
l

s
is to
itrary

ithms

re
Information Processing Letters 94 (2005) 43–47

www.elsevier.com/locate/ip

A generalization of the 0–1 principle for sorting✩

Sanguthevar Rajasekarana,∗, Sandeep Senb,1

a 257 ITE Building, Department of CSE, University of Connecticut, Storrs, CT 06269, USA
b Department of Computer Science and Engineering, IIT Delhi, New Delhi 1100116, India

Received 17 March 2004; received in revised form 1 September 2004

Available online 16 January 2005

Communicated by S.E. Hambursch

Abstract

The traditionalzero–oneprinciple for sorting networks states that “if a network withn input lines sortsall 2n binary sequence
into nondecreasing order, then it will sort any arbitrary sequence ofn numbers into nondecreasing order”. We generalize th
the situation when a network sortsalmost allbinary sequences and relate it to the behavior of the sorting network on arb
inputs. We also present an application to mesh sorting.
 2004 Elsevier B.V. All rights reserved.

Keywords:Sorting; 0–1 principle; Meshes; Average case perfomance; Analysis of algorithms; Parallel algorithms; Randomized algor

1. Introduction oussorting algorithms [3] and although our results a
to
ary
av-
l as
. It

rants

),

rsity

stated in the context of sorting networks, they are ap-
n-
g
in-

el of
in

ing
ase
his
ble
d

ing
al

re.

erved
We prove a generalization of the 0–1 principle
sorting networks that sort almost all possible bin
sequences. This generalization will be useful in the
erage case analysis of sorting algorithms as wel
in the analysis of randomized sorting algorithms
may be noted that the 0–1 principle extends tooblivi-

✩ This research has been supported in part by the NSF G
CCR-9912395 and ITR-0326155.

* Corresponding author.
E-mail addresses:rajasek@engr.uconn.edu (S. Rajasekaran

ssen@cse.iitd.ernet.in (S. Sen).
1 Part of the research done when the author was visiting Unive

of Connecticut and supported by NSF Grant ITR-0326155.

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.11.013
plicable tooblivioussorting algorithms also. The sta
dard 0–1 principle offers great simplicity in analyzin
sorting algorithms—it suffices to assume that the
put consists of only zeros and ones. The same lev
simplicity is offered by the generalization presented
this paper as well.

As an example application, we consider a sort
algorithm for the mesh and analyze its average c
performance using the generalized 0–1 principle. T
analysis is very simple and the method is applica
to any oblivious sorting algorithms. The generalize
0–1 principle has potential benefits for other sort
algorithms and to the best of our knowledge no form
generalization of the 0–1 principle existed in literatu

.

44 S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47

Chlebus [1] used it in an ad hoc manner without giving
any formalization.

ms
–1

on

r
ach
hem
ent
spe-
d

t-
nd
hm
nge
ork

bly.
s

hen

8],
gth-
n

ex-
e

hen
te
ry
e-

Note that the theorem gives nontrivial bounds only
whenα > 1 − 1/n. In Section 3 we present an appli-

al-
he

of
is
nd

n

e

-

e

ued
[4]

-
lear
can
1.1. Some definitions and our results

For a self-contained exposition, we define the ter
as used in this paper and review a proof of the 0
principle that will be convenient for the presentati
of our result.

A Sorting Networkconsists of binary comparato
modules where each module has two inputs. E
module compares the two inputs and exchanges t
in the output if they are out of order. The subsequ
comparisons do not depend on the outcome of any
cific comparator. An sorting network realizes a sorte
permutation of anyn input configuration.

Although the natural realization of a sorting ne
work is a hardwired circuit with comparators a
wires connecting comparators, any sorting algorit
that consists solely of prespecified compare–excha
operations can be thought of as a sorting netw
and is referred to as anoblivious sorting algorithm.
In future, these terms will be used interchangea
Note that many of the common sorting algorithm
like mergesort, quicksort, heapsort are notoblivious
whereas bubblesort isoblivious.

The traditionalzero–oneprinciple for sorting net-
works states that “if a network withn input lines sorts
all 2n binary sequences into nondecreasing order, t
it will sort any arbitrary sequence ofn numbers into
nondecreasing order”. (The converse is trivial.) In [
the author shows that this result cannot be stren
ened, i.e., no proper subset of the 2n sequences ca
have this property.

Bubblesort [4] and shearsort [9] are two classic
amples of the applications of the 0–1 principle. W
generalize the zero–one principle to situations w
a network sortsalmost allbinary sequences and rela
it to the behavior of the sorting network on arbitra
inputs. More specifically, we prove the following th
orem in Section 2.

Theorem 1.1 (Generalized 0–1 principle). Let Sk de-
note the set of lengthn binary strings with exactlyk 0’s
0 � k � n. Then, if a sorting circuit withn input lines
sorts at leastα fraction ofSk for all k, 0� k � n, then
the circuit sorts at least(1 − (1 − α) · n) fraction of
the input permutations ofn arbitrary numbers.
cation of this result to sorting on ann × n mesh. The
algorithm attains the same (optimal) bound as the
gorithms of Chlebus [1] and Gu and Gu [2], but t
analysis is relatively simpler and cleaner because
the generalized 0–1 principle. It is very likely that th
theorem will have further applications to design a
analysis of sorting algorithms.

2. Proof of the main result

Definition. A string s ∈ {0,1}n is a k-string if it has
exactlyk 0’s , 0� k � n. The set of allk-strings for a
fixed k will be denoted bySk .

Clearly theSks are pairwise disjoint and their unio
consists of all the 2n lengthn strings over{0,1}.

Let A(t),B(t) be two totally orderedmultisetsof n

elements each. A mappingf :A(t) → B(t) is mono-
toneif for all x, y ∈ A(t) andx � y, f (x) � f (y).

Observation. If f :A(t) → B(t) is monotone then th
inverse off is also monotone.

Given In = {1,2, . . . , n}, the only monotone func
tion betweenIn and the multiset{0k,1n−k} is given by
fk(j) = 0 for j � k and 1 otherwise. We denote th
extension off to a sequencea(t) = (a1, a2, . . . , at) by
f (t)(a(t)) = (f (a1), f (a2), . . . , f (at)). The correct-
ness of the standard zero–one principle is often arg
based on the following elegant result (see Knuth
for a proof).

Lemma 2.1. For anyn input sorting circuitC(n) and
a monotone functionf ,

f (n)
(
C(n)(a(n))

) = C(n)
(
f (n)(a(n))

)
.

Remark. For the sake of simplicity, we will avoid us
ing superscripts to denote sequences when it is c
from the context. For instance the previous lemma
be restated asf (C(a)) = C(f (a)).

From our previous observationf −1
k is also mono-

tone. From the previous lemma it follows that

S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47 45

Lemma 2.2. If a sorting networkC correctly sorts
fk(σ) for all k, for an input permutationσ , then it

t

his
aph

by

to
-

es

d-
ctly

st
n

er
et-

he
ol-
er-

e
s

f 0

ap

Remark. It is not clear if we can eliminate the mul-
tiplicative factor n, namely, are the unsorted per-

ll
an

in-

put
.1.

n-
-

this
al-

t not
re-

(see
nce

n that
one

s
v-

0–1
go-

hes

at
eas
ost
is

red
er-

any
for-
correctly sortsσ .

Proof (sketch). Supposei and j (j > i) are inter-
changed inσ . Consider the binary stringfi(σ). Since
fi(C(σ)) = C(fi(σ)), the circuit C does not sor
fi(σ) correctly leading to a contradiction.�

We now turn our attention towards generalizing t
argument. For convenience, we define a bipartite gr
Gk with n! elements in one set and|Sk| on the other
(for eachk). The edges of this graph are defined
the mapping between permutations ofIn and strings
a ∈ Sk such thatai = fk(Π(i)), 1 � i � n, for a per-
mutationΠ . HereΠ(i) denotes the element ofIn that
is mapped toi. Note that a single permutation maps
exactly one string inSk , so by simple counting argu
ments, it follows that

Lemma 2.3. Each set in the bipartite graphGk has
vertices with equal degree. In particular, the vertic
representingSk have degrees equal ton!

|Sk | .

In graph Gk we mark all the nodes correspon
ing to the permutations that are not sorted corre
and likewise we mark the nodes ofSk that are not
sorted correctly. For a fixedk, if the circuit does not
sort βk|Sk| (βk < 0) strings it does not sort at mo
βk|Sk| · n!

|Sk | permutations. Therefore the total fractio
of permutations (over all values of 1� k � n) that
may not get sorted correctly is bounded byβ ·n where
β = maxki=1 βk . Note that we do not have to consid
k = 0 as there is only one trivial sorted sequence. S
ting α = 1− β completes the proof of Theorem 1.1.

An interesting question is if we can improve t
bound, namely, the fraction of sorted inputs. The f
lowing lemma shows that the fraction of unsorted p
mutations is at leastβ.

Lemma 2.4. If a sorting circuit does not sort som
a ∈ Sk then it does not sort(any of the permutation
corresponding to) f −1

k (a).

This can be seen as follows. At least one pair o
and 1 ina must be swapped inC(a), say, in positionsi
andj . The corresponding elements in the inverse m
must also have been swapped from Lemma 2.1.
mutations disjoint corresponding to the distinctSks?
Also note that the number of strings in the setSp =
⋃0.51n

i=0.49n Si form an overwhelming fraction of a
length n binary strings. Even if one can design
ad hoc sorting algorithm that works correctly forSp

(and consequently for a large fraction of all 0–1
puts), but that sorts only a negligible fraction ofSlogn

(for example), the algorithm does not sort most in
permutations. See the remark following Theorem 3

3. Sorting in an expected 2n + o(n) steps on an
n × n mesh

One of the most challenging problems in the co
text of sorting numbers on ann×n mesh with one ele
ment per processor is to sort them in time 2n (plus pos-
sibly lower order terms) which is thedistance bound
on the mesh (see [7,10] for detailed surveys). In
problem, in each step, neighboring processors are
lowed to communicate and exchange elements bu
store more than one element. If we relax the storage
quirement, then this time bound can be achieved
[7,10]). Note that even on the average, the dista
bound is 2n − o(n). By considering sufficiently large
sub-meshes on the opposite corners, it can be see
at least one of these elements must travel from
sub-mesh to the other with high probability.

A simple modification of the algorithm of [6] give
us a 2n + o(n) steps algorithm for sorting on the a
erage and the analysis is based on the generalized
principle. For completeness, we describe their al
rithm briefly. In the remaining description, byu × v

sub-meshes we refer to all the aligned sub-mes
consisting of processors indexed by(x, y) whereiu �
x � i(u + 1) − 1, jv � y � j (v + 1) − 1 (for some
integersi and j). A row is calleddirty if it consists
of both 0’s and 1’s, otherwise it isclean. The sig-
nificance of this definition stems from the fact th
an unsorted mesh contains many dirty rows wher
a sorted mesh (in row major order) contains at m
one dirty row. For our algorithm, the sorting order
defined in terms of blocks that are relatively orde
among themselves in a row-major snake-like ord
ing. The elements within a block can be ordered in
fashion since it does not affect the asymptotic per

46 S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47

trates

.

Fig. 1. (a) illustratesu × v sized blocked snake-like row-major ordering. (b) illustrates distribution of each block by cyclic shifts. (c) illus
the transformation of slices into blocks in Phase 4. Notice how consecutive slices remain consecutive.

mance and the notion of dirty row is extended to dirty See Fig. 1 for an illustration of some of the steps

sub-mesh in the obvious manner.

r

ed
s

ive
in
ry
ty
r.
ed
ce
n–

Each of Phases 2, 3, and 4 can be implemented in

-
ore

ecu-
rty
one

uous

e
the
r
ax-

we
of

an
d

Algorithm MSS [6].

1. Sort all n3/4 × n3/4 sub-meshes in a row-majo
ordering.

2. Distribute each sub-mesh evenly using block
rotations, i.e., theith row of every sub-mesh i
shifted right byi · n3/4 positions.

3. Sort the columns.
4. Transform everyn3/4 × n horizontal slice into

n1/4 n3/4×n3/4 sub-meshes such that consecut
n1/2 × n sub-meshes remain consecutive (with
a slice). The row ordering is alternated in eve
slice so that after transformation, the two dir
sub-meshes are in a snake-like row-major orde

5. Sort pairs of every consecutive (in the block
snake-like row-major order) sub-meshes—on
taking every odd–even pair and then taking eve
odd pair.
n time steps and the others take o(n) time resulting
in 3n + o(n) time overall (for more details of individ
ual phases see [6]). If we examine each phase m
closely, after Phase 3, we have at most two (cons
tive) dirtyn1/2×n sub-meshes. These come from di
rows contributed by each sorted sub-mesh (at most
per sub-mesh) after Phase 2 that become contig√

n dirty rows following Phase 3.
We modify the above algorithm by eliminating th

first two phases, i.e., start with column sort. Then
size of the dirtyband (contiguous dirty rows) afte
sorting the columns is the difference between the m
imum and the minimum number of 0’s among then

columns. Without loss of generality, assume that
have at least�(n2) 0’s—then the expected number
0’s in each column is�(n). From Chernoff [5] bounds
it follows that with probability exceeding 1− 1

nα ,
the deviation of the number of 0’s is no more th
θ(

√
αn logn). Therefore, the size of the dirty ban

S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47 47

is
√

cαn logn × n for some constantc after sorting
columns. By modifying the sizes of the transformed

d in
otal

-
ctly

the
in
of

ral-
en

ted,
o

ber
of
e
d.

This ad hoc approach will be an incorrect application
of Theorem 1.1.

ver-
dis-

ting
trib.

i-
San

ro-

m-

on
ymp.

net-
21

8)

-di-
In-

PI-
sub-meshes to(n
√

cαn logn)
1/2 × (n

√
cαn logn)

1/2,
in Phase 4, the 0–1 sequence is correctly ordere
a blocked snake-like indexing after Phase 5. The t
number of steps is 2n + o(n).

Theorem 3.1. The(modified) algorithm sorts1 − 1
nα

fraction of all inputs correctly in2n + o(n) steps for
any fixedα > 0. With more careful choice of para
meters for the sub-mesh sizes the fraction of corre
sorted inputs can be increased to1 − 1/2nε

for some
ε > 0.

Proof The success of this approach depends on
size of the dirty band after the column sort which
turn depends on the discrepancy of the distribution
0’s and 1’s among the different columns. The gene
ized 0–1 principle gives a direct connection betwe
the discrepancy and the fraction of the inputs sor
viz., it will sort correctly if the discrepancy is not to
high. �
Remark. Most 0–1 sequences have balanced num
of 0’s and 1’s and hence we know the rough location
the dirty band following the column sort. Therefore w
can clean it by restricting sorting to within the ban
References

[1] B.S. Chlebus, Mesh sorting and selection optimal on the a
age, Comput. and Inform. (Special issue on parallel and
tributed computing) 16 (2) (1997).

[2] Q.P. Gu, J. Gu, Algorithms and average time bounds of sor
on a mesh-connected computer, IEEE Trans. Parallel Dis
Syst. 5 (3) (1994) 308–315.

[3] T. Leighton, Introduction to Parallel Algorithms and Arch
tectures: Arrays, Trees, Hypercubes, Morgan Kaufmann,
Mateo, CA, 1992.

[4] D.E. Knuth, Sorting and Searching, The Art of Computer P
gramming, vol. 3, Addison–Wesley, Reading, MA, 1973.

[5] R. Motwani, P. Raghavan, Randomized Algorithms, Ca
bridge Univ. Press, New York, 1995.

[6] Y. Ma, S. Sen, D. Scherson, The distance bound for sorting
mesh connected processor arrays is tight, in: Proc. 27th S
on Foundations of Computer Science, 1986, pp. 255–263.

[7] S. Rajasekaran, Sorting and selection on interconnection
works, DIMACS Ser. Discrete Math. Theor. Comput. Sci.
(1995) 275–296.

[8] M.D. Rice, Continuous algorithms, Topology Appl. 85 (199
299–318.

[9] I.D. Scherson, S. Sen, A. Shamir, Shear sort: A true two
mensional sorting technique for VLSI networks, in: Proc.
ternat. Conf. on Parallel Processing, 1986, pp. 903–908.

[10] J.F. Sibeyn, Overview of mesh results, Technical Report M
I-95-1-018 MPI, Saarbrücken, 1995.

