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Abstract

A two-level swapped (also known as optical transpose interconnect system, or OTIS) netwonk wiites is built of:
copies of arm-node basis network constituting its clusters. A simple rule for intercluster connectivity (hodelusteri
connected to nodein cluster; for all i # j) leads to regularity, modularity, packageability, fault tolerance, and algorithmic
efficiency of the resulting networks. We prove that a swapped network is Hamiltonian if its basis network is Hamiltonian. This
general closure property for Hamiltonicity under swap or OTIS composition replaces a number of proofs in the literature for
specific basis networks and obviates the need for proving Hamiltonicity for many other basis networks of potential practical
interest.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction some routing algorithms and to allow efficient emula-
tion of linear-array and ring algorithms, among other
A number of structural properties of interconnec- advantages. Studying general composite interconnec-
tion networks are of interest in parallel and distributed tion schemes, such as swapped networks, is important
computation because they lead to important fault tol- in that it allows the derivation of results pertaining to a
erance and performance attributes or affect the ease ofwide array of network architectures. For example, our
use. Hamiltonicity of gp-node graphG, defined asa  proof of Hamiltonicity for a swapped network with
p-node cycle being a subgraph@f is one such prop- 3 Hamiltonian basis network leads to Hamiltonicity
erty that is important to ensure deadlock freedom in yegyits for a wide array of interconnection networks.
This is clearly preferable to proving each network to
" Tel.: +1 805 893 3211 fax: +1 805 893 3262. be Hamiltonian separately, as has been the norm in
E-mail address: parhami@ece.ucsb.edu (B. Parhami). parallel processing research. For example, the recent
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Fig. 1. The general structure of a swapped network and an example network with the 4-node complete graph as its basis. (a) Intracluster,
intercluster, and I/O links. (b) An example 16-node swapped network.

result of Fu and Chen on the Hamiltonicity of hierar- puter architecture or parallel processing literature,
chical cubic networks [1] follows as a special case our Chi-Hsiang Yeh (a former doctoral student of the au-

result.

Definition 1 (Swvapped network, [2]). The swapped
network Sw(G), derived from then-nodenucleus or
basisgraphG, is ann2-node graph witt: copies ofG
(clusters) numbered O to— 1, so that nodé in clus-
ter j is connected to nodg of clusteri for all i # j
and0<i, j<n—1.

2. Related work

thor) proposed swapped networks [2] as tools for uni-
fying and extending a number of known hierarchical
networks. Prominent among these were the two-level
special case of WK-recursive networks [7] (beyond
two levels, WK-recursive and swapped networks di-
verge in structure and do not have much in common),
hierarchical cubic networks [8], and recursively fully
connected networks [9]. The unification was due to
the replacement of complete-graph or hypercube com-
ponent networks of the prior architectures with an

arbitrary graph.
It thus appears that swapped and OTIS architectures

anonymous reviewer, that swapped networks are the have evolved independently and in parallel. Our origi-
same as OTIS (optical transpose interconnection sys-Nal Paper on swapped networks [2] was followed by
tem) architectures, which have been extensively stud- hierarchical and re.curswe versions. Slmllarly,- oTIS
ied by other researchers. Tracing the history of OTIS, netyvorks were studied by many r_esearchers. Itis worth
the author discovered that its roots go back to 1993, Noting that “swapped network™ is a much more de-
when Marsden et al. published a three-page note in SCTiPtive name than OTIS because many of the al-
Optics Letters [3] suggesting a topology in which gorithms and topological properties discussed in the
nodes {, j) and (j, i) are linked via an optical chan- literature are more or less independent of implementa-
nel. It appears that transfer of the OTIS idea to the tion tgchnology. Reference tp optical implementation
computer architecture and parallel processing commu- MaY in fact have served to discourage researchers not
nity occurred, in part, due the 1998 PhD dissertation of n_wvolved n ODUC?\'.COmDUIIng or optical communica-
C.-F. Wang at University of Florida, under Professor tions from examining the OTIS results, which may be
Sartaj Sahni, and publication of its results beginning in useful in other contexts.
the late 1990s [4]. Architectural and some topological
considerations for OTIS networks have been studied _ o
by Zane et al. [5] and Day and Al-Ayyoub [6], among 3. Hamiltonicity results
others.

Concurrent with the developments just cited, and  As stated in the introduction, Hamiltonicity is an
before any reference to OTIS appeared in the com- important and useful property of interconnection net-

The author recently discovered, via a tip from an
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Fig. 2. Hamiltonian cycle irBnv(G) whose basis network (|G| < 6) is Hamiltonian. Within a cluster, only links belonging to the cluster’s
Hamiltonian cycle are shown. (a)=3, (b)n =4, (¢)n =5, (d)n =6.

works. The related notions of Hamiltonian paths and to u and visits each of the other nodes @fexactly
Hamiltonian connectivity are also of great practical once.

interest. Researchers often go to great lengths to es-

tablish the Hamiltonicity and related properties of a Before proving our main theorems, we demonstrate
particular interconnection network. In this section, we thatSwv(G) is Hamiltonian wherG is Hamiltonian and
provide a proof that a swapped netwoBw(G) is 3<n=|G| <6 (see Fig. 2). These cases cover small
Hamiltonian if its basis networlG is Hamiltonian. ~ values ofn (3, 4, and 5), supply the intuition behind
This result supersedes a number of results proven in the proof for oddz, and provide a basia = 6) for our

the literature for specific basis networks and obviates inductive proof whem is even. Throughout, we will
the need for proving Hamiltonicity for many other ba- assume that the Hamiltonian cycle visits the nodes in
sis networks of potential practical interest. numerical order of their indices; @, 2,...,n —1,0.

Theorem 1 (Hamiltonicity for oddn). If G contains
Definition 2 (Hamiltonian cycle). A Hamiltonian cy- an odd number of nodes and is Hamiltonian, then so
clein graphG is a path that leads from a nodéback is SV(G).
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Proof. Letn =2k + 1 and assume that a Hamiltonian Q ~ ~ O ,'O
cycle goes through nodesD 2, ..., 2k, 0 of G, in or- L —OO\O -0 o
der, renumbering the nodes and clusters, if necessary, \96 . | (?6 s L
to accomplish this. Then, Table 1 shows a Hamiltonian O 4 3 ‘0 Q° 4 3 ‘0
cycle that begins and ends in nadef cluster 0. Each O=0-------- O=0
line contains a cluster number, the first node visited in (@)
that cluster (entry), and the last node visited (exit). The ® O ® O
direction is always backward (toward smaller indices), o' ‘e @ °Q
so that the entry poirtt and the exit point + 1 rep- gy :@ W O° EYC IR
resentthe path,h —1,h — 2, ..., h+ 2, h + 1 within yd -9 " o0 ™.
the cluster [ 1 . * ® O
Note that the first (last) node visited in each cluster .6 7 0.1\. “ ’. ®: ' 0O
has the same index as the (preceding) following clus- 6 @ . ’, o5 1 20
ter, ensuring the availability of intercluster links (see : 3 3. '.. . 0. O4 30 !
Fig. 2(c)). O | * '.," * |
! * o . !
Theorem 2 (Hamiltonicity for everw). If G contains i @] 0O p “ .'.. @ O :
an even number n = 2h of nodes and is Hamiltonian, Os 10 4, . 20 ho)
then so is SW(G). Q.20 -1 Qs 423 20
O\ O ” L O ,O
Proof. We prove this by induction om, assuming \ O O & O O 7
that ann-node cluster's Hamiltonian cycle is 0, 2, Oe “CLON: T 0 L
n — 1,0. The result holds forn = 4, as easily O5 20 @° 3 zof'
seen from Fig. 2(b). Our induction basisis= 6, for O O--- o0
which a Hamiltonian cycle is shown in Fig. 2(d). As (b)

part .Of the basis of Ol-Jr induc.tion’ we note that the Fig. 3. Building a Hamiltonian cycle foBv(G), with |G| =n + 2
Hamiltonian cycle of Fig. 2(d) is such that clusters 2 (even). (a) Hamiltonian cycle iSN(G), for |G| = n. (b) Merging
and 3 are the only clusters in which the link between e two cycles of part (a).

nodes 0 an@ — 1 =5 is unused; this property will be

maintained throughout. Now assuming that the theo- path through all the nodes 0 to— 1 of clusters 0 to
rem holds forn-node clusters, we construct a Hamil- » — 1, assuming existence of a link between nodes 0
tonian path for the case 6t + 2)-node clusters, while  andn — 1, as would be the case in aanode Hamil-
maintaining the property that the link between nodes 0 tonian cluster (the heavy gray line in Fig. 3(a)). Then
andn + 1 is not part of the Hamiltonian path only draw a cycle encompassing all nodes in clusteasd

in clusters 2 and 3. Start by drawing a Hamiltonian »n + 1 and nodes andn + 1 in clusters 0 and 1 (the
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heavy dotted line in Fig. 3(a)). Next, merge the two References

cycles of Fig. 3(a) into one via simple modifications
in clusters 0 and 1, using nodesandn + 1 in clus-
ters 2 and 3, and modifying the paths within clusters 4
throughn — 1 to cover nodes andn + 1 in those clus-
ters (Fig. 3(b)). Note that in the final drawing, the link
between nodes 0 and+ 1 remains unused only in
clusters 2 and 3, as postulated in our inductive argu-
ment. O

4. Conclusion

We showed that the Hamiltonicity property is pre-
served in hierarchical structures built as swapped net-
works. Our results supersede a number of Hamil-
tonicity proofs for networks that are special cases of
swapped networks and will obviate the need for ad-
ditional proofs for other basis networks of practical
interest. One example is the recent result of Fu and
Chen [1] on the Hamiltonicity of hierarchical cubic
networks (swapped networks built from hypercubes)
which can be stated as a corollary to our Theorems 1
and 2. Work is in progress on detailed evaluation of
swapped networks as interconnection structures for
cost-effective, modular, and robust parallel processors
[10] and on establishing a number of other general re-
sults for such networks.
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