
Improved Deterministic Approximation Algorithms for Max TSP

Zhi-Zhong Chen ∗ Yuusuke Okamoto † Lusheng Wang ‡

Abstract

We present an O(n3)-time approximation algorithm for the maximum traveling salesman
problem whose approximation ratio is asymptotically 61

81 , where n is the number of vertices in the
input complete edge-weighted (undirected) graph. We also present an O(n3)-time approximation
algorithm for the metric case of the problem whose approximation ratio is asymptotically 17

20 .
Both algorithms improve on the previous bests.

1 Introduction

The maximum traveling salesman problem (Max TSP) is to compute a maximum-weight Hamil-
tonian circuit (called a tour) in a given complete edge-weighted (undirected) graph. The problem
is known to be Max-SNP-hard [1] and there have been a number of approximation algorithms
known for it [4, 5, 10]. In 1984, Serdyukov [10] gave an O(n3)-time approximation algorithm for
Max TSP that achieves an approximation ratio of 3

4 . Serdyukov’s algorithm is very simple and
elegant, and it tempts one to ask if a better approximation ratio can be achieved for Max TSP
by a polynomial-time approximation algorithm. However, previous to our work, there was no (de-
terministic) polynomial-time algorithm with an approximation ratio better than 3

4 . Interestingly,
Hassin and Rubinstein [5] showed that with the help of randomization, a better approximation ratio
for Max TSP can be achieved. More precisely, they gave a randomized O(n3)-time approximation
algorithm (H&R-algorithm) for Max TSP whose expected approximation ratio is asymptotically 25

33 .
The expected approximation ratio 25

33 of H&R-algorithm does not guarantee that with (reasonably)
high probability (say, a constant), the weight of its output tour is at least 25

33 times the optimal.
So, it is much more desirable to have a (deterministic) approximation algorithm for Max TSP that
achieves an approximation ratio better than 3

4 (and runs at least as fast as Serdyukov’s algorithm).
In this paper, we give the first such (deterministic) approximation algorithm for Max TSP; its
approximation ratio is asymptotically 61

81 and its running time is O(n3). While this improvement
is small (as Hassin and Rubinstein said about their algorithm), it at least demonstrates that the
ratio of 3

4 can be improved and further research along this line is encouraged. Our algorithm is
basically a nontrivial derandomization of H&R-algorithm.

We note in passing that Chen and Wang [3] have recently improved H&R-algorithm to a ran-
domized O(n3)-time approximation algorithm whose expected approximation ratio is asymptoti-
cally 251

331 . Their new algorithm is complicated and even more difficult to derandomize.

∗Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:

chen@r.dendai.ac.jp. Part of work done during a visit at City University of Hong Kong.
†Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
‡Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.

1

The metric case of Max TSP has also been considered in the literature. In this case, the
weights on the edges of the input graph obey the triangle inequality. What is known for this case
is very similar to that for Max TSP. In 1985, Kostochka and Serdyukov [8] gave an O(n3)-time
approximation algorithm for metric Max TSP that achieves an approximation ratio of 5

6 . Their
algorithm is very simple and elegant. Tempted by improving the ratio 5

6 , Hassin and Rubinstein [6]
gave a randomized O(n3)-time approximation algorithm (H&R2-algorithm) for metric Max TSP
whose expected approximation ratio is asymptotically 7

8 . In this paper, by nontrivially derandom-
izing H&R2-algorithm, we give a (deterministic) O(n3)-time approximation algorithm for metric
Max TSP whose approximation ratio is asymptotically 17

20 , an improvement over the previous best
ratio (namely, 5

6). Our algorithm also has the advantage of being easy to parallelize.

2 Basic Definitions

Throughout this paper, a graph means a simple undirected graph (i.e., it has neither parallel edges
nor self-loops), while a multigraph may have parallel edges but no self-loops.

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G by
E(G). The degree of a vertex v in G is the number of edges incident to v in G. A cycle in G is a
connected subgraph of G in which each vertex is of degree 2. A path in G is either a single vertex
of G or a connected subgraph of G in which exactly two vertices are of degree 1 and the others are
of degree 2. The length of a cycle or path C is the number of edges in C. A tour (also called a
Hamiltonian cycle) of G is a cycle C of G with V (C) = V (G). A cycle cover of G is a subgraph
H of G with V (H) = V (G) in which each vertex is of degree 2. A subtour of G is a subgraph H

of G in which each connected component is a path. Two edges of G are adjacent if they share an
endpoint. A matching of G is a (possibly empty) set of pairwise nonadjacent edges of G. A perfect
matching of G is a matching M of G such that each vertex of G is an endpoint of an edge in M .
For a subset F of E(G), G− F denotes the graph obtained from G by deleting the edges in F .

Throughout the rest of the paper, fix an instance (G,w) of Max TSP, where G is a complete
(undirected) graph and w is a function mapping each edge e of G to a nonnegative real number
w(e). For a subset F of E(G), w(F) denotes

∑
e∈F w(e). The weight of a subgraph H of G is

w(H) = w(E(H)). Our goal is to compute a tour of large weight in G. We assume that n = |V (G)|
is odd; the case where n is even is simpler. For a random event A, Pr[A] denotes the probability
that A occurs. For a random variable X, E [X] denotes the expected value of X.

3 Algorithm for Max TSP

This section is divided into three subsections. In Section 3.1, we sketch H&R-algorithm. In Sec-
tion 3.2, we describe our derandomization of H&R-algoirthm and analyze its approximation ratio.
In Section 3.3, we give the details that are omitted in Section 3.2.

3.1 Sketch of H&R-algorithm

H&R-algorithm starts by computing a maximum-weight cycle cover C. If C is a tour of G, then
we are done. Throughout the rest of this section, we assume that C is not a tour of G. Suppose
that T is a maximum-weight tour of G. Let Tint denote the set of all edges {u, v} of T such that

2

some cycle C in C contains both u and v. Let Text denote the set of edges in T but not in Tint. Let
α = w(Tint)/w(T).

H&R-algorithm then computes three tours T1, T2, T3 of G and outputs the one of the largest
weight. Based on an idea in [4], T1 is computed by modifying the cycles in C as follows. Fix a
parameter ε > 0. For each cycle C in C, if |E(C)| > ε−1, then remove the minimum-weight edge;
otherwise, replace C by a maximum-weight path P in G with V (P) = V (C). Then, C becomes
a subtour and we can extend it to a tour T1 in an arbitrary way. As observed by Hassin and
Rubinstein [5], we have:

Fact 3.1 w(T1) ≥ (1− ε)w(Tint) = (1− ε)αw(T).

When w(Text) is large, w(Tint) is small and w(T1) may be small, too. The two tours T2 and T3

together are aimed at the case where w(Text) is large. By modifying Serdyukov’s algorithm, T2 and
T3 are computed as shown in Figure 1:

1. Compute a maximum-weight matching M in G.
2. Compute a maximum-weight matching M ′ in a graph H, where V (H) = V (G) and E(H)

consists of those {u, v} ∈ E(G) such that u and v belong to different cycles in C.
3. Let C1, . . . , Cr be an arbitrary ordering of the cycles in C.
4. Initialize a set N to be empty.
5. For i = 1, 2, . . . , r (in this order), perform the following two steps:

(a) Compute two disjoint nonempty matchings A1 and A2 in Ci such that each vertex
of Ci is incident to an edge in A1 ∪ A2 and both graphs (V (G),M ∪ N ∪ A1) and
(V (G),M ∪N ∪A2) are subtours of G.

(b) Select h ∈ {1, 2} uniformly at random, and add the edges in Ah to N .

6. Complete the graph (V (G),M ∪N) to a tour T2 of G by adding some edges of G.
7. Let M ′′ be the set of all edges {u, v} ∈M ′ such that both u and v are of degree at most 1 in
C −N . Let G′′ be the graph obtained from C −N by adding the edges in M ′′. (Comment:
For each edge {u, v} ∈M ′, Pr[{u, v} ∈M ′′] ≥ 1

4 . So, E [w(M ′′)] ≥ w(M ′)/4. Moreover, G′′

is a collection of vertex-disjoint cycles and paths; each cycle in G′′ must contain at least
two edges in M ′′.)

8. For each cycle C in G′′, select one edge in E(C) ∩M ′′ uniformly at random and delete it
from G′′. (Comment: After this step, Pr[{u, v} ∈ E(G′′)] ≥ 1

8 for each edge {u, v} ∈ M ′,
and hence E [w(M ′ ∩ E(G′′))] ≥ w(M ′)/8.)

9. Complete G′′ to a tour T3 of G by adding some edges of G.

Figure 1. Computation of tours T2 and T3 in H&R-algorithm.

3.2 Derandomization of H&R-algorithm

Only Steps 5 and 8 in Figure 1 need randomness. Derandomizing Step 8 is easy. However, deran-
domizing Step 5 is hard, because it may need Ω(n) random choices which heavily depend on each
other. We next show that Step 5 can be derandomized at the cost of making the approximation
ratio slightly worse.

For clarity, we transform each edge {u, v} ∈M ′ to an ordered pair (u, v), where the cycle Ci in
C with u ∈ V (Ci) and the cycle Cj in C with v ∈ V (Cj) satisfy i > j. In detail, to derandomize
Step 5, we replace Steps 4 and 5 in Figure 1 by the four steps in Figure 2.

3

4′. For each h ∈ {1, . . . , 5}, initialize a set Nh to be empty.
5′. For i = 1, 2, . . . , r (in this order), process Ci by performing the following two steps:

(a′) Compute five subsets A1, . . . , A5 of E(Ci)−M satisfying the following four conditions:

(C1) For each h ∈ {1, . . . , 5}, Ah 6= ∅.
(C2) For each h ∈ {1, . . . , 5}, Ah∩(M ∪Nh) = ∅ and the graph (V (G),M ∪Nh∪Ah)

is a subtour of G.
(C3) Each vertex of Ci is an endpoint of at least one edge in

⋃
1≤j≤5Aj .

(C4) w(Si) ≥ w(M ′i)/2, where M ′i is the set of all edges (u, v) ∈M ′ with u ∈ V (Ci),
and Si is the set of all edges (u, v) ∈M ′i such that for at least one h ∈ {1, . . . , 5},
Nh contains an edge incident to v and Ah contains an edge incident to u.

(b′) For each h ∈ {1, . . . , 5}, add the edges in Ah to Nh.

6′. For each h ∈ {1, . . . , 5}, let M ′′h be the set of all edges (u, v) ∈ M ′ such that Nh contains
an edge incident to u and another edge incident to v. (Comment: By Condition (C4),
w(
⋃

1≤h≤5M
′′
h) ≥ w(M ′)/2.)

7′. Let N be the Nh with h ∈ {1, . . . , 5} such that w(M ′′h) is the maximum among
w(M ′′1), . . . , w(M ′′5). (Comment: By the comment on Step 6′, w(M ′′h) ≥ w(M ′)/10.)

Figure 2. Modifying Steps 4 and 5 in Figure 1.

The details of computing A1, . . . , A5 will be given in Section 3.3. Since we only add the edges of
Ah to Nh while processing Ci in Step 5′, we indeed maintain the following invariant during Step 5′:

Invariant: At the begining of processing each Ci (1 ≤ i ≤ r) in Step 5′, we have that for each
h ∈ {1, . . . , 5}, Nh∩M = ∅, Nh ⊆

⋃
1≤j≤i−1E(Cj), Nh∩E(Cj) 6= ∅ for each j ∈ {1, . . . , i−1},

and the graph (V (G),M ∪Nh) is a subtour of G.

Because of the above invariant, the following lemma is obvious:

Lemma 3.2 After Step 5′, M ∩ Nh = ∅ and (V (G),M ∪ Nh) is a subtour of G for each h ∈
{1, . . . , 5}, and Nh contains at least one edge of Ci for each h ∈ {1, . . . , 5} and for each cycle Ci in
C.

After Steps 4 and 5 in Figure 1 are replaced by the four steps in Figure 2, the first two assertions
in the comment on Step 7 in Figure 1 no longer hold and should be replaced by the assertion that
w(M ′′) ≥ w(M ′)/10 (see the comment on Step 7′ in Figure 2). This is why our derandomization
of Step 5 makes the approximation ratio slightly worse.

Derandomizing Step 8 in Figure 1 is easy; it suffices to replace it by the two steps in Figure 3:

8′. Compute two disjoint subsets D1 and D2 of M ′′ such that D1 contains exactly one edge
from each cycle in G′′ and so does D2.

9′. If w(D1) ≤ w(D2), then remove the edges in D1 from G′′; otherwise, remove the edges in
D2 from G′′.

Figure 3. Modifying Step 8 in Figure 1.

In the next lemma, we analyze the approximation ratio of our deterministic algorithm. Recall
T , Tint, Text, and α (they are defined at the beginning of this section).

4

Lemma 3.3 Let δw(T) be the total weight of edges in N (cf. Step 7′ in Figure 2). Then, w(T2) ≥
(0.5− 1

2n +δ)w(T), and either w(T3) ≥ ((1−δ)+ 1
40(1−α))w(T) or w(T3) ≥ (1−δ+ 1

40−
1

40n)w(T).

Proof. Since T2 contains the original M (a maximum-weight matching of G) as a subset and
also contains the edges in N , it is clear that w(T2) ≥ (0.5− 1

2n + δ)w(T).
Immediately after Step 7 in Figure 1, w(G′′) ≥ (1 − δ)w(T) + 1

10w(M ′) because w(M ′′) ≥
w(M ′)/10 (see the comment on Step 7′ in Figure 2). So, immediately after Step 9′ in Figure 3,
w(G′′) ≥ (1 − δ)w(T) + 1

20w(M ′). Obviously, if α > 0, then w(M ′) ≥ 1
2w(Text) = 1

2(1 − α)w(T);
otherwise, w(M ′) ≥ (1

2−
1

2n)w(Text) = (1
2−

1
2n)w(T). Thus, either w(T3) ≥ ((1−δ)+ 1

40(1−α))w(T)
or w(T3) ≥ (1− δ + 1

40 −
1

40n)w(T). 2

Now, combining Fact 3.1 and Lemma 3.3 and noting that the running time of the algorithm
is dominated by the O(n3)-time needed for computing a maximum-weight cycle cover and two
maximum-weight matchings, we have:

Theorem 3.4 For any fixed ε > 0, there is an O(n3)-time approximation algorithm for Max TSP
achieving an approximation ratio of (61− 20

n) · 1−ε
81−80ε .

3.3 Computation of A1, . . . , A5

We now detail the computation of A1, . . . , A5. We need some definitions and facts first. Throughout
this section, for each integer i ∈ {1, . . . , r}, the phrase “at time i” means the time at which the
cycle Ci−1 has just been processed (in Step 5′) and the processing of Ci (in Step 5′) is about to
begin.

Fix an i ∈ {1, . . . , r} and an h ∈ {1, . . . , 5}. An Nh-dependent vertex at time i is a vertex v of
Ci such that at time i, Nh contains an edge {x, y} with (v, x) ∈M ′ or (v, y) ∈M ′. An Nh-available
set at time i is a subset Z of E(Ci) such that Z ∩ (M ∪Nh) = ∅ and the graph (V (G),M ∪Nh ∪Z)
is a subtour of G. A maximal Nh-available set at time i is an Nh-available set Z at time i such
that for each e ∈ E(Ci)− Z, Z ∪ {e} is not Nh-available at time i.

Lemma 3.5 Let Z be an Nh-available set at time i. Suppose that e1 = {u1, u2} and e2 = {u2, u3}
are two adjacent edges in Ci such that no edge in Z is incident to u1, u2, or u3. Then, Z ∪ {e1}
or Z ∪ {e2} is an Nh-available set at time i.

Proof. Since Z contains no edge incident to u1, u2, or u3, the degree of each uj ∈ {u1, u2, u3} in
the subtour (V (G),M∪Nh∪Z) is at most 1. So, if Z∪{e1} is not an Nh-available set at time i, then
u1 and u2 belong to the same connected component (a path) of the subtour (V (G),M ∪Nh ∪ Z)
and hence u2 and u3 belong to different connected components (paths) of the subtour, implying
that Z ∪ {e2} is an Nh-available set at time i. 2

The following corollary is immediate from Lemma 3.5:

Corollary 3.6 If Z is a maximal Nh-available set at time i, then each connected component of
Ci − Z is a path of length at most 3.

Now, we are ready to describe how to compute A1, . . . , A5 when processing Ci. In detail, for
each h ∈ {1, . . . , 5}, Ah is computed by performing the three steps in Figure 4 in turn.

5

(i) Compute two nonempty subsets Xh and Yh of E(Ci) −M such that (1) both Xh and Yh
are Nh-available sets at time i and (2) each vertex of Ci is an endpoint of at least one edge
in Xh ∪ Yh. (Comment: By Lemma 1 in [5], this step can be done in linear time.)

(ii) Let ah (respectively, bh) be the total weight of edges (u, v) ∈ M ′ such that u is an Nh-
dependent vertex at time i and Xh (respectively, Yh) contains an edge incident to u. If
ah ≥ bh, let Zh = Xh; otherwise, let Zh = Yh.

(iii) Extend Zh to a maximal Nh-available set Ah at time i.

Figure 4. Computation of Ah.

A Ci-settled edge is an edge (u, v) ∈ M ′ such that u is a vertex of Ci (and so v is a vertex
of some Cj with j < i). The following lemma is immediate from Condition (C3) and the above
computation of A1, . . . , A5, and ensures Condition (C4).

Lemma 3.7 For each h ∈ {1, . . . , 5}, we say that a Ci-settled edge e = (u, v) is Ah-satisfiable at
time i if u is an Nh-dependent vertex at time i and Ah contains an edge of Ci incident to u. We
say that a Ci-settled edge e is satisfiable at time i if there is at least one h ∈ {1, . . . , 5} such that
e is Ah-satisfiable at time i. Let M ′i be the set of all Ci-settled edges, and let Si be the set of all
satisfiable Ci-settled edges at time i. Then, w(Si) ≥ w(M ′i)/2.

Unfortunately, the sets A1, . . . , A5 computed as in Figure 4 may not satisfy Condition (C3). In
other words, although the connected components of Ci− (

⋃
1≤j≤5Aj) are paths of length at most 3

by Corollary 3.6, some of them are indeed of length 2 or 3. If this bad case happens, we need to
modify A1, . . . , A5 so that Conditions (C1) through (C4) and Lemma 3.7 hold. The modification
of A1, . . . , A5 is done by considering three cases as follows:

Case 1: Some connected component P of Ci − (
⋃

1≤j≤5Aj) is a path of length 3. Let the
edges of P be e1 = {u1, u2}, e2 = {u2, u3}, and e3 = {u3, u4}. Let e0 = {u0, u1} be the edge in
E(Ci) − {e1} incident to u1. By Corollary 3.6, e0 ∈ ∩1≤j≤5Aj . For each uj ∈ {u0, u1}, if there
is an h ∈ {1, . . . , 5} such that uj is an endpoint of an Ah-satisfiable Ci-settled edge at time i,
then let f(uj) be such an h; otherwise, let f(uj) be an arbitrary integer in {1, . . . , 5}. Possibly,
f(u0) = f(u1). In any case, let h be an arbitrary integer in {1, . . . , 5} − {f(u0), f(u1)}. Then, by
our choice of f(u0) and f(u1), the deletion of e0 from Ah does not cause any originally satisfiable
Ci-settled edge at time i to be no longer satisfiable at time i. Moreover, by Lemma 3.5, there is
an ek ∈ {e1, e2} such that (Ah − {e0}) ∪ {ek} is an Nh-available set at time i. So, we delete e0

from Ah, and then add ek and zero or more other edges to Ah so that Ah becomes a maximal
Nh-available set at time i. Clearly, after this modification of Ah, Ci − (

⋃
1≤j≤5Aj) has fewer edges

than before. Therefore, we can repeat this kind of modification until no connected component of
Ci − (

⋃
1≤j≤5Aj) is a path of length 3.

Case 2: Some connected component P of Ci−(
⋃

1≤j≤5Aj) is a path of length 2 and |E(Ci)| = 3.
Let the edges of P be e1 = {u1, u2} and e2 = {u2, u3}. Let e0 = {u0, u1} be the edge in E(Ci)−{e1}
incident to u1. Then, as in Case 1, we can find an integer h ∈ {1, . . . , 5} such that the deletion
of e0 from Ah does not cause any originally satisfiable Ci-settled edge at time i to be no longer
satisfiable at time i. Moreover, by Lemma 3.5, there is an ek ∈ {e1, e2} such that (Ah−{e0})∪{ek}
is an Nh-available set at time i. So, we can modify Ah as in Case 1.

Case 3: Some connected component P of Ci−(
⋃

1≤j≤5Aj) is a path of length 2 and |E(Ci)| ≥ 4.
This case is the bottleneck case. Let the edges of P be e1 = {u1, u2} and e2 = {u2, u3}. Let the

6

two edges in E(Ci)− E(P) incident to an endpoint of P be e0 = {u0, u1} and e3 = {u3, u4}. Note
that if |E(Ci)| = 4, then u0 = u4. By Corollary 3.6, {e0, e3} ∩ Ah 6= ∅ for each h ∈ {1, . . . , 5}.
For each uj ∈ {u0, u1, u3, u4}, if there is an h ∈ {1, . . . , 5} such that uj is an endpoint of an Ah-
satisfiable Ci-settled edge at time i, then let f(uj) be such an h; otherwise, let f(uj) be an arbitrary
integer in {1, . . . , 5}. Let h be an arbitrary integer in {1, . . . , 5} − {f(u0), f(u1), f(u3), f(u4)}.
Obviously, even if we delete both e0 and e3 from Ah, every satisfiable Ci-settled edge at time i
remains to be satisfiable at time i. Moreover, by Lemma 3.5, there is an ek ∈ {e1, e2} such that
(Ah − {e0, e3}) ∪ {ek} is an Nh-available set at time i. So, we delete both e0 and e3 from Ah, and
then add ek and zero or more other edges to Ah so that Ah becomes a maximal Nh-available set at
time i. Clearly, after this modification of Ah, Ci − (

⋃
1≤j≤5Aj) has fewer edges than before.

So, as long as some connected component of Ci− (
⋃

1≤j≤5Aj) is a path of length 3, we keep ap-
plying the modification in Case 1 to A1, . . . , A5. Once no connected component of Ci−(

⋃
1≤j≤5Aj)

is a path of length 3, we keep applying the modification in Case 2 or 3 to A1, . . . , A5 until no
connected component of Ci− (

⋃
1≤j≤5Aj) is a path of length 2. After this, each connected compo-

nent of Ci − (
⋃

1≤j≤5Aj) is a path of length 0 or 1, and hence A1, . . . , A5 satisfy Conditions (C1)
through (C4) and Lemma 3.7 hold.

4 Algorithm for Metric Max TSP

This section is divided into three subsections. In Section 4.1, we sketch H&R2-algorithm. In
Section 4.2, we describe our derandomization of H&R2-algoirthm and analyze its approximation
ratio. In Section 4.3, we give the details that are omitted in Section 4.2.

Let (G,w) be as in Section 2. Here, w satisfies the following triangle inequality: For every three
vertices x, y, z of G, w(x, y) ≤ w(x, z) + w(z, y). Then, we have the following useful fact:

Fact 4.1 Suppose that P1, . . . , Pt are vertex-disjoint paths in G each containing at least one edge.
For each 1 ≤ i ≤ t, let ui and vi be the endpoints of Pi. Then, we can use some edges of G to connect
P1, . . . , Pt into a single cycle C in linear time such that w(C) ≥

∑t
i=1w(Pi) + 1

2

∑t
i=1w({ui, vi}).

Proof. The fact is obvious if t ≤ 2. So, assume t ≥ 3. Define four disjoint sets of edges E1, . . . , E4

as follows. E1 consists of {u1, vt} and all {vi, ui+1} with 1 ≤ i ≤ t− 1. E2 consists of {v1, ut} and
all {ui, vi+1} with 1 ≤ i ≤ t−1. If t is even, E3 consists of {v1, vt}, all {u2i−1, u2i} with 1 ≤ i ≤ t/2,
and all {v2i, v2i+1} with 1 ≤ i ≤ (t − 2)/2; otherwise, E3 consists of {v1, ut}, all {u2i−1, u2i} with
1 ≤ i ≤ (t− 1)/2, and all {v2i, v2i+1} with 1 ≤ i ≤ (t− 1)/2. If t is even, E4 consists of {u1, ut}, all
{v2i−1, v2i} with 1 ≤ i ≤ t/2, and all {u2i, u2i+1} with 1 ≤ i ≤ (t− 2)/2; otherwise, E4 consists of
{u1, vt}, all {v2i−1, v2i} with 1 ≤ i ≤ (t− 1)/2, and all {u2i, u2i+1} with 1 ≤ i ≤ (t− 1)/2. Clearly,
for each 1 ≤ h ≤ 4, the edges in Eh can be used to connect P1, . . . , Pt into a single cycle. Moreover,∑4
h=1w(Eh) =

∑t
i=1(w(ui, ui+1) + w(vi, vi+1) + w(ui, vi+1) + w(vi, ui+1)), where ut+1 = u0 and

vt+1 = v0. So, by the triangle inequality,
∑4
h=1w(Eh) ≥ 2

∑t
i=1w(ui, vi). Now, consider the Eh

such that w(Eh) is the maximum among w(E1), . . . , w(E4). Let C be the cycle obtained by using
the edges in Eh to connect P1, . . . , Pt together. Then, w(C) ≥

∑t
i=1w(Pi) + 1

2

∑t
i=1w({ui, vi}). 2

4.1 Sketch of H&R2-algorithm

H&R2-algorithm assumes that n is even. It starts by computing a maximum-weight cycle cover C.
If C is a tour of G, then we are done. Throughout the rest of this section, we assume that C is not

7

a tour of G. H&R2-algorithm then computes two tours T1, T2 of G and outputs the heavier one
between them.

1. Compute a maximum-weight matching M in G. (Comment: Since n is even, M is perfect.)
2. Let C1, . . . , Cr be an arbitrary ordering of the cycles in C.
3. Initialize a set N to be empty.
4. For i = 1, 2, . . . , r (in this order), perform the following two steps:

(a) Compute two distinct edges e1 and e2 in Ci such that both graphs (V (G),M∪N∪{e1})
and (V (G),M ∪N ∪ {e2}) are subtours of G.

(b) Select h ∈ {1, 2} uniformly at random, and add edge eh to N .

5. Complete the graph C −N to a tour T1 of G by suitably choosing and adding some edges
of G. (Comment: Randomness is needed in this step.)

6. Let S be the set of vertices v in G such that the degree of v in the graph (V (G),M∪N) is 1.
(Comment: |S| is even because each connected component in the graph (V (G),M ∪N) is
a path of length at least 1.)

7. Compute a random perfect matching MS in the subgraph (S, F) of G, where F consists
of all edges {u, v} of G with {u, v} ⊆ S.

8. Let G′ be the multigraph obtained from the graph (V (G),M ∪N) by adding every edge
e ∈MS even if e ∈M ∪N . (Comment: Each connected component of G′ is either a path
of length 1 or more, or a cycle of length 2 or more. The crucial point is that for each edge
e in G′, the probability that the connected component of G′ containing e is a cycle of size
smaller than

√
n is at most O(1/

√
n).)

9. For each cycle C in G′, select one edge in C uniformly at random and delete it from G′.
10. Complete G′ to a tour T2 of G by adding some edges of G.

Figure 5. Computation of tours T1 and T2 in H&R2-algorithm.

4.2 Derandomization of H&R2-algorithm

Only Steps 4, 5, 7, and 9 in Figure 5 need randomness. Step 5 can be derandomized using Fact 4.1.
Step 9 is similar to Step 8 in Figure 1 and can be derandomized similarly. However, Steps 4 and 7
are hard to derandomize. Our main contribution is a derandomization of Step 4 (without making
the approximation ratio worse). However, we do not know how to derandomize Step 7 without
making the approximation ratio worse; so we simply let MS be a maximum-weight matching in the
subgraph (S, F) of G. This makes the approximation ratio slightly worse.

Unlike H&R2-algorithm, we assume that n is odd (the case where n is even is simpler). Then,
the matching M computed in Step 1 in Figure 5 is not perfect. Let z be the vertex in G to which
no edge in M is incident. Let ez and e′z be the two edges incident to z in C.

In detail, to derandomize H&R2-algorithm, we replace Steps 4 through 10 in Figure 5 by the
eight steps in Figure 6.

8

4′. Compute two disjoint subsets A1 and A2 of E(C)−M satisfying the following three con-
ditions:

(C5) Both graphs (V (G),M ∪A1) and (V (G),M ∪A2) are subtours of G.

(C6) For each i ∈ {1, . . . , r}, |E(Ci) ∩A1| = 1 and |E(Ci) ∩A2| = 1.

(C7) ez ∈ A1 and e′z ∈ A2.

5′. Choose N from A1 and A2 uniformly at random. (Comment: This step needs one random
bit. For a technical reason, we allow our algorithm to use only one random bit; so we can
easily derandomize it, although we omit the details.)

6′. Complete the graph C −N to a tour T1 of G as described in Fact 4.1. (Comment: Imme-
diately before this step, each connected component of C −N is a path of length at least 1
because of Condition (C6).)

7′. Same as Step 6 in Figure 5. (Comment: The assertion in the comment on Step 6 in
Figure 5 still holds here too because of Condition (C7).)

8′. Compute a maximum-weight matching MS in the graph (S, F), where F is as in Step 7 in
Figure 5. (Comment: MS is perfect.)

9′. Same as Step 8 in Figure 5. (Comment: The first assertion in the comment on Step 8 in
Figure 5 holds here too, but the second assertion does not hold here.)

10′. Compute a subset M ′S of MS such that each cycle in G′ contains exactly one edge of M ′S .
11′. Complete the graph G′ −M ′S to a tour T2 of G as described in Fact 4.1.

Figure 6. Modifying Steps 4 through 10 in Figure 5.

The details of computing A1 and A2 will be given in Section 4.3. In the next theorem, we
analyze the approximation ratio of our new algorithm.

Theorem 4.2 There is an O(n3)-time approximation algorithm for metric Max TSP achieving an
approximation ratio of 17

20 −
1

5n .

Proof. It suffices to prove that max{E [w(T1)], E [w(T2)]} ≥ (17
20 −

1
5n)opt, where opt is the weight

of an optimal tour in G. Let α = w(A1 ∪ A2)/w(C). By Fact 4.1, E [w(T1)] ≥ (1 − α
2 + α

4)w(C) ≥
(1− α

4)opt.
Since the graph (S, F) is a complete graph and |S| is even, F can be partitioned into |S| − 1

perfect matchings of the graph. So, w(MS) ≥ 1
|S|−1w(F). We need to compare E [w(F)] with

w(C) − w(A1 ∪ A2). To this end, we use an idea in [6], i.e., we charge the weight of each edge
e = {u, v} ∈ F to edges in C but not in A1 ∪ A2 as follows. We call the edges in A1 ∪ A2

candidates. For each x ∈ {u, v}, if x is incident to no candidate edge in C, then we charge w(e)/4
to each edge incident to x in C; otherwise, exactly one of the two edges incident to x in C is
a candidate (because x ∈ S), and we charge w(e)/2 to the non-candidate edge incident to x in
C. As observed in [6], the expected total weight charged to a non-candidate edge {y1, y2} of C is∑
x∈S−{y1}w(x, y1)/4 +

∑
x∈S−{y2}w(x, y2)/4; so, it is at least (|S| − 1)w(y1, y2)/4 by the triangle

inequality. Thus, E [w(F)] ≥ (|S| − 1)
∑
ew(e)/4, where e ranges over all non-candidate edges of C.

Therefore, E [w(MS)] ≥ 1
|S|−1E [w(F)] ≥ (1− α)w(C)/4.

By Fact 4.1, E [w(T2)] ≥ E [w(M ∪N)] + E [w(MS)] − E [w(M ′S)] + 1
2E [w(M ′S)]. Since w(M ′S) ≤

w(MS), we now have E [w(T2)] ≥ (1
2 −

1
2n)opt+ α

2w(C) + 1
2E [w(MS)]. Hence, by the last inequality

9

in the previous paragraph, E [w(T2)] ≥ (5
8 + 3

8α −
1

2n)opt. Combining this with the inequality
E [w(T1)] ≥ (1− α

4)opt, we finally have max{E [w(T1)], E [w(T2)]} ≥ (17
20 −

1
5n)opt.

The running time of the algorithm is dominated by the O(n3)-time needed for computing a
maximum-weight cycle cover and two maximum-weight matchings. 2

Since maximum-weight cycle covers, maximum-weight matchings, and maximal path sets can be
computed by fast parallel algorithms [7, 9, 2], our algorithm for metric Max TSP is parallelizable.
Indeed, using our idea of computing the sets A1 and A2, we can even parallelize H&R2-algorithm.
We omit the details here.

4.3 Computation of A1 and A2

We now detail the computation of A1 and A2. We need two definitions first. A path set in a graph
H = (VH , EH) is a subset Q of EH such that the graph (VH , Q) is a collection of vertex-disjoint
paths. A path set Q in H is maximal if for every e ∈ EH −Q, Q ∪ {e} is not a path set in H.

Obviously, both M ∪{ez} and M ∪{e′z} are path sets in G. Now, A1 is computed as in Figure 7.

(i) Compute a maximal path set Q1 with M ∪ {ez} ⊆ Q1 in H1, where H1 is the graph
obtained from C by adding the edges in M . (Comment: The degree of each vertex in H1

is at most 3.)
(ii) Set A1 = Q1 −M .
(iii) For each cycle Ci in C such that A1 contains two or more edges of Ci, keep only one edge

of Ci in A1 (the others are deleted from A1). (Note: In this step, we keep ez in A1.)

Figure 7. Computation of A1.

The following lemma together with the computation of A1 in Figure 7 ensures that Condi-
tions (C5) through (C7) in Figure 6 hold for A1.

Lemma 4.3 Immediately after Step (ii) in Figure 7, A1 contains at least one edge of Ci for each
cycle Ci in C.

Proof. Consider an arbitrary cycle Ci in C. Let P1, . . . , Ps be the connected components of the
graph (V (G), Q1). Each Pj (1 ≤ j ≤ s) is a path. For a contradiction, assume that A1 contains no
edge of Ci. Then, each vertex of Ci is an endpoint of some Pj (1 ≤ j ≤ s). Let e1 = {u1, u2} and
e2 = {u2, u3} be two adjacent edges in Ci. Because e1 6∈ A1 and Q1 is maximal, either e1 ∈ M or
Q1 ∪ {e1} is not a path set. In both cases, u1 and u2 must be the endpoints of the same path Pj
for some j ∈ {1, . . . , s}. Thus, u3 is an endpoint of another path Pk with k 6= j. So, e2 6∈ M and
Q1 ∪ {e2} is a path set, a contradiction against the maximality of Q1. 2

Recall that M ∪ {e′z} is a path set in G. Now, A2 is computed as in Figure 8.

(iv) Compute a maximal path set Q2 with M∪{e′z} ⊆ Q2 in H2, where H2 is the graph obtained
from C by first deleting the edges in A1 and then adding the edges in M . (Comment: The
degree of each vertex in H2 is at most 3.)

(v) Set A2 = Q2 −M .
(vi) For each cycle Ci in C such that A2 contains two or more edges of Ci, keep only one edge

of Ci in A2 (the others are deleted from A2). (Note: In this step, we keep e′z in A2.)

Figure 8. Computation of A2.

10

The following lemma together with the computation of A2 in Figure 8 ensures that Condi-
tions (C5) through (C7) in Figure 6 hold for A2.

Lemma 4.4 For each Ci ∈ C, A2 contains one edge of Ci.

Proof. For each cycle Ci in C, since exactly one edge of Ci is contained in A1, there are two
adjacent edges in Ci that are also edges in H2. So, the proof of Lemma 4.3 is still valid here if we
replace each occurence of “Q1” there by “Q2” and replace each occurence of “A1” there by “A2”.
2

Acknowledgments

The authors thank the referee for helpful comments.

References

[1] A. I. Barvinok, D. S. Johnson, G. J. Woeginger, and R. Woodroofe. Finding Maximum Length
Tours under Polyhedral Norms. Proceedings of the Sixth International Conference on Integer
Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science,
1412 (1998) 195–201.

[2] Z.-Z. Chen. Parallel Constructions of Maximal Path Sets and Applications to Short Super-
strings. Theoretical Computer Science, 161 (1996) 1–21.

[3] Z.-Z. Chen and L. Wang. An Improved Randomized Approximation Algorithm for Max TSP.
Submitted.

[4] R. Hassin and S. Rubinstein. An Approximation Algorithm for the Maximum Traveling Sales-
man Problem. Information Processing Letters, 67 (1998) 125–130.

[5] R. Hassin and S. Rubinstein. Better Approximations for Max TSP. Information Processing
Letters, 75 (2000) 181–186.

[6] R. Hassin and S. Rubinstein. A 7/8-Approximation Approximations for Metric Max TSP.
Information Processing Letters, 81 (2002) 247–251.

[7] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Perfect Matching is in random NC.
Combinatorica, 6 (1986) 35-48.

[8] A. V. Kostochka and A. I. Serdyukov. Polynomial Algorithms with the Estimates 3
4 and 5

6 for
the Traveling Salesman Problem of Maximum (in Russian). Upravlyaemye Sistemy, 26 (1985)
55–59.

[9] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7 (1987) 105–113.

[10] A. I. Serdyukov. An Algorithm with an Estimate for the Traveling Salesman Problem of
Maximum (in Russian). Upravlyaemye Sistemy, 25 (1984) 80–86.

11

