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Abstract

We derive the coincidence of Lutz’s constructive dimension and Kol-
mogorov complexity for sets of infinite strings from Levin’s early result on
the existence of an optimal left computable cylindrical semi-measureM via
simple calculations.

1 Introduction

Constructive dimension in relation to algorithmic randomness can be seen in the
same way as Hausdorff dimension theory relative to Lebesgue measure theory.
This is supported by Lutz’s characterisation of Hausdorff dimension in terms of
s-(super-)gales (see [L1], [L2] and [L3]). His investigations led to a theory of
constructive dimension in relation to Algorithmic randomness similar to that of
Hausdorff dimension to Lebesgue measure theory.

As it was observed in Section 6 of [L3] parts of this theory were discovered
earlier by different people and from a different point of view: When one observes
that random sequences are those of maximal Kolmogorov complexity (see [LV,
Sections 3.6 and 4.5.7]), it is only natural to consider levels of Kolmogorov com-
plexity of individual sequences (cf. Eq. (4) and (12) below) as a natural counter-
part to their constructive dimension.

In [Ma] Mayordomo proved that for individual infinite strings Lutz’s [L3] con-
structive dimension coincides with their lower Kolmogorov complexity,κ(ξ ).
The present paper shows that the generalisation of Mayordomo’s result to sets
of infinite sequences is already an immediate consequence of early results in this
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area, for instance, of the existence of the optimal left computable cylindrical semi-
measureM proved already in Zvonkin’s and Levin’s seminal paper [ZL].

Moreover, the derivation presented here makes also obvious that the construc-
tive strong dimension defined in [AH] and upper Kolmogorov complexityκ(ξ )
coincide.

This elucidates the relations between the papers [CH] [R2], [R3], [S1] [S2]
and also [Ta] and the subject matter of [AH], [L1], [L2] and [L3] in a more pre-
cise manner than the mere remark in [L2] that “Moreover, Ryabko, Staiger, and
Cai and Hartmanis have all proven results establishing quantitative relationships
between Hausdorff dimension and Kolmogorov complexity.” As a consequence,
several results derived in the mentioned papers are applicable to constructive di-
mension theory and vice versa. Unfortunately, the corresponding definitions and
results are spread into a bunch of different papers, mixed with other (interesting)
things and obscured with a lot of technical details.

The aim of this note is to set up a starting point that might lead to the under-
standing of the whole picture of constructive dimension and Kolmogorov com-
plexity as one theory by giving a derivation of the coincidence of Lutz’s con-
structive dimension and Kolmogorov complexity for sets of infinite strings from
Levin’s [ZL] early result via simple calculations.

2 Preliminaries

We consider the Cantor space of infinite strings (ω-words),Xω over a finite al-
phabetX of cardinality|X| ≥ 2. By X∗ we denote the set of finite strings (words)
overX.

The Kolmogorov complexityK : X∗ → N of strings assigns to every word
w ∈ X∗ a natural number. The definition and basic properties of Kolmogorov
complexity,K, can be found in the book by Li and Vitányi [LV] or in the papers
[US] or [ZL]. Observe that there are several variants of Kolmogorov complexity
of finite words in use (see [LV, Section 5.5.4] or [US]).

For reasons which will become clear later we prefer the variant of Kolmogorov
complexity based on Levin’s universal lower semi-computable semi-measure. To
this end, we recall that a functionf : X∗ → R is referred to asleft computable
(or lower semi-computable)provided the set{(w,q) | q∈ Q∧q < f (w)} is com-
putably enumerable.

A cylindrical semi-measureon X∗ is a functionµ : X∗ → R+ which satisfies
the inequality

∀w(w∈ X∗ → µ(w)≥∑a∈X µ(wa)). (1)

A cylindrical semi-measureM is called multiplicativelyoptimalfor a classM of



Constructive Dimension equals Kolmogorov Complexity 3

cylindrical semi-measures provided

∀µ(µ ∈M →∃c(c > 0∧∀w(w∈ X∗ → M(w)≥ c·µ(w)))). (2)

In [ZL] it was shown the following.

Lemma 1 There is a left computable cylindrical semi-measureM optimal for the
class of all left computable cylindrical semi-measures.

Moreover, any of the variants of Kolmogorov complexity considered in [LV, Sec-
tion 5.5.4] or [US] satisfies the inequality.

|K(w)− (− logM(w))| ≤ O(log|w|) (3)

Then

κ(ξ ) := liminf
w→ξ

K(w)
|w|

= liminf
w→ξ

− logM(w)
|w|

(4)

is referred to as thelower Kolmogorov complexityof an ω-word ξ ∈ Xω . Here
liminfw→ξ is a shorthand for the limit inferior taken over all (finite) prefixesw of
ξ when the length|w| tends to infinity.

3 Constructive Dimension

Next we are going to introduce the constructive dimension of a setF ⊆ Xω . An
s-supergaleis a functiond : Xω → R+ which satisfies the condition

∀w(w∈ X∗ → d(w)≥ |X|−s ∑
a∈X

d(wa)). (5)

An s-galeis ans-supergale that satisfies Eq. (5) with equality.
Observe that a cylindrical semi-measure is a 0-supergale.
As in [L1], [L2] or [L3] we say that ans-supergaled succeedson anω-word

ξ ∈ Xω if
limsup

w→ξ

d(w) = ∞. (6)

Thesuccess setof ans-supergaled is S∞[d] := {ξ | ξ ∈ Xω ∧d succeeds onξ}.
Left computable supergales were calledconstructive(cf. [L1], [L2], [L3] or
[Ma]). Theconstructive dimension, cdim(F), of a setF ⊆ Xω is

cdim(F) := inf{s | s∈ R+∧∃d(d is a constructives-supergale∧F ⊆ S∞[d])}.

Quite recently Hitchcock [Hi] proved that one can replace the term “supergale”
by “gale” in the above definition. But for gales there is no analogous version of
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Lutz’s [L3] Theorem 3.6 (see Corollary 3 below) yielding a universal family of
optimal supergales. One easily infers that

d(w) := |X|s·|w| ·µ(w) (7)

is ans-supergale ifµ is a cylindrical semi-measure, and vice versa (cf. [L2, Ob-
servation 3.1]). Moreover, we have the following.

Lemma 2 Let s be a computable real number,µ : X∗ → R+ and let d be defined
by Eq. (7). Thenµ is a left computable (semi-)measure iff d is a constructive
s-(super)gale.

Analogously to measures, we call a constructives-supergaled optimal provided
for every constructives-supergaled there is a constantcd such that∀w(w∈ X∗→
d(w)≥ cd ·d(w)). Then the following is obvious.

Corollary 3 ([L3, Theorem 3.6]) For every computable real number s∈ [0,1]
the mappingd(s) : X∗ → R+ defined by

d(s)(w) := |X|s·|w| ·M(w) (8)

is an optimal constructive s-supergale.

Now, using the family of optimal constructives-supergales described in Corol-
lary 3, we can prove our assertion. First we mention a first consequence of our
corollary.

cdim(F) = inf{s | ∀ξ (ξ ∈ F → limsupw→ξ d(s)(w) = ∞)}
= inf{s | ∀ξ (ξ ∈ F → limsupw→ξ d(s)(w) > 0)}. (9)

The latter identity holds, since limsup
w→ξ

d(s)(w) > 0 implies limsup
w→ξ

d(s′)(w) = ∞ for

s′ > s.

3.1 Constructive Dimension equals Kolmogorov Complexity

Next we derive a relation between the condition limsupw→ξ d(s)(w) > 0 and the
lower Kolmogorov complexity ofξ .

Lemma 4 Let ξ ∈ Xω . Then

1. limsupw→ξ d(s)(w) > 0 impliesκ(ξ )≤ s, and

2. κ(ξ ) < s implieslimsupw→ξ d(s)(w) = ∞.
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Proof. Let limsupw→ξ d(s)(w) > 0. Then there is ac> 0 such that|X|s·|w|.M(w)≥
c for infinitely many prefixesw of ξ . Consequently,− logM(w)

|w| ≤ s− log|X| c
|w| in-

finitely often for prefixesw of ξ . Taking liminfw→ξ on both sides yieldsκ(ξ )≤ s.

Let now κ(ξ ) < s and setε := s−κ(ξ )
3 . Then there are infinitely many pre-

fixesw of ξ such that
− log|X|M(w)

|w| < s− ε. All these prefixesw satisfy|X|ε·|w| <
|X|s·|w|M(w), whence limsupw→ξ d(s)(w) = ∞. ❏

Now, Lemma 4 together with Eq. (9) yields our main theorem.

Theorem 5
∀F(F ⊆ Xω → cdim(F) = κ(F))

4 Strong dimension

Recently, in [AH] effective strong dimension cDim was introduced using limit
inferior instead of the limit superior in Eq. (6). It was said that ans-supergaled
strongly succeedson anω-word ξ ∈ Xω if

liminf
w→ξ

d(w) = ∞, (10)

and thestrong success setof ans-supergaled was defined asS∞
str[d] := {ξ | ξ ∈

Xω ∧d strongly succeeds onξ}. Thenstrong constructive dimension, cDim(F),
of a setF ⊆ Xω is

cDim(F) := inf{s | s∈ R+∧∃d(d is a constructives-supergale∧F ⊆ S∞
str[d])} ,

and, utilising Corollary 3, we obtain the respective counterparts to Eq. (9) and
Lemma 4.

cDim(F) = inf{s | ∀ξ (ξ ∈ F → liminfw→ξ d(s)(w) = ∞)}
= inf{s | ∀ξ (ξ ∈ F → liminfw→ξ d(s)(w) > 0)}.

(11)

Substituting, in the proof of Lemma 4, limsup by liminf and simultaneously in-
finitely often by almost all yields a proof of its counterpart.

Lemma 6 Let ξ ∈ Xω . Then

1. liminfw→ξ d(s)(w) > 0 impliesκ(ξ )≤ s, and

2. κ(ξ ) < s impliesliminfw→ξ d(s)(w) = ∞,
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Here, using the notation of [S1], we refer to

κ(ξ ) := limsup
w→ξ

κ(w)
|w|

= limsup
w→ξ

− logM(w)
|w|

(12)

as theupper Kolmogorov complexity,of an ω-word ξ ∈ Xω . If we setκ(F) :=
sup{κ(ξ ) : ξ ∈ F} we obtain likewise the analogue of Theorem 5 for strong con-
structive dimension and upper Kolmogorov complexity.

Theorem 7
∀F(F ⊆ Xω → cDim(F) = κ(F))

5 Conclusion

A mayor achievement was the characterisation of Hausdorff dimension dimH and
packing dimension dimP via s-gales in [L1] and [AH]. (For a good introduction
to fractal dimensions see [Fa].)

dimH(F) = inf{s | s∈ R+∧∃d(d is ans-supergale∧F ⊆ S∞[d])} (13)

dimP(F) = inf{s | s∈ R+∧∃d(d is ans-supergale∧F ⊆ S∞
str[d])} (14)

Theorems 5 and 7 together with the obvious inequalities dimH(F) ≤ cdim(F)
and dimP(F) ≤ cDim(F) thus yield, on the one hand, a new proof of Ryabko’s
inequality (see [R2, Theorem 2] or [S1, Corollary 3.14])

dimH(F)≤ κ(F) , (15)

and, on the other hand,
dimP(F)≤ κ(F) . (16)

Both inequalities show that large (in dimension) sets must contain complex infi-
nite strings. Conditions under which equality holds in Eq. (15) are discussed in
[S1] and [S2]. Moreover, several propositions in the theory of constructive di-
mension can be derived using previous results relating Hausdorff dimension and
Kolmogorov complexity.

As an example we consider the sets DIM<α := {ξ | ξ ∈ Xω ∧ cdim({ξ}) <
α} and DIMα := {ξ | ξ ∈ Xω ∧cdim({ξ}) = α}. Then Theorem 5 together with
results of [R1] and [CH, Theorem 3.8], proves the following assertion.

∀α(0≤ α ≤ 1→ dimH(DIM<α) = dimH(DIMα) = α).

It is interesting to note that for DIM<α := {ξ | ξ ∈ Xω ∧ cDim({ξ}) < α} the
same identity holds even for Hausdorff dimension (see [S1, Eq. (5.6)]).

∀α(0≤ α ≤ 1→ dimH(DIM<α) = α).
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In contrast to this, we have

dimP(DIM0) = 1 and∀α(0 < α ≤ 1→ dimP(DIM<α) = 1). (17)

Proof. It is known from [S3] that DIM0 contains the set of expansions of Liou-
ville numbersL. The set of numbersL is a set of second Baire category inXω

[Ox]. By [Ed, Exercise 1.8.4] it follows dimP(L) = 1. ❏
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