
systems, in: J.C.M. Baeten, J.F. Groote (Eds.), Concurrency
Theory, in: Lecture Notes in Comput. Sci., Vol. 527, Springer,
Berlin, 1991, pp. 346-360.

[18] C. Jones, G. Plotkin, A probabilistic powerdomain of evalua-
tions, in: IEEE Symp. on Logic in Computer Science, 1989,
pp. 186-195.

[19] B. Jonsson, K.G. Larsen, Specification and refinement of
probabilistic processes, in: IEEE Symp. on Logic in Computer
Science, 1991, pp. 266-277.

[20] J.G. Kemeny, J.L. Snell, Finite Markov Chains, Van Nostrand,
New York, 1960.

[21] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems,
Chapman & Hall, London, 1995.

[22] R. Milner, Communication and Concurrency, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[23] R. Paige, R. Tarjan, Three partition refinement algorithms,
SIAM J. Comput. 16 (6) (1987) 973-989.

[24] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover, Mineola, NY, 1998.

[25] A. Philippou, I. Lee, O. Sokolsky, Weak bisimulation for
probabilistic systems, in: C. Palamidessi (Ed.), Concurrency
Theory, in: Lecture Notes in Comput. Sci., Vol. 1877, Springer,
Berlin, 2000, pp. 334—-349.

[26] M.L. Puterman, Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming, John Wiley & Sons, New York,
1994.

[27] A. Schrijver, Theory of Linear and Integer Programming, John
Wiley & Sons, New York, 1986.

[28] L. Tan, R. Cleaveland, Simulation revisited, in: T. Margaria,
W. Yi (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, in: Lecture Notes in Comput. Sci.,
Vol. 2031, Springer, Berlin, 2002, pp. 480—495.



