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Abstract

A two-level swapped (also known as optical transpose interconnect system, or OTIS) network withn2 nodes is built ofn
copies of ann-node basis network constituting its clusters. A simple rule for intercluster connectivity (nodej in cluster i
connected to nodei in clusterj for all i �= j ) leads to regularity, modularity, packageability, fault tolerance, and algorith
efficiency of the resulting networks. We prove that a swapped network is Hamiltonian if its basis network is Hamiltonia
general closure property for Hamiltonicity under swap or OTIS composition replaces a number of proofs in the litera
specific basis networks and obviates the need for proving Hamiltonicity for many other basis networks of potential p
interest.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A number of structural properties of interconne
tion networks are of interest in parallel and distribu
computation because they lead to important fault
erance and performance attributes or affect the ea
use. Hamiltonicity of ap-node graphG, defined as a
p-node cycle being a subgraph ofG, is one such prop
erty that is important to ensure deadlock freedom
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some routing algorithms and to allow efficient emu
tion of linear-array and ring algorithms, among oth
advantages. Studying general composite intercon
tion schemes, such as swapped networks, is impo
in that it allows the derivation of results pertaining to
wide array of network architectures. For example,
proof of Hamiltonicity for a swapped network wit
a Hamiltonian basis network leads to Hamiltonic
results for a wide array of interconnection networ
This is clearly preferable to proving each network
be Hamiltonian separately, as has been the norm
parallel processing research. For example, the re
.
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ntracluster,
(a) (b)

Fig. 1. The general structure of a swapped network and an example network with the 4-node complete graph as its basis. (a) I

intercluster, and I/O links. (b) An example 16-node swapped network.
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result of Fu and Chen on the Hamiltonicity of hiera
chical cubic networks [1] follows as a special case
result.

Definition 1 (Swapped network, [2]). The swapped
network Sw(G), derived from then-nodenucleus or
basis graphG, is ann2-node graph withn copies ofG
(clusters) numbered 0 ton − 1, so that nodei in clus-
ter j is connected to nodej of clusteri for all i �= j

and 0� i, j � n − 1.

2. Related work

The author recently discovered, via a tip from
anonymous reviewer, that swapped networks are
same as OTIS (optical transpose interconnection
tem) architectures, which have been extensively s
ied by other researchers. Tracing the history of OT
the author discovered that its roots go back to 19
when Marsden et al. published a three-page not
Optics Letters [3] suggesting a topology in whic
nodes (i, j ) and (j, i) are linked via an optical chan
nel. It appears that transfer of the OTIS idea to
computer architecture and parallel processing com
nity occurred, in part, due the 1998 PhD dissertation
C.-F. Wang at University of Florida, under Profess
Sartaj Sahni, and publication of its results beginning
the late 1990s [4]. Architectural and some topologi
considerations for OTIS networks have been stud
by Zane et al. [5] and Day and Al-Ayyoub [6], amon
others.

Concurrent with the developments just cited, a
before any reference to OTIS appeared in the c
puter architecture or parallel processing literatu
Chi-Hsiang Yeh (a former doctoral student of the a
thor) proposed swapped networks [2] as tools for u
fying and extending a number of known hierarchi
networks. Prominent among these were the two-le
special case of WK-recursive networks [7] (beyo
two levels, WK-recursive and swapped networks
verge in structure and do not have much in commo
hierarchical cubic networks [8], and recursively fu
connected networks [9]. The unification was due
the replacement of complete-graph or hypercube c
ponent networks of the prior architectures with
arbitrary graph.

It thus appears that swapped and OTIS architect
have evolved independently and in parallel. Our or
nal paper on swapped networks [2] was followed
hierarchical and recursive versions. Similarly, OT
networks were studied by many researchers. It is w
noting that “swapped network” is a much more d
scriptive name than OTIS because many of the
gorithms and topological properties discussed in
literature are more or less independent of impleme
tion technology. Reference to optical implementat
may in fact have served to discourage researchers
involved in optical computing or optical communic
tions from examining the OTIS results, which may
useful in other contexts.

3. Hamiltonicity results

As stated in the introduction, Hamiltonicity is a
important and useful property of interconnection n
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Fig. 2. Hamiltonian cycle inSw(G) whose basis networkG (|G| � 6) is Hamiltonian. Within a cluster, only links belonging to the cluste
Hamiltonian cycle are shown. (a)n = 3, (b)n = 4, (c)n = 5, (d)n = 6.
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Hamiltonian connectivity are also of great practic
interest. Researchers often go to great lengths to
tablish the Hamiltonicity and related properties o
particular interconnection network. In this section,
provide a proof that a swapped networkSw(G) is
Hamiltonian if its basis networkG is Hamiltonian.
This result supersedes a number of results prove
the literature for specific basis networks and obvia
the need for proving Hamiltonicity for many other b
sis networks of potential practical interest.

Definition 2 (Hamiltonian cycle). A Hamiltonian cy-
cle in graphG is a path that leads from a nodeu back
to u and visits each of the other nodes ofG exactly
once.

Before proving our main theorems, we demonstr
thatSw(G) is Hamiltonian whenG is Hamiltonian and
3 � n = |G| � 6 (see Fig. 2). These cases cover sm
values ofn (3, 4, and 5), supply the intuition behin
the proof for oddn, and provide a basis (n = 6) for our
inductive proof whenn is even. Throughout, we wil
assume that the Hamiltonian cycle visits the node
numerical order of their indices: 0,1,2, . . . , n − 1,0.

Theorem 1 (Hamiltonicity for oddn). If G contains
an odd number of nodes and is Hamiltonian, then so
is Sw(G).
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Table 1

Cluster Entry Exit

0 h h + 1
h + 1 0 1
1 h + 1 h + 2
h + 2 1 2
2 h + 2 h + 3
h + 3 2 3
.
.
.

h − 1 2h − 1 2h
2h h − 1 h

h 2h 0 (back to cluster 0)

Proof. Let n = 2h+ 1 and assume that a Hamiltonia
cycle goes through nodes 0,1,2, . . . ,2h,0 of G, in or-
der, renumbering the nodes and clusters, if neces
to accomplish this. Then, Table 1 shows a Hamilton
cycle that begins and ends in nodeh of cluster 0. Each
line contains a cluster number, the first node visited
that cluster (entry), and the last node visited (exit). T
direction is always backward (toward smaller indice
so that the entry pointh and the exit pointh + 1 rep-
resent the pathh,h− 1, h− 2, . . . , h+ 2, h+ 1 within
the cluster.

Note that the first (last) node visited in each clus
has the same index as the (preceding) following c
ter, ensuring the availability of intercluster links (s
Fig. 2(c)). �
Theorem 2 (Hamiltonicity for evenn). If G contains
an even number n = 2h of nodes and is Hamiltonian,
then so is Sw(G).

Proof. We prove this by induction onn, assuming
that ann-node cluster’s Hamiltonian cycle is 0,1,2,

. . . , n − 1,0. The result holds forn = 4, as easily
seen from Fig. 2(b). Our induction basis isn = 6, for
which a Hamiltonian cycle is shown in Fig. 2(d). A
part of the basis of our induction, we note that t
Hamiltonian cycle of Fig. 2(d) is such that clusters
and 3 are the only clusters in which the link betwe
nodes 0 andn − 1 = 5 is unused; this property will b
maintained throughout. Now assuming that the th
rem holds forn-node clusters, we construct a Ham
tonian path for the case of(n+2)-node clusters, while
maintaining the property that the link between node
and n + 1 is not part of the Hamiltonian path on
in clusters 2 and 3. Start by drawing a Hamiltoni
,

(a)

(b)

Fig. 3. Building a Hamiltonian cycle forSw(G), with |G| = n + 2
(even). (a) Hamiltonian cycle inSw(G), for |G| = n. (b) Merging
the two cycles of part (a).

path through all the nodes 0 ton − 1 of clusters 0 to
n − 1, assuming existence of a link between node
andn − 1, as would be the case in ann-node Hamil-
tonian cluster (the heavy gray line in Fig. 3(a)). Th
draw a cycle encompassing all nodes in clustersn and
n + 1 and nodesn andn + 1 in clusters 0 and 1 (th
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heavy dotted line in Fig. 3(a)). Next, merge the tw
cycles of Fig. 3(a) into one via simple modificatio
in clusters 0 and 1, using nodesn andn + 1 in clus-
ters 2 and 3, and modifying the paths within cluster
throughn−1 to cover nodesn andn+1 in those clus-
ters (Fig. 3(b)). Note that in the final drawing, the lin
between nodes 0 andn + 1 remains unused only i
clusters 2 and 3, as postulated in our inductive ar
ment. �

4. Conclusion

We showed that the Hamiltonicity property is pr
served in hierarchical structures built as swapped
works. Our results supersede a number of Ham
tonicity proofs for networks that are special cases
swapped networks and will obviate the need for
ditional proofs for other basis networks of practic
interest. One example is the recent result of Fu
Chen [1] on the Hamiltonicity of hierarchical cub
networks (swapped networks built from hypercub
which can be stated as a corollary to our Theorem
and 2. Work is in progress on detailed evaluation
swapped networks as interconnection structures
cost-effective, modular, and robust parallel process
[10] and on establishing a number of other general
sults for such networks.
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