
A new algorithm for online uniform-machine

scheduling to minimize the makespan

T.C.E. Cheng∗† C.T. Ng‡ Vladimir Kotov§

Abstract

We consider the online scheduling problem with m − 1, m ≥ 2,
uniform machines each with a processing speed of 1, and one machine
with a speed of s, 1 ≤ s ≤ 2, to minimize the makespan. The well-
known list scheduling (LS) algorithm has a worst-case bound of 3m−1

m+1

[1]. An algorithm with a better competitive ratio was proposed in [3].
It has a worst-case bound of 2.8795 for a big m and s = 2. In this
note we present a 2.45-competitive algorithm for m ≥ 4 and any s,
1 ≤ s ≤ 2.

Keywords: Online algorithms; competitive ratio; multi-machine schedul-
ing; uniform machines

1 Introduction

In the classical uniform-machine scheduling problem, there are m ≥ 2 ma-
chines (M1,M2, . . . ,Mm) with speeds (s1, s2, . . . , sm) associated with the
machines, respectively. A list of n independent jobs with nonnegative process-
ing times p1, . . . , pn has to be scheduled nonpreemptively on these machines
with the objective of minimizing the makespan. In the online version of the
multi-machine scheduling problem, each job must be immediately and irrev-
ocably assigned to one of the machines without any knowledge of the future

∗Department of Logistics, The Hong Kong Polytechnic University, Kowloon, Hong

Kong, lgtcheng@inet.polyu.edu.hk
†corresponding author
‡Department of Logistics, The Hong Kong Polytechnic University, Kowloon, Hong

Kong, lgtctng@inet.polyu.edu.hk
§Faculty of Applied Mathematics and Computer Science, Belarusian State University,

Skarina ave. 4, Minsk, 220050, Belarus, kotovVM@bsu.by

1

jobs. The performance of an online algorithm is measured by its competitive
ratio, i.e., the worst-case ratio with respect to the optimal solution of the
corresponding offline problem.

The online multi-machine scheduling problem was first investigated by Gra-
ham, who showed that the list scheduling (LS) algorithm has a competitive
ratio of exactly 2− 1/m [2]. Cho and Sahni [1] proved that for the uniform-
machine system, the LS algorithm has a worst-case bound of 3m−1

m+1 for m ≥ 3.
When si = 1 (i = 1, . . . , m−1) and sm > 1, Cho and Sahni also showed that
the LS algorithm has a worst-case bound of 1 + (m−1)

m+s−1 min(2, s) ≤ 3− 4
m+1 ,

and the bound 3− 4
m+1 is achieved when s = 2.

Li and Shi [3] proved that the LS algorithm is the best possible one for
m ≤ 3, and proposed an algorithm that is significantly better than the LS
algorithm when si = 1 (i = 1, . . . , m−1) and sm = 2, m ≥ 4. The algorithm
has a worst-case bound of 2.8795 for a big m.

In this note we present a 2.45-competitive algorithm for any m ≥ 4 and any
sm, 1 ≤ sm = s ≤ 2. This is a marked improvement over the algorithm of Li
and Shi because our algorithm yields a considerably lower competitive ratio
while our results hold under more general conditions. The construction of
the algorithm is based on simple logical reasoning, which is different from
the traditional approach applied to construct the LS algorithm.

2 A 2.45-competitive algorithm for an arbitrary

number of machines

Before presenting the main results, we introduce some notation.

m = the number of machines;

Vi,j = the current load of the ith machine after assigning pj in step j;

Vj = the minimum current load of the machines 1, . . . , m− 1 after assigning
pj in step j;

Lj = the lower bound for the makespan in step j; Lj = max(p1+...+pj

m+s−1 , pmax

s , pmax2),
where pmax = max(p1, . . . , pj), and pmax2 = max(p1, . . . , pmax−pmax, . . . , pj).

Property 1 L1 ≤ L2 ≤ . . . ≤ Lj.

Algorithm S.

Let α = 1.45. In step j we assign pj to the most loaded machine i < m with
the property Vi,j−1 + pj ≤ (1 + α)Lj if such a machine exists; otherwise, we
assign pj to the mth machine.

2

Lemma 1 In step j of algorithm S, if Vm,j−1 < Vm,j holds, then pj > pmax2.

Proof: Let pj ≤ pmax2. The algorithm assigns pj to machine m only when
Vt,j−1 + pj > (1 + α)Lj for all t = 1, . . . , m − 1. From this, it follows
that Vt,j−1 > (1 + α)Lj − pj ≥ αLj for all t = 1, . . . ,m − 1. Therefore,
Lj > Lj

(m−1)α+1
m+s−1 . But this is not possible for m ≥ 4.

Lemma 2 In step j of algorithm S, if Vm,j−1 = Vm,j > Lj holds, then
Vj−1 < Vj only if pj > αLj.

Proof: W.l.o.g. let Vj−1 be the load of the (m− 1)th machine, i.e., Vj−1 =
Vm−1,j−1. It is easy to see that if pj ≤ αLj , then the algorithm assigns pj to
machine m−1 only when Vt,j−1+pj > (1+α)Lj for all t = 1, . . . , m−2. But
this is possible in case Vt,j−1 > Lj for all t = 1, . . . , m− 3 and Vt,j−1 + pj >

(1 + α)Lj for t = m− 2.

From this and Vm,j−1 = Vm,j > Lj , it follows that the total processing time
of the jobs is larger than (m− 3 + 1 + α + s)Lj .

Hence Lj > Lj
m−2+α+s

m+s−1 . But this is not possible for m ≥ 4.

Lemma 3 In step j of algorithm S, if Vm,j−1 < Vm,j holds, then pj >

(1 + α)Lj − Vj−1.

Proof: In step j, algorithm S assigns pj to machine m because Vj−1 + pj >

(1 + α)Lj .

Lemma 4 Let f1, f2, . . . , fq be the jobs assigned to machine m, then fl−1 <

αfl for l = 2, . . . , q.

Proof: In step j of algorithm S, let Vm,j−1 < Vm,j and pj < αfq hold. It
is easy to see that if pj ≤ αLj , then the algorithm assigns pj to machine
m only when Vt,j−1 + pj > (1 + α)Lj for all t = 1, . . . , m − 1. From this,
it follows that Lj >

Lj(m−1+α)+fq

m+s−1 . But this is possible only when Lj >

fq/(s− α) > pj/(s− α)α ≥ Lj/(2− α)α, a contradiction.

Theorem 2 For α = 1.45, in any step j of algorithm S, either Vj−1 + pj ≤
(1 + α)Lj or Vm,j−1 + pj

s ≤ (1 + α)Lj.

3

Proof: In step n of algorithm S, let

Vn−1 + pn > (1 + α)Ln, Vm,n−1 +
pn

s
> (1 + α)Ln. (1)

This means that Vm,n−1 > αLn; otherwise, we have a contradiction with
pn

s ≤ Ln and Vm,n−1 + pn

s > (1 + α)Ln. Therefore, we can determine the
maximum index k such that Vm,k−1 ≤ Ln and Vm,k > Ln. This means that
in any current step j, j = k + 1, . . . , n, we can apply Lemma 2.

Let Z = pk.

Let β = 1 + α− 1
α and let γ = 1 + α− 1

αβ .

Let Z1, Z2, . . . , Zq = pn be the jobs assigned after job Z = pk to machine m,
q ≥ 1. Let Y1, Y2, . . . , Yt be the jobs assigned to machine m before Z, and
after this assignment, let the current load become bigger than Vk. W.l.o.g.
let Yj be assigned before Yj+1, j = 1, . . . , t− 1.

First, we show that

βZ < Z1, βZ1 < Z2, . . . , βZq−1 < Zq. (2)

Indeed, during the current step j, j = k+1, . . . , n, algorithm S either changes
or does not change Vj−1. Recall that Vj < Vm,k. In the former case, let j

correspond to the step of algorithm S after assigning Zf and before assigning
Zf+1. From Lemma 2, it follows that pj > αZf . Therefore, for Zf+1, we
have Zf+1 > αpj . Hence, Zf+1 > α2Zf > (1 + α − 1

α)Zf for α ≥ 1.45. In
the latter case, the result follows from Lemma 3, taking into consideration
Vj−1 = Vk−1 < Z/α.

Therefore,

Z + Z1 + . . . + Zq < Zq(1 +
1
β

+
1
β2

+ . . . +
1
βq

). (3)

It should be mentioned that if job Z2 was assigned without changing Vk−1,
then from Lemma 3, taking into consideration Vj−1 = Vk−1 < Z1

αβ , it follows
that Z2 > γZ1.

From Lemma 4, we have

Y1 + . . . + Yt < Yt(1 +
1
α

+
1
α2

+ . . . +
1

αt−1
) <

αYt

α− 1
. (4)

Let job Yt be the jobs assigned to machine m during step t1.

Case 1. pn = Z1, i.e., only one job pn is assigned to machine m after job pk.

4

1.1. Lk ≥ Vm,k−1. From Lemma 3 and the definition of k, it follows that
Z > αLk. From Lemma 3, it follows that pn > αZ. Therefore, from (1), it
follows that

1 + α <
Vm,k−1+Z

s
+ pn

s
Ln

≤ Lk+Z
s

+ pn
s

max(Z, pn
s

)
≤ 1

α + 1
α + 1.

For α ≥ 1.45, this is not possible.

1.2. Lk < Vm,k−1. This means that Vk < Vm,k−1.

1.2.1. Vk < Vn−1. The algorithm changes Vk by adding at least one job pj

to the machine that has the minimum load in step k. From Lemma 2, it
follows that pj > αZ. Taking into consideration Lemmas 1 and 3, we have
pn > αpj > α2Z. Therefore, from Ln ≥ Vm,k−1 and (1), we obtain

1 + α <
Vm,k−1+Z

s
+ pn

s

max(pn
s

,Ln)
< 2 + 1

α2 ,

which is not possible for α ≥ 1.45.

1.2.2. Vk = Vn−1. From Lemma 3, if follows that Yt > αLt1. Taking into
consideration Lemma 3 for k = t1, we have pk > Yt(1 + α − 1

α) = βYt.
Therefore, from (1) and (4), it follows that

1 + α <
Vm,k−1+Z

s
+ pn

s
Ln

≤ Vm,k−1+Z
s

+ pn
s

max(Ln, pn
s

)
≤ α

βγ(α−1) + 1
γ + 1,

or

1 + α <
Vm,k−1+Z

s
+ pn

s
Ln

≤ Vm,k−1+Z
s

+ pn
s

max(Ln, pn
s

)
≤ 1

αβ(α−1) + 1
β + 1.

The first possibility corresponds to the situation when Vk = Vt1.

This is not possible for α ≥ 1.45.

Case 2. pn = Zq and q ≥ 2.

2.1. Lk ≥ Vm,k−1 From (1), (2) and (3), it follows that

1 + α <
Vm,k−1+Z

s
+

Z1
s

+...+
Zq
s

max(Z1,
Zq
s

)
< 1

αβq + 1 + 1
β + 1

β2 + . . . + 1
βq ,

which is not possible for α ≥ 1.45.

2.2. Lk < Vm,k−1.

2.2.1. q = 2 and Vt1 = Vn−1.

From (1), (4) and Lemma 3, it follows that

1 + α <
Vm,k−1+Z

s
+

Z1
s

+
Z2
s

max(Z1,
Z2
s

)
< α

(α−1)β2γ
+ 1

βγ + 1
γ + 1,

which is not possible for α ≥ 1.45.

2.2.3. q = 2, Vt1 < Vn−1.

From (1), (4), Lemmas 2 and 3, it follows that

5

1 + α <
Vm,k−1+Z

s
+

Z1
s

+
Z2
s

max(Z1,
Z2
s

)
< 1

αβ2(α−1)
+ 1

α2β
+ 1

β + 1,

or

1 + α <
Vm,k−1+Z

s
+

Z1
s

+
Z2
s

max(Z1,
Z2
s

)
< 1

αβγ(α−1) + 1
βγ + 1

γ + 1,

which is not possible for α ≥ 1.45.

2.4. q > 2.

From (3) and (4), it follows that

1 + α <
Vm,k−1+Z

s
+

Z1
s

+...+
Zq
s

max(Zq−1,
Zq
s

)
< α

(α−1)βq+1 + 1 + 1
β + 1

β2 + . . . + 1
βq ,

which is not possible for α ≥ 1.45.

It should be pointed out that we have only applied the basic relation (1)
without taking into consideration the value of m. If m is a fixed number,
we can rewrite the inequality in Lemma 3 as

pj > αLj +
pj

m + s− 1
(5)

because the difference between Vj−1 and Lj is at least pj

m+s−1 . Therefore,
we can use the inequality pn > α max(Z,Ln)m+s−1

m+s−2 .

Hence, for a fixed m, we can repeat the above analysis and obtain an even
better worst-case performance bound for our proposed algorithm.

3 Conclusions

In this note we presented a simple algorithm that yields the best known
competitive ratio for online uniform-machine scheduling to minimize the
makespan. In addition, we developed a new technique for analyzing the
worst-case performance of our algorithm, which is quite different from the
traditional approach used to analyze the LS algorithm. It is an interesting
open question whether there exists such an algorithm for the case of s > 2.

Acknowledgments

This research was supported in part by The Hong Kong Polytechnic Uni-
versity under grant number G-T596. Vladimir Kotov was also supported in
part by INTAS-Belarus 03-50-5975.

6

References

[1] Y. Cho and S. Sahni, Bounds for list schedules on uniform processors,
SIAM J. Comput., 9 (1980) 91–103.

[2] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM J.
Appl. Math. 17 (1969) 263–269.

[3] R. Li and L. Shi, An on-line algorithm for some uniform processor
scheduling, SIAM J. Comput., 27 (1998) 414–422.

7

