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Abstract

We study several fundamental problems arising from biological sequence analysis. Given a sequence of real numbers, we prese
two linear-time algorithms, one for locating the “longest” sum-constrained segment, and the other for locating the “shortest” sum-
constrained segment. These two algorithms are based on the same framework and run in an online manner, hence they are capa
of handling data stream inputs. Our algorithms also yield online linear-time solutions for finding the longest and shortest average-
constrained segments by a simple reduction.
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1. Introduction By assigning G, C a number one and A, T a hum-
ber zero, the latter problem, which this paper mainly
Computer analysis of newly determined DNA se- tackles, can be described as: finding the longest seg-
guences, i.e., strings of the four letters A, C, G, and T, ment of a number sequence satisfying the average of
usually includes a task that identifies GC-rich segments. the numbers in that segment is greater than or equal to
A segment of a sequence, sometimes called an intervala lower boundL. For example, given a DNA sequence
or a region, is a contiguous subsequence of that se-GACGTCCCAGCAACAAA and a ratioL = 0.8, the
quence [2]. Segments of a DNA sequence that are rich in longest segment whose GC ratio is at leag i8 the
nucleotides G and C are usually biologically significant. segment from position 3 to position 8, i.e., CGTCCC.
As a consequence, two lines of investigation into such This segment contains 4 C's, 1 G's, and 1 T’s, thus it
segments arise. One line tries to locate a segment whosehas a CG ratio of 0.83 with the maximum length of 6.
length is constrained and GC-ratio is maximized [3-6, For this problem, Allison [1] gave an algorithm which is
8-10], and the other tries to locate a segment whose GC-gyaranteed to run in linear-time if the input sequence is
ratio is constrained and length is maximized [1,7,11]. 5 pnA sequence and is a rational number. But if the
input sequence is a sequence of real numbers, his algo-
"* Corresponding author. rithm may run in quadratic-time in the worst case. Wang
E-mail address: kmchao@csie.ntu.edu.tw (K.-M. Chao). and Xu [11] provided a linear-time algorithm that can
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cope with real number sequences, yet their algorithm Proof. Since
contains a preprocessing stage. In this paper, we give an S(x, y) ax

ive li _ti i i i S A — >
alternative linear-time algorithm that runs in an online G—x+1 E G_x4D "

manner, meaning that there is no preprocessing and the x<ky
algorithm.“imeractively" outputs the best. segment_right o Z (ax — L) >0,
after obtaining the next new number. This feature is im- v<hey

portant for tasks coping with data stream inputs, or for ] i )

applications requiring real-time responses. it suffices to flnd the Ipngest and shortest segment with
As was mentioned in [1,11], finding the longest seg- @ NON-negative sum in a new sequere= (a1 — L,

ment whose average is at ledsis equivalent to finding 42— L,...,ap—=L). O

the longest segment whose sum is non-negative. There-

fore, the first part of the paper deals with a more general ~ Since sequencs can be computed “on the fly”, the

problem having an arbitrary sum lower bound. As for Next two sections focus on giving onl|n_e Ilnear-t_lme al-

the second part, we consider another interesting prob_gonthms for Problems 1 and 3. The main result is stated

lem opposite to the longest segment problem. Specifi- &S follows.

cally, we wish to locate the “shortest” segment satisfy- . o ) )

ing a sum or an average constraint. We show that the Theorem 2. There exist online linear-time algorithms

shortest segment problem can be solved based on thdor Problems 1-4

same framework as the longest segment problem, but

differs in that the maintenance of the data structure is  FOr convenience in later proofs, we adopt the fol-

more complicated.
2. Preliminaries

Given a nonempty sequenee= (a1, az, ..., a,) Of
real numbers, and a lower bouiid let A(i, j) denote
the segment;, ..., a;) of A, and letS(i, j) denote the
sum ofA(i, j), defined asS (i, j) = Zigkgj ay fori <
j. The average ol (x, y) is S(x, ¥)/(y —x +1). There
are four problems of concern in this paper:

Problem 1. Locating the longest segmentx, y) of A
satisfyingS(x, y) > L.

Problem 2. Locating the longest segmentx, y) of A

satisfying }Sf’; 25> L

Problem 3. Locating the shortest segme#itx, y) of A
satisfyingS(x, y) > L.

Problem 4. Locating the shortest segmefitx, y) of A

satisfying > > L.

Lemma 1. The average-constrained segment problems,
i.e., Problems 2 and 4, can be reduced to a special case
of their corresponding sum-constrained segment prob-
lems, i.e., Problems 1 and 3with L = 0.1

1 In fact, Problem 4 can be solved by simply finding> L for
i€[1,n].

lowing notations. Lefi, j], [i, j), and(i, j] denote the
sets{i,i +1,...,j}, {i,i+1,...,j — 1}, and{i + 1,
i+2,...,j} for i < j, respectively. LetC[i] denote
the cumulative sum ofA, defined asC[0] = 0 and
Clil =Y 1ckiak for 1<i <n. ltis easy to see that
S, j)=C[jl1—Cli —1]for1<i < j<n.

3. Locating the longest segment satisfying a sum
lower bound

In order to achieve the online property, we adopt
a dynamic programming approach. Suppose, at the
(i — Dth iteration, the longest segment a{1,; — 1)
with sum at leastZ. has been computed as(x, y).
The goal is to locate, at thah iteration, the longest
segment ofA(1, i) with sum at leastL. It suffices to
find the smallest index € [0,i — y + x — 1) satisfy-
ing S(k+1,i) =C[i]— C[k] > L. If suchk exists, then
A(k+1,i) isthe longest segment df(1, i). Otherwise,
A(x, y) remains the answer. Instead of searchingkfor
by brute force, the algorithm proceeds in the “safest”
way to avoid unnecessary search steps.

Definition 1. For each index € [1, n], we define induc-
tively an ordered list of the “safest” indicéss, /; 2, . . .,
I; iy, where (i) denotes the size of the list; o =
i—y+x—21and/ j+1 =min{k | k € [0, ; ;) and
Clk] < C[l VI € [0,1; )} for j > 1 and [;; > O.
Notice that, the last index of the list is index 0, i.e.,
Ii,u(i) =0.

We say]; ; is the safest index, in the sense that if
A(l;j + 1,i) does not satisfy the sum lower bound,
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Algorithm LONGEST_SEGMENT

Input: A nonempty array ofi real numbersi[1...n] and a lower bound..
Output: The start and end index of the longest segmemnt afith sum at leasL.
C[0...n]andM][O...n] are arrays of size + 1, as defined in the context.

1M[0] < C[0] <~ 0;x <y «O0;
2fori < 1tondo
3 Clil«<C[i =11+ A[il;

4 ifCli —1] < C[M[i — 1]] then M[i] < i —1else M[i] = M[i — 1;
5 k<«i—-y+x-1;

6 whilek>0do

7 if C[i] — C[M[k]] > L then k < M[k] else break;

8 x<—k+1,y<«i,

9 endwhile

10 OUTPUTA(x, y);

11end for

Fig. 1. Algorithm for finding the longest segment with a sum lower bound. Notice that, at each itefgtion) represents the answer of the prefix
sequence read so far, meaning that the algorithm runs in an online manner.

neither doesA(I+1,i) forall/ € [0, [; j—1). This is be-
causeC[[; ;] has the minimum cumulative sum 6f/]
forall I € [0, I; j—1). The list of indices defined above
has the following property.

L emma 3. The cumulative sums of the safest indicesin-
crease strictly, i.e., C[I; 1] < C[Ii 2] < --- < C[Li ui)]s
WhereIl-,l >lio>-> Ii,u(i)-

Proof. For two consecutive “safest” indices ; and
I; j+1, j = 1, since by definitionC[I; ;1 < C[I] for
all I € [0, Ii j—1) andI,-,jH €[0,1;,;) ClO0,1;j-1), we
haveC[Il-,j] < Cll; j+1] with Lij>1ij+1. O

The main role of the “safest” index is to inform,
without the need of examining the whole interval, the
algorithm when to stop. The algorithm retrieves the
first “safest” indexI; 1 and checks itC[i] — C[[; 1] >
L. If not, we have the immediate conclusion that no
suchk exists sinceC[/; 1] is the minimum value of
C[l] for 1 € [0,i — y + x — 1). Otherwise, the algo-
rithm retrieves the next “safest” indef, and checks
if C[i]— C[1; 2] > L. Continuing in this manner, the al-
gorithm retrieved; 1, I; 2, . . ., I; ,;y One by one until it
finds thatC[i] — ClLij12L andCl[i] — Clljal <L
for somej € [1, u(i)], or thatC[i] — C[I;;] > L for
all 7 € [1, w(@)]. In the latter caseA(l; ) + 1,i) =
A(L,i) is clearly the longest segment @f(1,i) with
sum at least.. In the former caseC'[i] — C[]; j41] <
L implies thatS( + 1,i) = C[i] — C[I] < L for all
I €10, 1; ;). Hence,A(l; ; + 1,i) is the longest seg-
ment of A(Z, i) with sum at leasL. Now, the challenge
lies in whether or not we can maintain a data struc-
ture on the fly that helps us retrieve, at flie iteration,

Ii1, 12, ..., I; ui) one by one. An auxiliary array/ is
defined asM[i] = min{k | k € [0,i) and C[k] < C[/]
Vi €[0,i)}. Itis not hard to verify that

lig=M[i —y+x—1],

La=M[M[i—y+x-1], ...,

Ly =M[...M[M[i —y+x—1]]...].

(i) times

Array M can be computed on the fly by the following
recurrence:

0 ifi =0;
i—1 ifi >1and

Ml[il= Cli — 1] < C[M[i — 1]1;
M[i—1] ifi>1and

Cli —11>C[MI[i — 1]].

The algorithm for finding the longest segment satis-
fying a sum lower bound is given in Fig. 1. An intuitive
way to show that the @NGEST SEGMENT algorithm
runs in Q) time is to observe that the cost of the steps
for finding a longer segment at each iteration is equiva-
lent to the length of the segment grown throughout the
execution. Since the length of the longest segment at
the end is less than or equalipthe cost is bounded by
O(n). A more formal proof is given in the following.

Theorem 4. The LONGEST_SEGMENT algorithm runs
in O(n) time.

Proof. The total number of operations ofdNGEST _
SEGMENT is clearly bounded by @) except for the
while-loop body of lines 6-9. By verifying that
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(1) y —x =0 holds initially,

(2) y = x holds throughout the execution,
(3) the value ofy — x never decreases, and
(4) y —x + 1< n atthe end of the execution,

we conclude that the overall time required by the loop
isO(n). O

4. Locating the shortest segment satisfying a sum
lower bound

Suppose, at th@ — 1)th iteration, the shortest seg-
ment of A(1,i — 1) with sum at leasf. has been com-
puted asA(x, y). Following a paradigm similar to the
last section, we define another list of the “safest” in-
dices, only this time the “safest” indices move towards
the other direction since our main goal now is to find a
shorter segment.

Definition 2. For each index € [1, n], we define induc-
tively an ordered list of the “safest” indlce!§l, Il 2
Il*w), where (i) denotes the size of the list* 1o =
z—y+x—1andl* 1_max{klke(l* i—1]and
C[k]<C[l]Vle(1*/ 1]} for j > 1andl*/<z—1
Notice that, the last index of the list is indéx- 1, i.e.,
Ii,u(i) =i-—1.

Lemma 5. The cumulative sums of the safest indicesin-
crease strictly, i.e, C[I*l] < C[I’ 2] << C[]*M(l)]
where Iy < Iy < <I7, .

Proof. Similarto Lemma 3. O
The algorithm proceeds along the list of safest in-

dices Il v 1 2,...,Il.*u(l.) until it finds that C[i] —
C[I;jj] ClI* fipl <L for somej €
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Step 2. The remaining list is then searched from right
to left for the smallesty € (p, u(i — 1)] satisfying
Cli —1]< C[I~*_1’q]. If suchg exists, then delete
Iy g i1 gnr -0 121 gy from the list; Oth-
erwise, letg = u(@ — 1) + 1.

Step 3.Insert — 1 to the end of the list.

Lemma 6. After the above procedure the resulting list
I* I* .,Il 1g-101 — 1 is equivalent to

i—1p+1 Ti— 1p+2"'
thelist 17, 175, ... needed for the ith iteration.

’ l/l.(l)
Proof. After Steps 1 and 2, the cumulative sums of the
indices in the remaining list are less th@fy — 1] since
ClIZ 1p+1l < ClI 1pp2l <0 < Cly 4] <
Cli — 1] by Lemma 5. Therefore, the expression of
I 1) forall jelp+1q— 1] can be rewritten as:
IF,  =maxk | ke ([ 1j-11 1] andC[k] < C[l]
Vi € (I* _oi = 1]} Slnce IF “1p < II*O, we have
(I* i — 1] cux 1l — 1] and can further rewrite
the expressmn off y ,ypasily g =maxk|ke

(Ifo.1 — 1] and C[k] CllVie (I*O,i —1]}. It fol-
Iows thatll 1p41= Il. 1» Which weldsl;‘:l’p+2 = 1:,2'
leading toZ;" ; 3= =13 etc. O

The algorithm for finding the shortest segment sat-
isfying a sum lower bound is given in Fig. 2. Notice
that, some update steps of Step 1 is incorporated into
the while-loop body (see line 7) due to the fact that the
value ofi — y + x — 1 for the next iteration increases
with the increasing.

Theorem 7. The SHORTEST _SEGMENT algorithmruns
in O(n) time.

Proof. Itis clear that the update steps of the list domi-
nate the time complexity of the algorithm. By observing

L and C[i] —

[1, n(@)], or thatC[i] — C[I*l] > Lforallle (1, n(]. that each update step can be viewed as an action of each
However, the same challenge occurs, i.e., whether or notindex getting into and out of the list, we have the total
we can maintain a data structure on the fly that helps us cost for updating the list is bounded by#). Since each
retrieve, at theth iteration,/;, I,,.... I7, ;) one by index gets into and out of the list at most once, the total
one. We use kinked list to impiement the data structure. time required is @). O
The maintenance of the list is described below. Sup-

pose, at thgi — 1)th iteration, we have the complete 5, Concluding remarks
list 1 11 I 120 Il.*_l,ﬂ(l._l). Then, the list for the

ith iteration, i.e..[/y, I/, ..., I} can be obtained

i iy In this paper, we present two linear-time algorithms
by the following procedure:

for finding the longest and shortest segmeats, y)

of A satisfying S(x,y) > L. The sum constraint re-
placed by an upper-bound, specifyingS(x, y) < U,
leads to an equivalent problem singe, ., ar <
U< > i<k<y —ak = —U. However, both sides of the
sum constraints cannot hold at the same time. It remains

Step 1.The list is searched from left to right for the

largestp € [1, u(i — 1)] satisfying/* 1, S Ifg=
i—y+x— 1 If suchp exists, then deleté” ; 1’

I* from the list; Otherwise, Ie;b

i—1,2° > 1 l
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Algorithm SHORTEST_SEGMENT

Input: A nonempty array of real numbersA[1...n] and a lower bound..
Output: The start and end index of the shortest segmeunt with sum at leasL.
The list/* can be implemented as a linked list, initially assigned empty.
CI[0...n]is an array of size + 1, as defined in the context.

1 C[0]«0;x <y <k <«0;I* < ¢;
2 fori < 1ton do
Clil] < Cli — 1]+ A[il;
UPDATE(*, i, x, y);
ify>0thenk «~i—y+x—1;
whilek <i —1do
if C[i]— C[HEAD(I*)] > L then k < DELETE_HEAD(*) else break;
x<—k+1;y<«i;
end while
10 OUTPUTA(x, y);
11 end for

©O©oOo~NOO O~ W

subroutine UPDATE(I*, i, x, y)

1 whiley > 0and 'EMPTY(/*) and HEAD(/*)<i—y+x —1do

2  DELETE_HEAD(*);

3 end while

4 while!lEMPTY(I*) and C[TAIL(I*)] > C[i — 1] do DELETE_TAIL(/*);
5 INSERT_TAIL(*,i — 1);

Fig. 2. Algorithm for finding the shortest segment with sum lower bound. EMPTV(eturnstrue if list I* is empty, otherwise it returnfal se.
HEAD(I*) returns the value of the first element in list. TAIL(7*) returns the value of the last element in I§t DELETE_HEAD(*) deletes

the first element in lisf* and returns its value. DELETE_TAIL{) deletes the last element in list and returns its value. INSERT_TAILE, x)

inserts valuex into the end of list/*. Notice that, at each iteratiod,(x, y) represents the answer of the prefix sequence read so far, meaning that
the algorithm runs in an online manner.

open if there exist linear-time algorithms for locating  [5] T.-H. Fan, S. Lee, H.-I. Lu, T.-S. Tsou, T.-C. Wang, A. Yao, An

longest and shortest segmentéx, y) of A satisfying optimal algorithm for maximum-sum segment and its application

L<Sk, y)<U. in bioinformatics, in: CIAA, in: Lecture Notes in Comput. Sci.,

vol. 2759, Springer, Berlin, 2003, pp. 251-257.

[6] M.H. Goldwasser, M.-Y. Kao, H.-I. Lu, Linear-time algorithms
for computing maximum-density sequence segments with bioin-

. . formatics applications, J. Comput. System Sci. 70 (2) (2005).

We thank William C. Vocke and the referees for their 71 x. Huang, An algorithm for identifying regions of a DNA

Acknowledgements

helpful comments. Kuan-Yu Chen and Kun-Mao Chao sequence that satisfy a content requirement, Comput. Appl.
were supported in part by an NSC grant 93-2213-E-002- Biosci. 10 (1994) 219-225.
029 from the National Science Council, Taiwan. [8] Y-L. Lin, X. Huang, T. Jiang, K.-M. Chao, MAVG: Locat-

ing non-overlapping maximum average segments in a given se-
guence, Bioinformatics 19 (2003) 151-152.

[9] Y.-L. Lin, T. Jiang, K.-M. Chao, Efficient algorithms for locat-

[1] L. Allison, Longest biased interval and longest non-negative sum ing Fhe length-constrained heavie_st segments with applicat_ions
; P . to biomolecular sequence analysis, J. Comput. System Sci. 65
interval, Bioinformatics 19 (2003) 1294-1295. (2002) 570-586.

[2] J. Bentley, Programming Pearls—algorithm design techniques,
Comm. ACM 27 (1984) 865-871.

[3] K.-Y. Chen, K.-M. Chao, On the range maximum-sum segment
query problem, in: ISAAC, in: Lecture Notes in Comput. Sci.,
vol. 3341, Springer, Berlin, 2004, pp. 294-305. 1999, pp. 234-241. L . .

[4] K. Chung, H.-I. Lu, An optimal algorithm for the maximum- [11] L. Wgng, Y. Xu, SEG‘ID: Identlfyl_ng |nteres_t|ng segments in
density segment problem, SIAM J. Comput. 34 (2) (2004) 373~ (nggltlple) sequence alignments, Bioinformatics 19 (2003) 297—
387. .

References

[10] W.L. Ruzzo, M. Tompa, A linear-time algorithm for finding all
maximal scoring subsequences, in: Proc. 7th Internat. Conf. In-
telligent Systems for Molecular Biology, Heidelberg, Germany,



