
ar
X

iv
:c

s/
05

04
10

4v
2

 [
cs

.D
S]

 2
7

Se
p

20
05

The Reverse Greedy Algorithm for the

Metric k-Median Problem

Marek Chrobak∗ Claire Kenyon† Neal Young‡

October 14, 2018

Abstract

The Reverse Greedy algorithm (RGreedy) for the k-median problem works as follows.

It starts by placing facilities on all nodes. At each step, it removes a facility to minimize

the total distance to the remaining facilities. It stops when k facilities remain. We prove

that, if the distance function is metric, then the approximation ratio of RGreedy is between

Ω(log n/ log logn) and O(log n).

Keywords: Analysis of algorithms, approximation algorithms, online algorithms, facility loca-

tion, combinatorial optimization.

1 Introduction

An instance of the metric k-median problem consists of a metric space X = (X, c), where X is a

set of points and c is a distance function (also called the cost) that specifies the distance cxy ≥ 0

between any pair of nodes x, y ∈ X. The distance function is reflexive, symmetric, and satisfies the

triangle inequality. Given a set of points F ⊆ X, the cost of F is defined by cost(F) =
∑

x∈X cxF ,

where cxF = minf∈F cxf for x ∈ X. Our objective is to find a k-element set F ⊆ X that minimizes

cost(F).

Intuitively, we think of F as a set of facilities and of cxF as the cost of serving a customer

at x using the facilities in F . Then cost(F) is the overall service cost associated with F . The

k-element set that achieves the minimum value of cost(F) is called the k-median of X .

The k-median problem is a classical facility location problem and has a vast literature. Here,

we review only the work most directly related to this paper. The problem is well known to be NP-

hard, and extensive research has been done on approximation algorithms for the metric version.

Arya et al. [1] show that the optimal solution can be approximated in polynomial time within

ratio 3 + ǫ, for any ǫ > 0, and this is the smallest approximation ratio known. Earlier, several

approximation algorithms with constant, but somewhat larger approximation ratios appeared in

∗Department of Computer Science, University of California, Riverside, CA 92521. Email: marek@cs.ucr.edu.

Research supported by NSF Grant CCR-0208856.
†Computer Science Department, Brown University, Providence, RI 02912. Email: claire@cs.brown.edu.
‡Department of Computer Science, University of California, Riverside, CA 92521. Email: neal@cs.ucr.edu.

1

http://arxiv.org/abs/cs/0504104v2

the works by Charikar et al. [5], Charikar and Guha [4], and Jain and Vazirani [8]. Jain et al. [7]

show a lower bound of 1 + 2/e on the approximation ratio for this problem (assuming P 6=NP).

In the oblivious version of the k-median problem, first studied by Mettu and Plaxton [9], the

algorithm is not given k in advance. Instead, requests for additional facilities arrive over time.

When a request arrives, a new facility must be added to the existing set. In other words, the

algorithm computes a nested sequence of facility sets F1 ⊂ F2 ⊂ · · · ⊂ Fn, where |Fk| = k for

all k. This problem is called online median in [9], incremental median in [10], and the analog

version for clustering is called oblivious clustering in [2, 3]. The algorithm presented by Mettu and

Plaxton [9] guarantees that cost(Fk) approximates the optimal k-median cost within a constant

factor (independent of k.) They also show that in this oblivious setting no algorithm can achieve

approximation ratio better than 2− 2/(n − 1).

The naive approach to the median problem is to use the greedy algorithm: Start with F0 = ∅,

and at each step k = 1, . . . , n, let Fk = Fk−1 ∪ {fk}, where fk ∈ X − Fk−1 is chosen so that

cost(Fk) is minimized. Clearly, this is an oblivious algorithm. It is not difficult to show, however,

that its approximation ratio is Ω(n).

Reverse Greedy. Amos Fiat [6] proposed the following alternative idea. Instead of starting

with the empty set and adding facilities, start with all nodes being facilities and remove them

one by one in a greedy fashion. More formally, Algorithm RGreedy works as follows: Initially,

let Rn = X. At step k = n, n − 1, . . . , 2, let Rk−1 = Rk − {rk}, where rk ∈ Rk is chosen so

that cost(Rk−1) is minimized. For the purpose of oblivious computation, the sequence of facilities

could be precomputed and then produced in order (r1, r2, . . . , rn).

Fiat [6] asked whether RGreedy is an O(1)-approximation algorithm for the metric k-median

problem. In this note we present a nearly tight analysis of RGreedy by showing that its approx-

imation ratio is between Ω(log n/ log log n) and O(log n). Thus, although its ratio is not constant,

RGreedy performs much better than the forward greedy algorithm.

2 The Upper Bound

One crucial step of the upper bound is captured by the following lemma.

Lemma 2.1 Consider two subsets R and M of X. Denote by Q the set of facilities in R that

serve M , that is, a minimal subset of R such that cµQ = cµR for all µ ∈ M . Then for every x ∈ X

we have cxQ ≤ 2cxM + cxR.

Proof: For any x ∈ X, choose r ∈ R and µ ∈ M that serve x in R and M , respectively.

In other words, cxR = cxr and cxM = cxµ. We have cµr ≥ cµQ, by the definition of Q. Thus

cxQ ≤ cxµ + cµQ ≤ cxµ + cµr ≤ 2cxµ + cxr = 2cxµ + cxR. ✷

Now, fix k and let M be the optimal k-median of X . Consider a step j of RGreedy (when

we remove rj from Rj to obtain Rj−1), for j > k. Denote by Q the set of facilities in Rj that

2

serve M . We estimate first the incremental cost in step j:

cost(Rj−1)− cost(Rj) ≤ min
r∈Rj\Q

cost(Rj \ {r})− cost(Rj) (1)

≤
1

|Rj \Q|

∑

r∈Rj\Q

[cost(Rj \ {r})− cost(Rj)] (2)

≤
1

j − k

∑

r∈Rj\Q

[cost(Rj \ {r})− cost(Rj)] (3)

≤
1

j − k
[cost(Q)− cost(Rj)] (4)

≤
2

j − k
cost(M). (5)

The first inequality follows from the definition of Rj−1, in the second one we estimate the minimum

by the average, and the third one follows from |Q| ≤ k. We now justify the two remaining

inequalities.

Inequality (4) is related to the the super-modularity property of the cost function. We need

to prove that
∑

r∈R\Q

[cost(R \ {r})− cost(R)] ≤ cost(Q)− cost(R),

where R = Rj . To this end, we examine the contribution of each x ∈ X to both sides. The

contribution of x to the right-hand side is exactly cxQ−cxR. On the left-hand side, the contribution

of x is positive only if cxQ > cxR and, if this is so, then x contributes only to one term, namely the

one for the r ∈ R \Q that serves x in R (that is, cxr = cxR). Further, this contribution cannot be

greater than cxQ− cxR because Q ⊆ R \{r}. (Note that we do not use here any special properties

of Q and R. This inequality holds for any Q ⊂ R ⊆ X.)

Finally, to get (5), we apply Lemma 2.1 to the sets R = Rj, M , and Q, and sum over all

x ∈ X.

We have thus proved that cost(Rj−1) − cost(Rj) ≤ 2

j−kcost(M). Summing up over j =

n, n− 1, . . . , k + 1, we obtain our upper bound.

Theorem 2.2 The approximation ratio of Algorithm RGreedy in metric spaces is at most

2Hn−k = O(log n).

3 The Lower Bound

In this section we construct an n-point metric space X where, for k = 1, the ratio between the

cost of the RGreedy’s facility set and the optimal cost is Ω(log n/ log log n). (For general k, a

lower bound of Ω(log(n/k)/ log log(n/k)) follows easily, by simply taking k copies of X .)

To simplify presentation, we allow distances between different points in X to be 0. These

distances can be changed to some appropriately small ǫ > 0 without affecting the asymptotic

ratio. Similarly, whenever convenient, we will break the ties in RGreedy in our favor.

Let T̂ be a graph that consists of a tree T with root ρ and a node µ connected to all leaves of

T . T itself consists of h levels numbered 1, 2, . . . , h, with the leaves at level 1 and the root ρ at

level h. Each node at level j > 1 has (j + 1)3 children in level j − 1.

3

To construct X , for each node x of T at level j we create a cluster of wj = j!3 points (including

x itself) at distance 0 from each other. Node µ is a 1-point cluster. All other distances are defined

by shortest-path lengths in T̂ .

First, we show that, for k = 1, RGreedy will end up with the facility at ρ. Indeed, RGreedy

will first remove all but one facility from each cluster. Without loss of generality, let those

remaining facilities be located at the nodes of T̂ , and from now on we will think of wj as the

weight of each node in layer j. At the next step, we break ties so that RGreedy will remove the

facility from µ.

We claim that in any subsequent step t, if j is the first layer that has a facility, then RGreedy

has a facility on each node of T in layers j + 1, . . . , h. To prove it, we show that this invariant

is preserved in one step. If a node x in layer j has a facility then, by the invariant, this facility

serves all the nodes in the subtree Tx of T rooted at x, plus possibly µ (if x has the last facility

in layer j.) What facility will be removed by RGreedy at this step? The cost of removing any

facility from layers j + 1, . . . , h is at least wj+1. If we remove the facility from x, all the nodes

served by x can switch to the parent of x, so the increase in cost is bounded by the total weight

of Tx (possibly plus one, if x serves µ.) Tx has (j + 1)!3/(i + 1)!3 nodes in each layer i ≤ j. So

the total weight of Tx is

w(Tx) =

j
∑

i=1

wi · (j + 1)!3/(i+ 1)!3

= (j + 1)!3
j

∑

i=1

(i+ 1)−3

< (j + 1)!3

= wj+1,

where the inequality above follows from
∑j

i=1
(i+1)−3 ≤

∑∞
i=2

i−2 < 1. Thus removing x increases

the cost by at most w(Tx)+ 1 ≤ wj+1, so RGreedy will remove x or some other node from layer

j in this step, as claimed. Therefore, overall, after n − 1 steps, RGreedy will be left with the

facility at ρ.

By the previous paragraph, the cardinality (total weight) of X is n = w(T) + 1 ≤ (h + 1)!3,

so h = Ω(log n/ log log n). The optimal cost is

cost(µ) =

h
∑

i=1

i · wi · (h+ 1)!3/(i+ 1)!3

= (h+ 1)!3
h

∑

i=1

i(i+ 1)−3

< (h+ 1)!3
∞
∑

i=2

i−2

< (h+ 1)!3,

4

while the cost of RGreedy is

cost(ρ) =

h
∑

i=1

(h− i) · wi · (h+ 1)!3/(i + 1)!3

= (h+ 1)!3
h
∑

i=1

(h− i)(i + 1)−3

≥ (h− 1)(h + 1)!3/8,

where in the last step we estimate the sum by the first term. Thus the ratio is cost(ρ)/cost(µ) ≥

(h− 1)/8 = Ω(log n/ log log n).

In the argument above we considered only the case k = 1. More generally, one might char-

acterize the performance ratio of the algorithm as a function of both n and k. Any lower bound

for k = 1 implies a lower bound for larger k by simply taking k (widely separated) copies of the

metric space. Therefore we obtain:

Theorem 3.1 The approximation ratio of Algorithm RGreedy in metric spaces is not better

than Ω(log(n/k)/ log log(n/k)).

4 Technical Observations

We have shown an O(log n) upper bound and an Ω(log n/ log log n) lower bound on the approxi-

mation ratio of RGreedy for k-medians in metric spaces. Next we make some observations about

what it might take to improve our bounds. We focus on the case k = 1.

Comments on the upper bound. In the upper bound proof in Section 2 we show that the

incremental cost ofRGreedy when removing rj fromRj to obtain Rj−1 is at most 2cost(µ)/(j−1),

where µ denotes the optimal 1-median. The proof (inequalities (1) through (5)) doesn’t use any

information about the structure of Rj: it shows that for any set R of size j,

min
r

cost(R \ {r})− cost(R) ≤
2cost(µ)

j − 1
. (6)

Next we describe a set R of size j in a metric space for which this latter bound is tight. The

metric space is defined by the following weighted graph:

x ix 2x 1 x j

.

2 2

y 1 y 2 y i y j

.

2 1

µ
1

(weight w)

R

11
1

5

The space has points µ, x1, . . . , xj , y1, . . . , yj , where the points xi have weights w, for some large

integer w. (In other words, each xi represents a cluster of w points at distance 0 from each other.)

All other points have weight 1. Point µ is connected to each xi by an edge of length 1. Each xi
is connected to yi by an edge of length 1, and to each yl, for l 6= i, by an edge of length 2. The

distances are measured along the edges of this graph.

For k = 1, the optimal cost is cost(µ) = j(w + 2). Now consider R = {y1, . . . , yj}. Removing

any yi ∈ R increases the cost by w ≈ cost(µ)/j. Thus, for this example, inequality (6) is tight,

up to a constant factor of about 2.

Of course, RGreedy would not produce the particular set R assumed above for Rj. Also,

this example only shows a single iteration where the incremental cost matches the upper bound

(6). Nonetheless, the example demonstrates that to improve the upper bound it is necessary to

consider some information about the structure of Rj (due to the previous steps of RGreedy).

Comments on the lower bound. We can show that the lower-bound constructions similar

to that in Section 3 are unlikely to give any improvement, in a technical sense formalized in

Lemma 4.1.

Fix a metric space X = (X, c) with n points, where n is a large integer. Let µ be the 1-median

of X , and assume (by scaling) that its cost is cost(µ) = n/2. Let B be the unit ball around µ,

that is, the set of points at distance at most 1 from µ. Note that |B| ≥ n/2.

For i ≥ 0, define Zi to be the points x ∈ X such that i − 1 < cxµ ≤ i, and such that there

is a time when x is used by RGreedy as a facility for some point in B. Thus Z0 = {µ} and

Z0 ∪ Z1 = B. Also, for i ≤ j, let Zi,j = ∪j
l=iZl.

Let h be the maximum index for which Zh 6= ∅. Define tj to be the time step when RGreedy

is about to remove the last facility from Z0,j, and for j ≥ 7 let mj be the number of points served

by Zj at time tj−6. (The value of 6 is not critical; any constant C ≥ 6 will work, with some minor

modifications.)

Lemma 4.1 Suppose that
∑h

i=10
imi = O(n). Then, for k = 1, the approximation ratio of

RGreedy is O(log n/ log log n).

Proof sketch: We will show that h = O(log n/ log log n). Since the facility computed by

RGreedy for k = 1 is at distance at most h from µ, this will imply the lemma, by the triangle

inequality.

We first argue that Zi = ∅ cannot happen for more than four consecutive values of i < h.

Indeed, Z0, Z1 6= ∅. Assume, towards a contradiction, that Zi 6= ∅ and that Zi+1,i+4 = ∅. Then

at step ti, RGreedy deletes the last facility f ∈ Z0,i, its cost to serve µ increases by at least 4

and its cost to serve B increases by more than 2|B| ≥ n. Let j > i+ 4 be such that Zj 6= ∅. By

Lemma 2.1, deleting a facility f ′ ∈ Zj at time ti would increase the cost by at most 2cost(µ) ≤ n,

hence less than the cost of deleting f at time ti – contradicting the definition of RGreedy.

Now, consider any i ≤ h− 9. It is easy to see that over all steps ti, ti + 1, .., ti+3, RGreedy’s

cost to serve B increases by at least |B| ≥ n/2, while, by the triangle inequality, all facilities that

serve B at steps ti+1, ti+1+1, ..., ti+3 are in Zi+1,i+5. Thus, there exists a t ∈ [ti, ti+3] such that at

step t, RGreedy deletes a facility f and pays an incremental cost of at least (n/2)/(1+|Zi+1,i+5|).

Suppose Zi+9 6= ∅. Since t ≤ ti+3, the facilities in Zi+9 serve at most mj clients. Therefore, at

step t, deleting all facilities in Zi+9 and serving their clients using a remaining facility from Zi,i+3

would have increased the cost by O(imi+9), by the triangle inequality. So there exists a facility

6

f ′ in Zi+9 whose deletion at step t would have increased the cost by O(imi+9/|Zi+9|). Since at

time t RGreedy prefers to delete f rather than f ′, we have

(n/2)/(1 + |Zi+1,i+5|) = O(imi+9/|Zi+9|).

Rewriting and summing the above over i (including now those i for which Zi+9 is empty),

h−9
∑

i=1

|Zi+9|

1 + |Zi+1,i+5|
= O

(1

n

h−9
∑

i=1

imi+9

)

= O
(1

n

h
∑

i=10

imi

)

≤ A, (7)

for some constant A.

The intuition is that for this sum to be bounded by a constant, the cardinalities |Zi| must

rapidly decrease (except for some small number of abnormalities) and h cannot be too large. To

get a good estimate, let yi = |Z8i+1,8i+8|, for i = 1, . . . , ⌊h/8⌋ − 1. Then,

⌊h/8⌋−2
∑

i=1

yi+1

yi + yi+1

=

⌊h/8⌋−2
∑

i=1

8i+8
∑

j=8i+1

|Zj+8|

|Z8i+1,8i+16|
≤

⌊h/8⌋−2
∑

i=1

8i+8
∑

j=8i+1

|Zj+8|

1 + |Zj,j+4|
≤ A,

where the next-to-last inequality holds because 1+ |Zj,j+4| ≤ |Z8i+1,8i+16| for all j = 8i+1, ..., 8i+

12. (Here, again, we use the fact that at most four consecutive Zl’s can be zero.)

Now let qi = yi+1/yi for all i = 1, . . . , ⌊h/8⌋− 2. We have
∑⌊h/8⌋−2

i=1
qi/(1+ qi) ≤ A. Therefore

qi ≤ 1 for all except at most 2A i’s. So there are m and g ≥ (⌊h/8⌋ − 2)/(2A) such that qi ≤ 1

for all i = m, ...,m+ g − 1. For those i’s we get

m+g−1
∑

i=m

qi ≤ 2 ·

m+g−1
∑

i=m

qi
1 + qi

= 2 ·

m+g−1
∑

i=m

yi+1

yi + yi+1

≤ 2A.

Let
∑m+g−1

i=m qi = B ≤ 2A. Then
∏m+q−1

i=m qi is maximized when all qi are equal to B/g, and

therefore

1

n
≤

ym+g

ym
=

m+g−1
∏

i=m

qi ≤ (B/g)g.

Thus (g/B)g ≤ n, and we obtain h = O(g) = O(log n/ log log n), completing the proof. ✷

Note that assumption of the lemma holds for the metric space used in Section 3. There, each

set Zi, for i = 1, ..., h, consists of the nodes in T at level i, and mi = (h + 1)!3/(i + 1)3 is the

total weight of level i so, indeed,
∑h

i=1
imi = O(h!3) = O(n). The lemma suggests that in order

to improve the lower bound, one would need to design an example where at every time ti, the

facilities serving nodes at distance at most i from µ are distributed more or less uniformly across

the remaining facilities.

Acknowledgments. We would like to thank Amos Fiat, Christoph Dürr, Jason Hartline, Anna

Karlin, and John Noga for useful discussions.

7

References

[1] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit. Local search heuristic

for k-median and facility location problems. In Proc. 33rd ACM Symposium on Theory of

Computing, pages 21–29, 2001.

[2] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic

information retrieval. In Proc. 29th ACM Symposium on Theory of Computing, pages 626–

635, 1997.

[3] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic

information retrieval. SIAM Journal on Computing, 33:1417–1433, 2004.

[4] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and

k-median problems. In Proc. 40th IEEE Symposium on Foundations of Computer Science,

pages 378–388, 1999.

[5] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A constant-factor approximation

algorithm for the k-median problem. In Proc. 31st ACM Symposium on Theory of Computing,

pages 1–10, 1999.

[6] A. Fiat. Private communication.

[7] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems.

In Proc. 34th ACM Symposium on Theory of Computing, pages 731–740, 2002.

[8] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-

median problems using the primal-dual schema and lagrangian relaxation. Journal of ACM,

48:274–296, 2001.

[9] R. Mettu and C. Plaxton. The online median problem. SIAM Journal on Computing,

32:816–832, 2003.

[10] C. Plaxton. Approximation algorithms for hierarchical location problems. In Proc. 35th ACM

Symposium on Theory of Computing, pages 40–49, 2003.

8

	Introduction
	The Upper Bound
	The Lower Bound
	Technical Observations

