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Abstract

We study several fundamental problems arising from biological sequence analysis. Given a sequence of real numbers,
two linear-time algorithms, one for locating the “longest” sum-constrained segment, and the other for locating the “shorte
constrained segment. These two algorithms are based on the same framework and run in an online manner, hence they
of handling data stream inputs. Our algorithms also yield online linear-time solutions for finding the longest and shortest
constrained segments by a simple reduction.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Computer analysis of newly determined DNA s
quences, i.e., strings of the four letters A, C, G, and
usually includes a task that identifies GC-rich segme
A segment of a sequence, sometimes called an inte
or a region, is a contiguous subsequence of that
quence [2]. Segments of a DNA sequence that are ric
nucleotides G and C are usually biologically significa
As a consequence, two lines of investigation into s
segments arise. One line tries to locate a segment w
length is constrained and GC-ratio is maximized [3
8–10], and the other tries to locate a segment whose
ratio is constrained and length is maximized [1,7,11
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By assigning G, C a number one and A, T a nu
ber zero, the latter problem, which this paper mai
tackles, can be described as: finding the longest
ment of a number sequence satisfying the averag
the numbers in that segment is greater than or equ
a lower boundL. For example, given a DNA sequen
GACGTCCCAGCAACAAA and a ratioL = 0.8, the
longest segment whose GC ratio is at least 0.8 is the
segment from position 3 to position 8, i.e., CGTCC
This segment contains 4 C’s, 1 G’s, and 1 T’s, thu
has a CG ratio of 0.83 with the maximum length of
For this problem, Allison [1] gave an algorithm which
guaranteed to run in linear-time if the input sequenc
a DNA sequence andL is a rational number. But if th
input sequence is a sequence of real numbers, his
rithm may run in quadratic-time in the worst case. Wa
and Xu [11] provided a linear-time algorithm that c
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cope with real number sequences, yet their algori
contains a preprocessing stage. In this paper, we giv
alternative linear-time algorithm that runs in an onl
manner, meaning that there is no preprocessing an
algorithm “interactively” outputs the best segment rig
after obtaining the next new number. This feature is
portant for tasks coping with data stream inputs, or
applications requiring real-time responses.

As was mentioned in [1,11], finding the longest s
ment whose average is at leastL is equivalent to finding
the longest segment whose sum is non-negative. Th
fore, the first part of the paper deals with a more gen
problem having an arbitrary sum lower bound. As
the second part, we consider another interesting p
lem opposite to the longest segment problem. Spe
cally, we wish to locate the “shortest” segment satis
ing a sum or an average constraint. We show that
shortest segment problem can be solved based o
same framework as the longest segment problem
differs in that the maintenance of the data structur
more complicated.

2. Preliminaries

Given a nonempty sequenceA = 〈a1, a2, . . . , an〉 of
real numbers, and a lower boundL, let A(i, j) denote
the segment〈ai, . . . , aj 〉 of A, and letS(i, j) denote the
sum ofA(i, j), defined asS(i, j) = ∑

i�k�j ak for i �
j . The average ofA(x,y) is S(x, y)/(y − x + 1). There
are four problems of concern in this paper:

Problem 1. Locating the longest segmentA(x,y) of A

satisfyingS(x, y) � L.

Problem 2. Locating the longest segmentA(x,y) of A

satisfying S(x,y)
(y−x+1)

� L.

Problem 3. Locating the shortest segmentA(x,y) of A

satisfyingS(x, y) � L.

Problem 4. Locating the shortest segmentA(x,y) of A

satisfying S(x,y)
(y−x+1)

� L.

Lemma 1. The average-constrained segment problems,
i.e., Problems 2 and 4, can be reduced to a special case
of their corresponding sum-constrained segment prob-
lems, i.e., Problems 1 and 3 with L = 0.1

1 In fact, Problem 4 can be solved by simply findingai � L for
i ∈ [1, n].
-

e

Proof. Since

S(x, y)

(y − x + 1)
=

∑
x�k�y

ak

(y − x + 1)
� L

⇔
∑

x�k�y

(ak − L) � 0,

it suffices to find the longest and shortest segment
a non-negative sum in a new sequenceB = 〈a1 − L,

a2 − L, . . . , an − L〉. �
Since sequenceB can be computed “on the fly”, th

next two sections focus on giving online linear-time
gorithms for Problems 1 and 3. The main result is sta
as follows.

Theorem 2. There exist online linear-time algorithms
for Problems 1–4.

For convenience in later proofs, we adopt the
lowing notations. Let[i, j ], [i, j), and(i, j ] denote the
sets{i, i + 1, . . . , j}, {i, i + 1, . . . , j − 1}, and{i + 1,

i + 2, . . . , j} for i � j , respectively. LetC[i] denote
the cumulative sum ofA, defined asC[0] = 0 and
C[i] = ∑

1�k�i ak for 1 � i � n. It is easy to see tha
S(i, j) = C[j ] − C[i − 1] for 1� i � j � n.

3. Locating the longest segment satisfying a sum
lower bound

In order to achieve the online property, we ad
a dynamic programming approach. Suppose, at
(i − 1)th iteration, the longest segment ofA(1, i − 1)

with sum at leastL has been computed asA(x,y).
The goal is to locate, at theith iteration, the longes
segment ofA(1, i) with sum at leastL. It suffices to
find the smallest indexk ∈ [0, i − y + x − 1) satisfy-
ing S(k +1, i) = C[i]−C[k] � L. If suchk exists, then
A(k+1, i) is the longest segment ofA(1, i). Otherwise,
A(x,y) remains the answer. Instead of searching fok

by brute force, the algorithm proceeds in the “safe
way to avoid unnecessary search steps.

Definition 1. For each indexi ∈ [1, n], we define induc
tively an ordered list of the “safest” indicesIi,1, Ii,2, . . . ,

Ii,µ(i), whereµ(i) denotes the size of the list:Ii,0 =
i − y + x − 1 and Ii,j+1 = min{k | k ∈ [0, Ii,j ) and
C[k] � C[l] ∀l ∈ [0, Ii,j )} for j � 1 and Ii,j > 0.
Notice that, the last index of the list is index 0, i.
Ii,µ(i) = 0.

We sayIi,j is the safest index, in the sense tha
A(Ii,j + 1, i) does not satisfy the sum lower boun
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fix
Algorithm LONGEST_SEGMENT

Input: A nonempty array ofn real numbersA[1. . . n] and a lower boundL.
Output: The start and end index of the longest segment ofA with sum at leastL.
C[0. . . n] andM[0. . . n] are arrays of sizen + 1, as defined in the context.

1 M[0] ← C[0] ← 0; x ← y ← 0;
2 for i ← 1 to n do
3 C[i] ← C[i − 1] + A[i];
4 if C[i − 1] < C[M[i − 1]] then M[i] ← i − 1 else M[i] = M[i − 1];
5 k ← i − y + x − 1;
6 while k > 0 do
7 if C[i] − C[M[k]] � L then k ← M[k] else break;
8 x ← k + 1; y ← i;
9 end while

10 OUTPUTA(x,y);
11 end for

Fig. 1. Algorithm for finding the longest segment with a sum lower bound. Notice that, at each iteration,A(x,y) represents the answer of the pre
sequence read so far, meaning that the algorithm runs in an online manner.
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neither doesA(l +1, i) for all l ∈ [0, Ii,j−1). This is be-
causeC[Ii,j ] has the minimum cumulative sum ofC[l]
for all l ∈ [0, Ii,j−1). The list of indices defined abov
has the following property.

Lemma 3. The cumulative sums of the safest indices in-
crease strictly, i.e., C[Ii,1] < C[Ii,2] < · · · < C[Ii,µ(i)],
where Ii,1 > Ii,2 > · · · > Ii,µ(i).

Proof. For two consecutive “safest” indicesIi,j and
Ii,j+1, j � 1, since by definitionC[Ii,j ] < C[l] for
all l ∈ [0, Ii,j−1) andIi,j+1 ∈ [0, Ii,j ) ⊂ [0, Ii,j−1), we
haveC[Ii,j ] < C[Ii,j+1] with Ii,j > Ii,j+1. �

The main role of the “safest” index is to inform
without the need of examining the whole interval, t
algorithm when to stop. The algorithm retrieves
first “safest” indexIi,1 and checks ifC[i] − C[Ii,1] �
L. If not, we have the immediate conclusion that
such k exists sinceC[Ii,1] is the minimum value o
C[l] for l ∈ [0, i − y + x − 1). Otherwise, the algo
rithm retrieves the next “safest” indexIi,2 and checks
if C[i]−C[Ii,2] � L. Continuing in this manner, the a
gorithm retrievesIi,1, Ii,2, . . . , Ii,µ(i) one by one until it
finds thatC[i] − C[Ii,j ] � L andC[i] − C[Ii,j+1] < L

for somej ∈ [1,µ(i)], or thatC[i] − C[Ii,l] � L for
all l ∈ [1,µ(i)]. In the latter case,A(Ii,µ(i) + 1, i) =
A(1, i) is clearly the longest segment ofA(1, i) with
sum at leastL. In the former case,C[i] − C[Ii,j+1] <

L implies thatS(l + 1, i) = C[i] − C[l] < L for all
l ∈ [0, Ii,j ). Hence,A(Ii,j + 1, i) is the longest seg
ment ofA(1, i) with sum at leastL. Now, the challenge
lies in whether or not we can maintain a data str
ture on the fly that helps us retrieve, at theith iteration,
Ii,1, Ii,2, . . . , Ii,µ(i) one by one. An auxiliary arrayM is
defined as:M[i] = min{k | k ∈ [0, i) andC[k] � C[l]
∀l ∈ [0, i)}. It is not hard to verify that

Ii,1 = M[i − y + x − 1],
Ii,2 = M

[
M[i − y + x − 1]], . . . ,

Ii,µ(i) = M[. . .M[M[i − y + x − 1]] . . .]︸ ︷︷ ︸
µ(i) times

.

Array M can be computed on the fly by the followin
recurrence:

M[i] =




0 if i = 0;
i − 1 if i � 1 and

C[i − 1] < C[M[i − 1]];
M[i − 1] if i � 1 and

C[i − 1] � C[M[i − 1]].
The algorithm for finding the longest segment sa

fying a sum lower bound is given in Fig. 1. An intuitiv
way to show that the LONGEST_SEGMENT algorithm
runs in O(n) time is to observe that the cost of the ste
for finding a longer segment at each iteration is equ
lent to the length of the segment grown throughout
execution. Since the length of the longest segmen
the end is less than or equal ton, the cost is bounded b
O(n). A more formal proof is given in the following.

Theorem 4. The LONGEST_SEGMENT algorithm runs
in O(n) time.

Proof. The total number of operations of LONGEST_
SEGMENT is clearly bounded by O(n) except for the
while-loop body of lines 6–9. By verifying that
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(1) y − x = 0 holds initially,
(2) y � x holds throughout the execution,
(3) the value ofy − x never decreases, and
(4) y − x + 1� n at the end of the execution,

we conclude that the overall time required by the lo
is O(n). �
4. Locating the shortest segment satisfying a sum
lower bound

Suppose, at the(i − 1)th iteration, the shortest se
ment ofA(1, i − 1) with sum at leastL has been com
puted asA(x,y). Following a paradigm similar to th
last section, we define another list of the “safest”
dices, only this time the “safest” indices move towa
the other direction since our main goal now is to fin
shorter segment.

Definition 2. For each indexi ∈ [1, n], we define induc-
tively an ordered list of the “safest” indicesI ∗

i,1, I
∗
i,2, . . . ,

I ∗
i,µ(i), whereµ(i) denotes the size of the list:I ∗

i,0 =
i − y + x − 1 andI ∗

i,j+1 = max{k | k ∈ (I ∗
i,j , i − 1] and

C[k] � C[l] ∀l ∈ (I ∗
i,j , i −1]} for j � 1 andI ∗

i,j < i −1.
Notice that, the last index of the list is indexi − 1, i.e.,
I ∗
i,µ(i) = i − 1.

Lemma 5. The cumulative sums of the safest indices in-
crease strictly, i.e., C[I ∗

i,1] < C[I ∗
i,2] < · · · < C[I ∗

i,µ(i)],
where I ∗

i,1 < I ∗
i,2 < · · · < I ∗

i,µ(i).

Proof. Similar to Lemma 3. �
The algorithm proceeds along the list of safest

dices I ∗
i,1, I

∗
i,2, . . . , I

∗
i,µ(i) until it finds that C[i] −

C[I ∗
i,j ] � L and C[i] − C[I ∗

i,j+1] < L for somej ∈
[1,µ(i)], or thatC[i] − C[I ∗

i,l] � L for all l ∈ [1,µ(i)].
However, the same challenge occurs, i.e., whether o
we can maintain a data structure on the fly that help
retrieve, at theith iteration,I ∗

i,1, I
∗
i,2, . . . , I

∗
i,µ(i) one by

one. We use alinked list to implement the data structur
The maintenance of the list is described below. S
pose, at the(i − 1)th iteration, we have the comple
list I ∗

i−1,1, I
∗
i−1,2, . . . , I

∗
i−1,µ(i−1). Then, the list for the

ith iteration, i.e.,I ∗
i,1, I

∗
i,2, . . . , I

∗
i,µ(i), can be obtained

by the following procedure:

Step 1.The list is searched from left to right for t
largestp ∈ [1,µ(i − 1)] satisfyingI ∗

i−1,p � I ∗
i,0 =

i − y + x − 1. If suchp exists, then deleteI ∗
i−1,1,

I ∗ , . . . , I ∗ from the list; Otherwise, letp = 0.
i−1,2 i−1,p
Step 2.The remaining list is then searched from r
to left for the smallestq ∈ (p,µ(i − 1)] satisfying
C[i − 1] � C[I ∗

i−1,q ]. If suchq exists, then delet
I ∗
i−1,q , I ∗

i−1,q+1, . . . , I
∗
i−1,µ(i−1) from the list; Oth-

erwise, letq = µ(i − 1) + 1.
Step 3.Inserti − 1 to the end of the list.

Lemma 6. After the above procedure, the resulting list
I ∗
i−1,p+1, I

∗
i−1,p+2, . . . , I

∗
i−1,q−1, i − 1 is equivalent to

the list I ∗
i,1, I

∗
i,2, . . . , I

∗
i,µ(i) needed for the ith iteration.

Proof. After Steps 1 and 2, the cumulative sums of
indices in the remaining list are less thanC[i − 1] since
C[I ∗

i−1,p+1] < C[I ∗
i−1,p+2] < · · · < C[I ∗

i−1,q−1] <

C[i − 1] by Lemma 5. Therefore, the expression
I ∗
i−1,j , for all j ∈ [p + 1, q − 1], can be rewritten as

I ∗
i−1,j = max{k | k ∈ (I ∗

i−1,j−1, i − 1] andC[k] � C[l]
∀l ∈ (I ∗

i,j−1, i − 1]}. Since I ∗
i−1,p � I ∗

i,0, we have
(I ∗

i,0, i − 1] ⊆ (I ∗
i−1,p, i − 1] and can further rewrite

the expression ofI ∗
i−1,p+1 as: I ∗

i−1,p+1 = max{k | k ∈
(I ∗

i,0, i − 1] andC[k] � C[l] ∀l ∈ (I ∗
i,0, i − 1]}. It fol-

lows thatI ∗
i−1,p+1 = I ∗

i,1, which yieldsI ∗
i−1,p+2 = I ∗

i,2,
leading toI ∗

i−1,p+3 = I ∗
i,3, etc. �

The algorithm for finding the shortest segment s
isfying a sum lower bound is given in Fig. 2. Noti
that, some update steps of Step 1 is incorporated
the while-loop body (see line 7) due to the fact that
value of i − y + x − 1 for the next iteration increase
with the increasingk.

Theorem 7. The SHORTEST_SEGMENT algorithm runs
in O(n) time.

Proof. It is clear that the update steps of the list dom
nate the time complexity of the algorithm. By observ
that each update step can be viewed as an action of
index getting into and out of the list, we have the to
cost for updating the list is bounded by O(n). Since each
index gets into and out of the list at most once, the t
time required is O(n). �
5. Concluding remarks

In this paper, we present two linear-time algorith
for finding the longest and shortest segmentsA(x,y)

of A satisfying S(x, y) � L. The sum constraint re
placed by an upper-boundU , specifyingS(x, y) � U ,
leads to an equivalent problem since

∑
x�k�y ak �

U ⇔ ∑
x�k�y −ak � −U . However, both sides of th

sum constraints cannot hold at the same time. It rem
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g that
Algorithm SHORTEST_SEGMENT

Input: A nonempty array ofn real numbersA[1. . . n] and a lower boundL.
Output: The start and end index of the shortest segment ofA with sum at leastL.
The listI∗ can be implemented as a linked list, initially assigned empty.
C[0. . . n] is an array of sizen + 1, as defined in the context.

1 C[0] ← 0; x ← y ← k ← 0; I∗ ← φ;
2 for i ← 1 to n do
3 C[i] ← C[i − 1] + A[i];
4 UPDATE(I∗, i, x, y);
5 if y > 0 then k ← i − y + x − 1;
6 while k < i − 1 do
7 if C[i] − C[HEAD(I∗)] � L then k ← DELETE_HEAD(I∗) else break;
8 x ← k + 1; y ← i;
9 end while

10 OUTPUTA(x,y);
11 end for

subroutine UPDATE(I∗, i, x, y)
1 while y > 0 and !EMPTY(I∗) and HEAD(I∗)� i − y + x − 1 do
2 DELETE_HEAD(I∗);
3 end while
4 while !EMPTY(I∗) and C[TAIL( I∗)] � C[i − 1] do DELETE_TAIL(I∗);
5 INSERT_TAIL(I∗, i − 1);

Fig. 2. Algorithm for finding the shortest segment with sum lower bound. EMPTY(I∗) returnstrue if list I∗ is empty, otherwise it returnsfalse.
HEAD(I∗) returns the value of the first element in listI∗. TAIL( I∗) returns the value of the last element in listI∗. DELETE_HEAD(I∗) deletes
the first element in listI∗ and returns its value. DELETE_TAIL(I∗) deletes the last element in listI∗ and returns its value. INSERT_TAIL(I∗, x)
inserts valuex into the end of listI∗. Notice that, at each iteration,A(x,y) represents the answer of the prefix sequence read so far, meanin
the algorithm runs in an online manner.
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open if there exist linear-time algorithms for locati
longest and shortest segmentsA(x,y) of A satisfying
L � S(x, y) � U .
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