
Modularity for Teams of I/O Automata

Maurice H. ter Beek a and Jetty Kleijn b

aISTI, Area della Ricerca CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
bLIACS, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract

It is shown how Input/Output automata fit in the framework of team automata,
thus making it possible to view certain notions and results regarding their modular
structure as special instances of more general observations.

Key words: formal methods, I/O automata, team automata, modularity

1 Introduction

Input/Output automata (or I/O automata) have originally been introduced
in [16,22] as a model for distributed computations in asynchronous networks
and a means to construct correctness proofs of distributed algorithms. Ba-
sically, an I/O automaton is a transition system with action names labeling
its transitions. A distinction is made between internal actions and external
(i.e. input and output) actions used for communication with the environment,
which may consist of other I/O automata. I/O automata can be composed us-
ing a synchronous product construction yielding a new I/O automaton. Since
their introduction I/O automata have been augmented with, e.g., time and
probability [18,21] and, together with its many variants, the model is now
widely used for describing reactive, distributed systems [6–13,16–23].

Inspired by I/O automata, team automata were introduced in [5] to model
components of groupware systems and their interconnections. They were fur-
ther developed as a formal model in, e.g., [1–3]. In particular, in [1] they have
been shown to provide a solid and generic theoretical framework for the study
of synchronization mechanisms in automata models. To allow a flexible mod-
eling of various ways of collaboration in groupware systems, a number of the
restrictions of I/O automata have been dropped. Again internal, input, and
output actions are distinguished. Composition of automata is however not
based on an a priori fixed mode of synchronization, but flexible. This makes

1

it possible to define a wide variety of protocols for the collaboration and com-
munication between a system and its environment. Team automata impose
hardly any restrictions on the role of the actions in the various components
and are naturally suited to describe hierarchically constructed systems.

It is our aim here to show how I/O automata fit in the framework of team
automata, thus placing certain known results for I/O automata in a broader
context and allowing to transfer notions and results from team automata to
the more specific I/O automata. The emphasis is on their modular structure.
In [1] we also studied the behavior of team automata and its implications for
I/O automata, which we intend to be the subject of a forthcoming paper.

Notations

Let I ⊆ N be a possibly infinite set of indices. Assume that I is given by
I = {i1, i2, . . .}, with ij < ik if j < k. For a collection of sets Vi, with i ∈ I, we
denote by

∏
i∈I Vi the cartesian product consisting of the elements (vi1 , vi2 , . . .)

with vi ∈ Vi for each i ∈ I. If vi ∈ Vi for each i ∈ I, then
∏

i∈I vi denotes the
element (vi1 , vi2 , . . .) of

∏
i∈I Vi. If I = ∅, then

∏
i∈I Vi = ∅. For each j ∈ I

and (vi1 , vi2 , . . .) ∈
∏

i∈I Vi, we define projj((vi1 , vi2 , . . .)) = vj. If J ⊆ I, then
projJ ((vi1 , vi2 , . . .)) =

∏
j∈J vj.

2 Team Automata and I/O Automata

Component automata are the basic building blocks of team automata. A com-
ponent automaton is a labeled transition system. The labels represent the
actions of the automaton. Three types of actions are distinguished.

Definition 1 A component automaton is a (labeled) transition system C =
(P, (Γinp,Γout,Γint), γ, J), with P its set of states; Γ = Γinp ∪Γout∪Γint its set
of actions specified by three mutually disjoint sets Γinp, Γout, and Γint of input,
output and internal actions, respectively, and P ∩ Γ = ∅; γ ⊆ P × Γ× P its
set of (labeled) transitions; and J ⊆ P its set of initial states.
Let a ∈ Γ. Then γa = γ ∩ (P × {a} × P) is the set of a-transitions of C; a is
enabled in C at state p ∈ P , if there exists a p′ ∈ P such that (p, a, p′) ∈ γ;
and C is a-enabling if a is enabled at every state p of C.

For the sequel, we let S = {Ci | i ∈ I} with I ⊆ N, be a fixed set of component
automata, in which each Ci is specified as (Qi, (Σi,inp,Σi,out,Σi,int), δ

i, Ii), with
Σi = Σi,inp∪Σi,out∪Σi,int as set of actions. Σ =

⋃
i∈I Σi is the set of actions of

S and Q =
∏

i∈I Qi is the state space of S. To avoid technical anomalities we
assume that none of the Qi is empty. Thus Q is empty if and only if I = ∅.

Component automata cooperate by synchronizing on common actions. To-
gether they define a complete transition space, consisting of all possible com-

2

binations of identically labeled transitions with all non-participating compo-
nents remaining idle.

Definition 2 Let a ∈ Σ. Then ∆a(S) = {(q, a, q′) | q, q′ ∈ Q ∧ [∃i ∈ I :
(proji(q), a, proji(q

′)) ∈ δi] ∧ [∀i ∈ I : (proji(q), a, proji(q
′)) ∈ δi ∨ proji(q) =

proji(q
′)]} is the set of all possible synchronizations on a in S.

∆(S) =
⋃

a∈Σ∆a(S) is the set of all synchronizations of S.

Given a set of component automata, different collaboration protocols can be
modeled by choosing different synchronizations as the transitions of a com-
posed automaton. Such an automaton has the cartesian product of the (ini-
tial) states of the components as its (initial) states. To allow hierarchically
constructed systems within the setup of team automata, a composed automa-
ton has again internal, input, and output actions. The internal actions are the
internal actions of the components, the output actions are those appearing at
least once as an output action in a component, and the input actions are those
external actions that are never output. This reflects the idea that an action
occurring both as input and as output in a system, remains observable as out-
put to the environment. It is assumed that internal actions are not externally
observable and thus not available for synchronizations. This is not imposed
by a restriction on the synchronizations allowed, but rather by the syntactical
requirement that each internal action must belong to a unique component:

S is said to be composable if Σi,int ∩
⋃

j∈I\{i} Σj = ∅ for all i ∈ I.

Moreover, within a team automaton each internal action can be executed
(from a global state) whenever it can be executed by the component to which
it belongs (at the current local state).

Definition 3 Let S be composable. Then a team automaton over S is a tran-
sition system T = (Q, (Σinp,Σout,Σint), δ, I), with set of states Q =

∏
i∈I Qi

and set of initial states I =
∏

i∈I Ii; actions Σ =
⋃

i∈I Σi specified by Σint =⋃
i∈I Σi,int, Σout =

⋃
i∈I Σi,out, and Σinp = (

⋃
i∈I Σi,inp) \ Σout; and transitions

δ ⊆ Q×Σ×Q such that δ ⊆ ∆(S) and moreover δa=∆a(S) for all a ∈ Σint.

It is immediate that every team automaton is again a component automaton,
which in its turn can be used in a higher-level team.

The team automata framework is fairly general and flexible. An external action
may occur in different components as input or output and choosing a particular
mode of synchronization, which may also depend on the different roles an
action has, is left to the designer of an application. 1

1 See, e.g., [2] for models of different forms of collaboration and cooperation between
components, like peer-to-peer synchronizations and master-slave synchronizations.

3

Also the theory of I/O automata uses component automata as basic units. The
construction of a composed system is however based on assumptions on how
reactive, distributed systems behave and interact. Composition is intended to
model communication between components rather than arbitrary collabora-
tions. There is no choice as to which transitions to include in a composition.
A fixed synchronous product construction formalizes the idea of components
proceeding independently, but subject to the restriction that any common
action is executed synchronously by all components sharing that action.

In general, for a set S of component automata as specified before, the synchro-
nous product χS of the transitions from the components in S is defined by:

χS = {(q, a, q′) ∈ ∆(S) | ∀i ∈ I : [a ∈ Σi ⇒ (proji(q), a, proji(q
′)) ∈ δi]}.

If S is composable, then the synchronous product automaton over S, denoted
by X (S), is the team automaton over S which has χS as its set of transitions.
Note that χS satisfies the requirements of Def. 3. In particular, we have (χS)a =
∆a(S) for every internal action a.

A synchronous product automaton thus has as its transitions all and only those
synchronizations on an action which involve all components sharing that ac-
tion. A synchronization on an action which is both input and output models
a communication. Now a basic assumption within the theory of I/O automata
is that input actions are controlled by the environment, whereas output ac-
tions are locally controlled. This implies that—similar to the case of internal
actions—whenever a component can execute an output action (at its current
local state), then it should be able to do so (from the global state) in the syn-
chronous product automaton. In particular it should never be blocked by com-
ponent automata that are currently not ready for this communication. Con-
sequently, only component automata are considered which are input-enabled:
each input action is enabled at each state. Input-enabledness guarantees that
a component automaton is always ready to receive input, whatever its current
local state. This is a necessary condition for the local control of output actions,
as can be proven in a more general setting.

First, we formalize the concept of local control using the notion of omnipres-
ence from [1]. Let δ ⊆ ∆(S) be a subset of the set of synchronizations of S.
A transition (p, a, p′) ∈ δi of a component automaton Ci from S is said to
be i-omnipresent in δ if for all q ∈ Q such that proji(q) = p, there exists a
(q, a, q′) ∈ δ such that proji(q

′) = p′. Assume now that S is composable and
let T be the team automaton over S with set of transitions δ. Then an action a
of component automaton Ci is locally controlled by Ci in T , if all a-transitions
of Ci are i-omnipresent in δ. Hence whatever the global state of the team, the
ith component can execute any of its currently available local a-transitions.
Note that indeed this definition implies that the internal actions of any team
automaton are under the local control of the component to which they belong.

4

Next we establish a general relationship between omnipresence and enabling:

Lemma 4 Let i ∈ I and (p, a, p′) ∈ δi. Then (p, a, p′) is i-omnipresent in χS

if and only if for all j ∈ I such that j 6= i, Cj is a-enabling whenever a ∈ Σj.

PROOF. The only-if-direction is immediate. Only the if-direction is proven.
Let q ∈ Q be such that proji(q) = p. For all j ∈ I such that j 6= i and a ∈ Σj,
the fact that Cj is a-enabling implies that there exists a state pj ∈ Qj such
that (projj(q), a, pj) ∈ δ

j. Thus there exists a state q′ ∈ Q with proji(q
′) = p′

and, for all j ∈ I such that j 6= i and a ∈ Σj, projj(q
′) = pj where pj is

as above, and projk(q
′) = projk(q) for all k ∈ I such that a /∈ Σk. Then, by

definition, (q, a, q′) ∈ χS and hence (p, a, p′) is i-omnipresent in χS . 2

Consequently, in a synchronous product automaton composed of input-enabled
component automata, it is guaranteed that each of the components locally con-
trols its output actions if it does not have to synchronize with another compo-
nent sharing that action as output. Clearly, this can easily be avoided in the
framework of team automata by excluding this type of synchronizations from
the set of transitions of the composed automaton. Within the theory of I/O
automata however it is simply beforehand forbidden that components share
output actions by imposing an additional restriction on the components:

S is said to be compatible if it is composable and

Σi,out ∩
⋃

j∈I\{i} Σj,out = ∅ for all i ∈ I.

Here an I/O automaton is now formally defined as a component automaton
which is input-enabled. 2

From Lemma 4 it follows immediately that the internal and output actions
in the synchronous product automaton over a compatible set of I/O au-
tomata are indeed locally controlled. From a behavioral point of view, this
was found to be an important property already in the earliest versions of I/O
automata [14,15,22]. Here we have a more structural version of this property:

Theorem 5 Let S be a compatible set of I/O automata. Let i ∈ I and a an
internal or output action of Ci. Then a is locally controlled by Ci in X (S).

In order to obtain an I/O automaton when composing I/O automata, the
synchronous product construction should preserve input-enabledness. In fact,
a more general property can be derived from Lemma 4.

Lemma 6 Let a ∈ Σ be such that, for all i ∈ I, whenever a ∈ Σi, then Ci is
a-enabling. Let δ ⊆ ∆(S) be such that (χS)a ⊆ δa. Then for every q ∈ Q there
exists a q′ ∈ Q such that (q, a, q′) ∈ δ.

2 This definition corresponds to I/O automata that are called unfair [7] or safe [22].

5

PROOF. Let q ∈ Q and let i ∈ I be such that a ∈ Σi. Since Ci is a-enabling,
there exists a state p′ ∈ Qi such that (proji(q), a, p

′) ∈ δi. By Lemma 4 such a
(proji(q), a, p

′) is i-omnipresent in χS . Consequently, there exists a state q′ ∈ Q
such that (q, a, q′) ∈ χS . Since (χS)a ⊆ δa it follows that (q, a, q

′) ∈ δ. 2

By observing that the input actions of a team automaton occur only as input
actions in its components, we obtain as a corollary of Lemma 6 that the
synchronous product construction preserves input-enabledness:

Theorem 7 Let S be composable. If all component automata in S are input-
enabled, then X (S) is also input-enabled.

Consequently, if all component automata in a composable set are I/O au-
tomata, then their synchronous product automaton is also an I/O automaton.
However, as observed earlier, within the theory of I/O automata only com-
patible sets of I/O automata are used to compose new I/O automata.

If S is a compatible set of I/O automata, then X (S) is now referred to here
as the team I/O automaton over S.

3 Modular Constructions: Subteams and Superteams

From the previous section we know that both team automata and I/O au-
tomata can be used as components to define higher-level team (I/O) automata.
Under the assumption that certain natural properties like commutativity and
associativity are guaranteed, it thus becomes feasible to design systems in a
modular, iterative fashion. Conversely, an appropriate notion of subautomaton
would make it possible to decompose systems constructed as team (I/O) au-
tomata into separate automata, which in their turn may again be composed
systems. Hence, subautomata form an integral part of a modular approach
by which one would deduce recursively properties of hierarchically defined
systems from their components. Within the framework of team automata,
subteams and iterated teams have been defined and related to one another in,
e.g., [2]. So far, within the theory of I/O automata, the concept of subautoma-
ton has not been considered explicitly as a structural notion. In this section
we investigate to what extent the definitions of subautomaton and iterated
composition for team automata can be applied successfully to I/O automata.

3.1 Subteams

By focusing on a subset of the component automata forming a team automa-
ton, a subteam automaton can be distinguished. Its transitions are restricted

6

versions of those transitions of the team automaton in which at least one of
the components under consideration is actively involved. Its actions are the
actions of these component automata. Their classification as input, output,
or internal is based on their roles in the component automata defining the
subteam: An external action which only occurs as an input action in the com-
ponents considered, is an input action of the subteam even if it is an output
action of one of the remaining component automata. This makes it possible
to view a subteam as an independent team automaton without the context
of the full team. Note that every subset of a composable set of component
automata is again composable.

Let K ⊆ I. Then SK = {Ck | k ∈ K}, ΣK =
⋃

k∈K Σk, and QK =
∏

k∈KQk.
For a set of synchronizations δ ⊆ ∆(S), its restriction δK ⊆ QK × ΣK × QK

to SK is defined by δ
K = {(projK(q), a, projK(q

′)) | (q, a, q′) ∈ δ} ∩∆(SK). For
(δK)a = (δa)

K we will simply write δKa .

For the rest of this section we let K be an arbitrary, but fixed subset of I.

Definition 8 Let S be composable and T a team automaton over S, with set
of transitions δ. The subteam SUBK(T) of T determined by K is the team
automaton over SK with set of transitions δK.

Note that for a singleton set {k}, with k ∈ I, the subteam SUB {k}(T) is not
the same as the component automaton Ck. For one, SUB {k}(T) has

∏
j∈{k}Qj

rather than Qk as its set of states. Still, even if we identified a singleton
cartesian product with its element, then in general the set of transitions δ{k}

of SUB{k}(T) would only be a subset of δ
k (see also Example 10).

When applying the idea of a subteam to a team I/O automaton, in order to be
useful the result should again be a team I/O automaton. It is immediate that
every subset of a compatible set of component automata is again compatible.
Moreover, if all component automata are input-enabled, then obviously also
every subset consists of input-enabled components. Hence, the only thing left
to establish is that the transitions inherited by a subteam of a synchronous
product automaton form again a synchronous product, now of the transitions
from the components considered: (χS)K = χSK .

In [2] it has been shown, using a different terminology, that at least the tran-
sitions of a subteam of a synchronous product automaton will always be of
the right type. Hence:

Lemma 9 (χS)K ⊆ χSK.

An equality does not necessarily hold, as is demonstrated by the next example.

Example 10 Let C1 and C2 be component automata sharing the external ac-

7

tion a. C1 has a transition (p, a, p) while C2 does not have any a-transitions.
Let Z = {C1, C2}. Then clearly (χZ)a = ∅. Consequently, (χZ){1}a = ∅, but
(χ{C1})a = {(p, a, p

′)}.

An auxiliary condition is needed to guarantee that all necessary transitions
are present in the subteam. The example shows that the subteam may miss
a transition because it has no extension in the full synchronous product. As
proven next, this can only be the case if the corresponding action is shared
with some component from outside the subteam that does not use that action
(i.e. it does not have a transition labeled by that action).

Lemma 11 Let a ∈ ΣK be such that (χSK)a 6= ∅. Then (χSK)a ⊆ (χ
S)Ka if

and only if (δj)a 6= ∅ for all j ∈ I \ K such that a ∈ Σj.

PROOF. If there exists a j ∈ I \ K such that a ∈ Σj and (δ
j)a = ∅, then

(χS)a = ∅ and thus also (χS)Ka = ∅. Hence (χSK)a * (χS)Ka . To prove the
if-direction, let (p, a, p′) ∈ χSK . Let J = {j ∈ K | a ∈ Σj}. Then, by definition
of the synchronous product, (projj(p), a, projj(p

′)) ∈ δj, for all j ∈ J , and
proji(p) = proji(p

′), for all i ∈ K \ J . Let J ′ = {j ∈ I \ K | a ∈ Σj}. Assume
(δj)a 6= ∅, for all j ∈ J ′. Then, for each j ∈ J ′, we can fix a pair pj, p

′
j ∈ Qj

such that (pj, a, p
′
j) ∈ δj. Let q, q′ ∈

∏
i∈I Qi be such that projj(q) = projj(p)

and projj(q
′) = projj(p

′) for all j ∈ K; projj(q) = pj and projj(q
′) = p′j for

all j ∈ J ′; and proji(q) = proji(q
′) for all i ∈ I \ K such that a 6∈ Σi. Hence

(q, a, q′) ∈ (χS)a and (p, a, p
′) = (projK(q), a, projK(q

′)) ∈ (χS)Ka . 2

Combining Lemmata 9 and 11 yields the following result.

Theorem 12 (χS)K = χSK if and only if for all a ∈ ΣK, either (χ
SK)a = ∅

or (δj)a 6= ∅ for all j ∈ I \ K such that a ∈ Σj.

Hence the synchronous product defined by a subset of the components co-
incides with the restriction of the full synchronous product, if every action
shared with some “outside” components either has no synchronizations in the
subset itself or is used by each of these outside components. For a composable
set of component automata it thus follows that the synchronous product is
always preserved for the internal actions, since they are never shared. If the
component automata are moreover input-enabled (I/O automata), then the
synchronous product is also preserved for those input actions of a subteam
which have transitions in each of the outside components in which they occur
as output. Since in a compatible set of I/O automata, every output action oc-
curs in only one component as output, we can derive the following conclusion:

Theorem 13 Let S be a compatible set of I/O automata.
Then SUBK(X (S)) = X (SK), the team I/O automaton over SK, if and only
if δj

a 6= ∅, for all a ∈ ΣK ∩ Σout and j ∈ I \ K such that a ∈ Σj,out.
Also, SUBK(X (S)) is the team I/O automaton over SK and SUBI\K(X (S))

8

is the team I/O automaton over SI\K if and only if δj
a 6= ∅, for all a ∈⋃

i∈I Σi,inp ∩ Σout and j ∈ I such that a ∈ Σj,out.

In other words, a subteam of a team I/O automaton is again a team I/O
automaton if and only if output of the full team corresponding to input for
the subteam is used by the component in which it occurs as an output action.
Moreover, to guarantee that every subteam of a team I/O automaton is a
team I/O automaton, each output action intended for communication within
the team (as it also occurs as input for some components), should have a
transition in the component in which it occurs in its output role. While this
condition may seem mathematically involved, it turns out to be so natural
that for a design to make sense it is practically always satisfied.

3.2 Superteams

In [2] it is shown how team automata can be used to describe hierarchical
systems through iteration and how subteams can be considered as component
automata in such iteratively defined team automata. Moreover, iteration in
the construction of a team automaton does not lead to additional possibilities
for synchronization, i.e. every iterated team automaton over a composable
set of component automata can be interpreted as being directly defined from
those components. From Theorem 7 we know that also team I/O automata
can be used as components in a hierarchical construction. In the remainder we
outline the approach followed for team automata and then restrict it to the
case of I/O automata. This yields precise structural definitions for iterated
team I/O automata, which contrast with the usual approach that focuses on
behavior and is mostly restricted to binary rather than arbitrary iterations.

Given a composable set of component automata, there are in general different
routes possible to form a team automaton. Rather than directly defining a
team over all components available, one can also first describe collaborations
between certain components before merging these into a higher-level construct.
Hence first teams over (disjoint) subsets of components are defined and then
these can be used (iteratively) as components in new teams, until after a finite
number of such iterations all components have been used. This implies that
the composable set is partitioned into subsets, each of which forms the basis
of an (iterated) team automaton.

A partition of a set W is a collection of sets {Wj | j ∈ J }, with J ⊆ N, such
that the Wj are nonempty and pairwise disjoint, and

⋃
j∈J Wj =W .

As observed before, any subset of a composable set is again composable. Fur-
thermore, in [2] it was shown that since composition does not introduce new
internal actions and internal actions are never shared, team automata over
disjoint subsets of a composable set also form a composable set:

9

Lemma 14 Let S be composable and {Ij | j ∈ J } a partition of I. For all
j ∈ J , let Tj be a team automaton over Sj = {Ci | i ∈ Ij}. Then {Tj | j ∈ J }
is composable.

Team automata can thus be defined iteratively from a given composable set.

Definition 15 Let S be composable. T is an iterated team automaton over
S if either (1) T is a team automaton over S or (2) there exists a partition
{Ij | j ∈ J } of I such that T is a team automaton over {Tj | j ∈ J }, where
each Tj is an iterated team automaton over {Ci | i ∈ Ij}.

In [2] it is shown that any iterated team automaton over a composable set
can be viewed as a (directly defined) team automaton over that set: Its set of
actions—including the distribution over input, output, and internal actions—is
the one defined by the composable set, just as for any ordinary team automa-
ton over that same set of components. Its (initial) states are “essentially” the
(initial) states defined by the composable set, where “essentially” means upto
(unpacking and) reordering the nested components. Similarly, its transitions
are “essentially” synchronizations of the composable set in the sense that only
their state components have to be reordered. Rearranging the state space is
thus sufficient to consider an iterated team automaton as an ordinary team
automaton. Before continuing, we give an outline of the process of reordering. 3

Assume that S is composable and let T be an iterated team automaton over
S. Reordering is defined bottom-up from leaves to root in the ordered tree
describing the iteration and assumes that the relevant partitions are given.
At the lowest level we have the leaves corresponding to component automata.
One level higher we have team automata over subsets of S. Note that the order
of the component automata as used in the definition of these team automata
still corresponds to their original order in S. Hence, at this level, reordering
has no effect: Let L ⊆ I and TL a team automaton over SL = {C` | ` ∈ L}.
For p ∈ QL =

∏
`∈LQ`, its reordered version with respect to QL is 〈p〉QL

= p
and the reordered version of TL with respect to SL is 〈〈TL〉〉SL

= TL. At all
higher levels we deal with an L ⊆ I and an iterated team automaton TL over
SL = {C` | ` ∈ L}, a subset of S. Moreover, we have a partition {Lj | j ∈ J }
of L such that TL is a team automaton over {Tj | j ∈ J }, where each Tj

is an iterated team automaton over SLj
= {C` | ` ∈ Lj}. On basis of the

construction we may assume that, for all j ∈ J , for each of the states p
of Tj, its reordered version 〈p〉QLj

∈ QLj
=

∏
`∈Lj

Q` has been established.

Then, for each state q =
∏

j∈J qj of TL, where for each j, qj is a state of Tj

we define the reordered version of q with respect to QL as 〈q〉QL
=

∏
`∈L p`

with p` = proj`(〈qj〉QLj
), where j is such that ` ∈ Lj. The reordered version

〈〈TL〉〉SL
of TL with respect to SL is the team automaton over SL, with set

3 A simpler and more concrete description of the abstract reordering defined in [2].

10

of transitions 〈δ〉QL
= {(〈q〉QL

, a, 〈q′〉QL
) | (q, a, q′) ∈ δ}, where δ is the set of

transitions of TL.

All this leads to the following formalization, as proven in [2], of our earlier
observation that every iterated team automaton over a composable set of
component automata can be interpreted as a team automaton over that set
by reordering its state space:

Theorem 16 Let S be composable and T̂ an iterated team automaton over
S. Then T̂ is a transition system (Q̂, (Σinp,Σout,Σint), δ, Î) and its reordered
version 〈〈T̂ 〉〉S = (Q, (Σinp,Σout,Σint), 〈δ〉Q, I) is a team automaton over S.

Conversely, every team automaton can be seen—after reordering—as being
composed of any (disjoint) combination of its subteams, i.e. any (iterated) de-
composition can be used as a constructive description of the team. Obviously,
in such iterative constructions care should be taken to include “enough” tran-
sitions. Formally, a composable set {Tj | j ∈ J } consisting of iterated team
automata over subsets Sj of the composable set S, where {Ij | j ∈ J } is a
partition of I, may provide less transitions for the forming of a team than S
does. To define a given team T it is however always sufficient to require that
each of the Tj has at least all transitions—upto reordering—of the subteam
of T determined by Ij. In that case, as proven in [2], one can define the team
automaton T̂ over {Tj | j ∈ J } such that 〈〈T̂ 〉〉S = T :

Theorem 17 Let S be composable and T a team automaton over S. Let {Ij |
j ∈ J } be a partition of I and, for all j ∈ J , Tj an iterated team automaton
over SIj

= {Ci | i ∈ Ij} with set γ
j of transitions such that δIj ⊆ 〈γj〉QIj

. Then

there exists a team automaton T̂ over {Tj | j ∈ J } such that 〈〈T̂ 〉〉S = T .

Now we turn to synchronous products as a first step towards the iterated
construction of team I/O automata. Recall that a subteam of a synchronous
product automaton need not be a synchronous product automaton itself, be-
cause some transitions may be missing. Theorem 17 however allows us to prove
that synchronous product automata can still be seen as constructed iteratively
as a synchronous product of components that are synchronous products.

Lemma 18 Let S be composable and {Ij | j ∈ J } a partition of I. For all
j ∈ J , let Tj be an iterated team automaton over SIj

= {Ci | i ∈ Ij} such that
〈〈Tj〉〉SIj

= X (SIj
). Then 〈〈X ({Tj | j ∈ J })〉〉S = X (S).

PROOF. By Lemma 9 and Theorem 17, there exists a team automaton T
over {Tj | j ∈ J } such that 〈〈T 〉〉S = X (S). Hence once we have proven that
T = X ({Tj | j ∈ J }) must hold, we are done. First assume that T has a
transition (p, a, p′) which is not in χ{Tj |j∈J}, i.e. some Tj is not involved in this
transition while a is an action of this Tj. Thus a is an action of a Ci with i ∈ Ij,

11

and this Ci is not involved in the reordered version (〈p〉Q, a, 〈p
′〉Q) of (p, a, p

′).
Consequently (〈p〉Q, a, 〈p

′〉Q) 6∈ χ
S , a contradiction with 〈〈T 〉〉S = X (S). Next

assume that (p, a, p′) ∈ χ{Tj |j∈J}. Let j ∈ J be such that a is an action of
Tj. Then Tj is involved in this transition. Moreover, since 〈〈Tj〉〉SIj

= X (SIj
),

we know that every component Ci with i ∈ Ij which has a as an action
is involved in (projj(p), a, projj(p

′)). Consequently, the reordered version of
(p, a, p′) with respect to Q is in χS and (p, a, p′) is thus a transition of T .
Hence T = X ({Tj | j ∈ J }), as required. 2

Now we propose a definition of iterated team I/O automata similar to that of
iterated team automata (cf. Def. 15). Note that, as remarked before, input-
enabledness is preserved by synchronous products and hence by iterated syn-
chronous product constructions (cf. Theorem 7). Moreover, like composability
obviously also compatibility is preserved when iteratively forming teams:

Lemma 19 Let S be compatible and {Ij | j ∈ J } a partition of I. For all
j ∈ J , let Tj be team automaton over SIj

= {Ci | i ∈ Ij}. Then {Tj | j ∈ J }
is compatible.

Definition 20 Let S be compatible. T is an iterated team I/O automaton
over S if either (1) T is the team I/O automaton over S or (2) there exists a
partition {Ij | j ∈ J } of I such that T is the team I/O automaton over {Tj |
j ∈ J }, where each Tj is an iterated team I/O automaton over {Ci | i ∈ Ij}.

From Lemma 18 it follows that iteratively applying a synchronous product to
construct higher-level team automata yields—upto reordering—a synchronous
product automaton over the original components. This allows us to demon-
strate that the reordered version of any (whatever route has been followed)
iterated team over a compatible set of I/O automata is the team I/O automa-
ton over these components.

Theorem 21 Let S be compatible and T an iterated team I/O automaton
over S. Then 〈〈T 〉〉S = X (S).

PROOF. If T is constructed directly from S without iteration, then 〈〈T 〉〉S =
T = X (S). Otherwise, T is the team I/O automaton over a compatible set
{Tj | j ∈ J }, with {Ij | j ∈ J } a partition of I, such that each Tj is an
iterated team I/O automaton over the compatible set SIj

= {Ci | i ∈ Ij}. By
induction, we assume that 〈〈Tj〉〉Sj

= X (SIj
). Then Lemma 18 implies that

〈〈T 〉〉S = X (S), as desired. 2

As for team automata, Lemma 18 implies that also every team I/O automa-
ton can be seen—after reordering—as being iteratively constructed from its
subteams, provided that each of its subteams is itself a team I/O automaton
as formally described in Theorem 13.

12

4 Discussion

We have embedded the (structural) setup of I/O automata in the framework
of team automata. Whereas in the theory of I/O automata the notions of
input-enabledness, compatibility, and synchronous product are always used in
combination—and together reflect a certain viewpoint on the interaction of
reactive, distributed systems—they are mathematically independent. In the
team automata framework these notions can be studied independently of one
another. Among other things this leads to more general results like, e.g., Lem-
ma 6, to the formal distinction between team I/O automata and synchronous
products of I/O automata, and to precise notions of sub- and superteams.

The emphasis in this paper has been on the structure of team (I/O) automata.
In fact, we have not dealt at all with their behavioral aspects. After all, since
the behavior of team automata and I/O automata is based on the same notion
of computations (cf., e.g., [2,17]) the structural relation is the more fundamen-
tal one. A consequence of our focus on the structural setup of I/O automata
is that we have not considered the notion of fair computations or behavior.
In fact, the definition of I/O automata given here corresponds to I/O au-
tomata that are called unfair [7] or safe [22]. Consequently, also the notion
of strong compatibility—by which no action may belong to infinitely many
components—is not significant to our exposition.

Finally, we conclude by a remark on the relation between Petri nets and team
(I/O) automata. I/O automata can automatically be seen as a type of Petri
nets, but this is not the case for team automatain general [1,4]. The reason
is the fact that I/O automata are non-state-sharing , whereas team automata
are not. This notion is one of the fundamental concepts underlying Petri nets
and it requires that whether or not a synchronization between components
can take place, only depends on the local states of the components actively
involved in that synchronization (and thus not on the global state as a whole).

References

[1] M.H. ter Beek, Team Automata—A Formal Approach to the Modeling of
Collaboration Between System Components, PhD thesis (LIACS, Leiden
University, 2003).

[2] M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg, Synchronizations
in team automata for groupware systems, Computer Supported Cooperative
Work—The Journal of Collaborative Computing 12, 1 (2003) 21–69.

[3] M.H. ter Beek and J. Kleijn, Team Automata Satisfying Compositionality, in:
K. Araki, S. Gnesi, and D. Mandrioli, eds., Proceedings FM 2003, LNCS 2805
(Springer-Verlag, Berlin, 2003) 381–400.

13

[4] J. Carmona and J. Kleijn, Interactive Behaviour of Multi-Component Systems,
in: J. Cortadella and A. Yakovlev, eds., Proceedings ToBaCo’04 (University of
Bologna, 2004) 27–31.

[5] C.A. Ellis, Team Automata for Groupware Systems, in: S.C. Hayne and W.
Prinz, eds., Proceedings GROUP’97 (ACM Press, New York, 1997) 415–424.

[6] S.J. Garland and N.A. Lynch, The IOA Language and Toolset—Support
for Designing, Analyzing, and Building Distributed Systems, Technical
Report MIT/LCS/TR-762, MIT, 1998.

[7] R. Gawlick, R. Segala, F.F. Søgaard-Andersen, and N.A. Lynch, Liveness in
Timed and Untimed Systems, in: S. Abiteboul and E. Shamir, eds., Proceedings
ICALP’94, LNCS 820 (Springer-Verlag, Berlin, 1994) 166–177.

[8] B. Grobauer and O. Müller, From I/O Automata to Timed I/O Automata—
A Solution to the ‘Generalized Railroad Crossing’ in Isabelle/HOLCF, in:
Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, eds., Proceedings
TPHOLs’99, LNCS 1690 (Springer-Verlag, Berlin, 1999) 273–289.

[9] D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager, Timed I/O
Automata: A Mathematical Framework for Modeling and Analyzing Real-Time
Systems, in: S.K. Baruah and R. Rajkumar, eds., Proceedings RTSS’03 (IEEE
Computer Society Press, New York, 2003) 166–177.

[10] N.A. Lynch, I/O Automata: A Model for Discrete Event Systems, in:
P.J. Ramadge and S. Verdú, eds., Proceedings CISS’88 (Princeton University
Press, Princeton, NJ, 1988) 29–38.

[11] N.A. Lynch,Distributed Algorithms (Morgan Kaufmann, San Mateo, CA, 1996).

[12] N.A. Lynch, I/O Automaton Models and Proofs for Shared-Key Com-
munication Systems, in: P. Syverson, ed., Proceedings CSFW’99 (IEEE Com-
puter Society Press, New York, 1999) 14–31.

[13] N.A. Lynch, Input/Output Automata: Basic, Timed, Hybrid, Probabilistic,
Dynamic,..., in: R. Amadio and D. Lugiez, eds., Proceedings CONCUR’03,
LNCS 2761 (Springer-Verlag, Berlin, 2003) 191–192.

[14] N.A. Lynch and M. Merritt, Introduction to the Theory of Nested Transactions,
in: G. Ausiello and P. Atzeni, eds., Proceedings ICDT’86, LNCS 243 (Springer-
Verlag, Berlin, 1986) 278–305.

[15] N.A. Lynch and M. Merritt, Introduction to the Theory of Nested Transactions.
Theoretical Computer Science 62, 1-2 (1988) 123–185.

[16] N.A. Lynch and M.R. Tuttle, Hierarchical Correctness Proofs for Distributed
Algorithms, in: F.B. Schneider, ed., Proceedings PODC’87 (ACM Press, New
York, 1987) 137–151.

[17] N.A. Lynch and M.R. Tuttle, An Introduction to Input/Output Automata.
CWI Quarterly 2, 3 (1989) 219–246.

14

[18] N.A. Lynch and F.W. Vaandrager, Forward and Backward Simulations for
Timing-Based Systems, in: J.W. de Bakker, C. Huizing, W.-P. de Roever, and
G. Rozenberg, eds., Real-Time: Theory in Practice, LNCS 600 (Springer-Verlag,
Berlin, 2003) 397–446.

[19] O. Müller, A Verification Environment for I/O Automata Based on Formalized
Meta-Theory, PhD thesis (Technische Universität München, 1998).

[20] J.M.T. Romijn, Tackling the RPC-Memory specification problem with I/O
automata, in: M. Broy, S. Merz, and K. Spies, eds., Formal Systems
Specification—The RPC-Memory Specification Case Study, LNCS 1169,
(Springer-Verlag, Berlin, 1996) 437–476.

[21] R. Segala, Modeling and Verification of Randomized Distributed Real-Time
Systems, PhD thesis (Department of Electrical Engineering and Computer
Science, MIT, 1995).

[22] M.R. Tuttle, Hierarchical Correctness Proofs for Distributed Algorithms,
Master’s thesis (Department of Electrical Engineering and Computer Science,
MIT, 1987).

[23] S.-H. Wu, S.A. Smolka, and E.W. Stark, Composition and Behaviors of Pro-
babilistic I/O Automata. Theoretical Computer Science 176, 1-2 (1997) 1–38.

15

