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Abstract

We briefly survey some concepts related to empirical entropy — normal numbers, de
Bruijn sequences and Markov processes — and investigate how well it approximates
Kolmogorov complexity. Our results suggest ℓth-order empirical entropy stops being
a reasonable complexity metric for almost all strings of length m over alphabets of
size n about when n

ℓ surpasses m.
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1 Introduction

For data compression, machine learning and cryptanalysis, we often want to
know the Kolmogorov complexity K(S) [23,13,4,15] of a string S, that is, the
minimum space needed to store S. It is formally defined as the length in
bits of the shortest program that outputs S. Notice our choice of program-
ming language does not affect this length by more than an additive constant,
provided it is Turing-equivalent; for example, the length of the shortest such
FORTRAN program exceeds the length of the shortest such LISP program by no
more than the length of the shortest LISP-interpreter written in FORTRAN —
which does not depend on S. Unfortunately, a simple diagonalization shows
Kolmogorov complexity is incomputable: Given a program A for computing
Kolmogorov complexity, we could write a program B that searches until it
finds and outputs a string S with A(S) = K(S) greater than B’s length in
bits, contradicting the definition of K(S). Thus, researchers substitute various
other complexity metrics; in this paper we study one of the most popular —
empirical entropy.

Empirical entropy is rooted in information theory. Let X be a random vari-
able that takes on one of n values according to P = p1, . . . , pn. Shannon [20]
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proposed that any function H(P ) measuring our uncertainty about X should
have three properties:

(1) “H should be continuous in the pi.”
(2) “If all the pi are equal, pi =

1
n
, then H should be a monotonic increasing

function of n.”
(3) “If a choice be broken down into two successive choices, the original H

should be the weighted sum of the individual values of H .”

He proved the only function with these properties is H(P ) =
∑n

i=1 pi log(1/pi),
which he called the entropy of P . The choice of the logarithm’s base determines
the unit; by convention, log means log2 and the units are bits.

Let ℓ be a non-negative integer and suppose S = s1 · · · sm. The ℓth-order
empirical entropy of S (see, e.g., [16]) is our expected uncertainty about the
random variable si given a context of length ℓ, as in the following experiment:
i is chosen uniformly at random from {1, . . . , m}; if i ≤ ℓ, then we are told si;
otherwise, we are told si−ℓ · · · si−1. Specifically,

Hℓ(S) =







































∑

a∈S

#a(S)

m
log

m

#a(S)
if ℓ = 0,

1

m

∑

|α|=ℓ

|Sα|H0(Sα) if ℓ ≥ 1.

In this paper, a ∈ S means character a occurs in S; #a(S) is the number
of occurrences of a in S; and Sα is the string whose ith character is the one
immediately following the ith occurrence of string α in S — the length of Sα

is the number of occurrences of α in S, which we denote #α(S), unless α is
a suffix of S, in which case it is 1 less. We assume Sα = S when α is empty.
Notice 0 ≤ Hℓ+1(S) ≤ Hℓ(S) ≤ log |{a : a ∈ S}| for ℓ ≥ 0. For example, if S
is the string TORONTO, then

H0(S) =
1

7
log 7 +

3

7
log

7

3
+

1

7
log 7 +

2

7
log

7

2
≈ 1.84 ,

H1(S) =
1

7

(

H0(SN) + 2H0(SO) +H0(SR) + 2H0(ST)
)

=
1

7

(

H0(T) + 2H0(RN) +H0(O) + 2H0(OO)
)

=2/7 ≈ 0.29

and all higher-order empirical entropies of S are 0. This means if someone
chooses a character uniformly at random from TORONTO and asks us to
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guess it, then our uncertainty is about 1.84 bits. If they tell us the preceding
character before we guess, then on average our uncertainty is about 0.29 bits;
if they tell us the preceding two characters, then we are certain of the answer.

Empirical entropy has a surprising connection to number theory. Let (x)n,m
denote the first m digits of the number x in base n ≥ 2. Borel [2] called x

normal in base n if, for α ∈ {0, . . . , n − 1}∗, limm→∞
#α((x)n,m)

m
= 1/n|α|. For

example, the Champernowne constant [5] and Copeland-Erdös constant [6],
0 . 1 2 3 4 5 6 7 8 9 10 11 12 . . . and 0 . 2 3 5 7 11 13 17 19 23 . . ., are normal in base
10. Notice x being normal in base n is equivalent to limm→∞ Hℓ((x)n,m) = logn
for ℓ ≥ 0. Borel called x absolutely normal if it is normal in all bases. He proved
almost all numbers are absolutely normal but Sierpinski [21] was the first to
find an example, which is still not known to be computable. Turing [24] claimed
there exist computable absolutely normal numbers but this was only verified
recently, by Becher and Figueira [1]. Such numbers’ representations have finite
Kolmogorov complexity yet look random if we consider only empirical entropy
— regardless of base and order. Of course, we are sometimes fooled whatever
computable complexity metric we consider.

Now consider de Bruijn sequences [7] from combinatorics. An n-ary linear

de Bruijn sequence of order ℓ is a string over {0, . . . , n − 1} containing ev-
ery possible ℓ-tuple exactly once. For example, the binary linear de Bruijn
sequences of order 3 are the 16 10-bit substrings of 00010111000101110 and
its reverse: 0001011100, . . . , 1000101110, 0111010001, . . . , 0011101000. By def-
inition, such strings have length nℓ + ℓ − 1 and ℓth-order empirical entropy

0 (but (ℓ − 1)st-order empirical entropy (nℓ−1) logn
nℓ+ℓ−1

). However, Rosenfeld [19]

showed there are (n!)n
ℓ−1

of them. It follows that one randomly chosen has

expected Kolmogorov complexity in Θ
(

log(n!)n
ℓ−1
)

= Θ(nℓ logn); whereas
Borel’s normal numbers can be much less complex than empirical entropy
suggests, de Bruijn sequences can be much more complex.

Empirical entropy also has connections to algorithm design. For example,
Munro and Spira [18] used 0th-order empirical entropy to analyze several
sorting algorithms and Sleator and Tarjan [22] used it in the Static Op-
timality Theorem: Suppose we perform a sequence of m operations on a
splay-tree, with si being the target of the ith operation; if S = s1 · · · sm in-
cludes every key in the tree, then we use O((H0(S) + 1)m) time. Of course,
most of the algorithms analyzed in terms of empirical entropy are for data
compression. Manzini’s analysis [16] of the Burrows-Wheeler Transform [3]
is particularly interesting. He proved an algorithm based on the Transform
stores any string S of length m over an alphabet of size n in at most about
(8Hℓ(S) + 1/20)m+ nℓ(2n logn+ 9) bits, for all ℓ ≥ 0 simultaneously. Subse-
quent research by Ferragina, Manzini, Mäkinen and Navarro [8], for example,
has shown that if nℓ+1 logm ∈ o(m logn), then we can store an efficient index
for S in (Hℓ(S)+o(logn))m bits. Notice we cannot lift the restriction on n and
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ℓ to nℓ ∈ O(m): If S is a randomly chosen n-ary linear de Bruijn sequence of or-
der ℓ, thenm = nℓ+ℓ−1 and Hℓ(S) = 0, so (cHℓ(S)+o(logn))m = o(nℓ log n)
for any c, but K(S) ∈ Θ(nℓ log n) in the expected case.

In this paper we investigate further the relationship between the order ℓ,
the alphabet size n and the string length m. Our results suggest ℓth-order
empirical entropy stops being a reasonable complexity metric for almost all
strings about when nℓ surpasses m. For simplicity, we assume ℓ and n are
given to us as (possibly constant) functions fromm to the positive integers and
consider S ∈ {1, . . . , n}m. In Section 2 we prove that, for any fixed c ≥ 1 and
ǫ > 0, if nℓ+1/c logn ∈ o(m) andm is sufficiently large, then K(S) < (cHℓ(S)+
ǫ)m. We use a new upper bound for compressing probability distributions,
which extends our results from [9] and may be of independent interest. In
Section 3 we prove that if ǫ < 1/c, ℓ is fixed, nℓ+1/c−ǫ ∈ Ω(m) and m is

sufficiently large, then K(S) >
(

cHℓ(S) +
ǫ
3
logn

)

m with high probability for
randomly chosen S. As a corollary we prove a nearly matching lower bound
for compressing probability distributions.

It seems interesting that slightly changing the relationship between ℓ, n and
m can change (cHℓ(S) + o(logn))m from an upper bound on K(S) to an al-
most certain lower bound. Phenomena like this one, in which small shifts in
parameters change a property asymptotically from very likely to very unlikely,
are called threshold phenomena; they are common and well-studied in several
disciplines (see, e.g., [12]) but we know of no others related to data compres-
sion. Although our proof of a threshold phenomenon requires ℓ to be fixed,
we emphasize it holds for any constant coefficient c ≥ 1 before Hℓ(S) and any
o(logn) second term in the formula.

2 Upper bounds

We first rephrase the definition of empirical entropy: For ℓ ≥ 0, the ℓth-order
empirical entropy of a string S is the minimum self-information per charac-
ter of S emitted by an ℓth-order Markov process. The self-information of an
event with probability p is log(1/p). An ℓth-order Markov process is a string of
random variables in which each variable depends only on at most ℓ immediate
predecessors (see, e.g., [20]); a process is said to emit the values of its vari-
ables. We use relative entropy [14], also called the Kullback-Leibler distance,
to prove the two definitions equivalent. Let P = p1, . . . , pn and Q = q1, . . . , qn
be probability distributions over {1, . . . , n}; the relative entropy between P
and Q, D(P‖Q) =

∑n
i=1 pi log(pi/qi), is often used in information theory to

measure how well Q approximates P . Although relative entropy is not a dis-
tance metric — it is not symmetric and does not obey the triangle inequality
— it is 0 when P = Q and positive otherwise.
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Theorem 1 For any string S ∈ {1, . . . , n}m and ℓ ≥ 0, we have Hℓ(S) =
1
m
min

{

log(1/Pr[Q emits S]) : Q is an ℓth-order Markov process
}

.

PROOF. Consider the probability an ℓth-order Markov process Q emits S.
Assume, without loss of generality, that Q first emits s1 · · · sℓ with probability
1. For α ∈ {1, . . . , n}ℓ, let Pα = pα,1, . . . , pα,n be the normalized distribution
of the characters in Sα, so H(Pα) = H0(Sα); let Qα = qα,1, . . . , qα,n, where qα,a
is the probability Q emits a immediately after an occurrence of α. Then

log
1

Pr[Q emits S]

= log
m
∏

i=ℓ+1

1

qsi−ℓ···si−1,si

=
m
∑

i=ℓ+1

log
1

qsi−ℓ···si−1,si

=
∑

|α|=ℓ

∑

a∈Sα

#a(Sα) log
1

qα,a

=
∑

|α|=ℓ

|Sα|
∑

a∈Sα

pα,a

(

log
pα,a
qα,a

+ log
1

pα,a

)

=
∑

|α|=ℓ

|Sα|(D(Pα‖Qα) +H(Pα))

≥
∑

|α|=ℓ

|Sα|H(Pα)

=Hℓ(S)m ,

with equality throughout if Pα = Qα for α ∈ {1, . . . , n}ℓ. ✷

We now consider how compactly we can store probability distributions, Markov
processes and, ultimately, strings.

Lemma 2 Fix c ≥ 1 and ǫ > 0 and let P = p1, . . . , pn be a probability dis-

tribution over {1, . . . , n}. For some probability distribution Q with D(P‖Q) <
(c− 1)H(P ) + ǫ, storing Q takes O(n1/c log n) bits.

PROOF. Let t ≤ rn1/c be the number of probabilities in P that are at least
1

rn1/c , where r = 2ǫ/2

2ǫ/2−1
. For each such pi, we record i and ⌊pir

2n⌋. Since r

depends only on ǫ, which is fixed, in total we use O(n1/c logn) bits. This
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information lets us later recover Q = q1, . . . , qn, where

qi =























(

1−
1

r

)

⌊pir
2n⌋

∑

{

⌊pjr2n⌋ : pj ≥
1

rn1/c

} if pi ≥
1

rn1/c ,

1

r(n− t)
otherwise.

Suppose pi ≥
1

rn1/c ; then pir
2n ≥ r. Since

∑

{

⌊pjr
2n⌋ : pj ≥

1
rn1/c

}

≤ r2n,

pi log
pi
qi

≤ pi log

(

r

r − 1
·

pir
2n

⌊pir2n⌋

)

< 2pi log
r

r − 1
= piǫ .

Now suppose pi <
1

rn1/c ; then pi log(1/pi) >
pi
c
log n. Thus,

pi log
pi
qi

< pi log
r(n− t)

rn1/c
≤

(c− 1)pi
c

logn < (c− 1)pi log
1

pi
.

Finally, since p log(1/p) ≥ 0 for p ≤ 1, we have

D(P‖Q) <
∑

{

(c− 1)pi log
1

pi
: pi <

1

rn1/c

}

+ ǫ ≤ (c− 1)H(P ) + ǫ .

✷

Corollary 3 Fix c ≥ 1 and ǫ > 0 and consider a string S ∈ {1, . . . , n}m. For
some ℓth-order Markov process Q with log(1/Pr[Q emits S]) < (cHℓ(S)+ǫ)m,

storing Q takes O(nℓ+1/c log n) bits.

PROOF. First we store s1 · · · sℓ. For α ∈ {1, . . . , n}ℓ, let Pα = pα,1, . . . , pα,n
be the normalized distribution of characters in Sα and let Qα = qα,1, . . . , qα,n
be the probability distribution with D(Pα‖Qα) < (c − 1)H(Pα) + ǫ obtained
from applying Lemma 2 to c, ǫ and Pα. We store every Qα, using a total of
O(nℓ+1/c log n) bits.

This information lets us later recover a Markov process Q that first emits
s1 · · · sℓ and in which, for α ∈ {1, . . . , n}ℓ and a ∈ {1, . . . , n}, the probability
a is emitted immediately after an occurrence of α is qα,a. As in the proof of
Theorem 1, log(1/Pr[Q emits S]) =

∑

|α|=ℓ |Sα|(D(Pα‖Qα) +H(Pα)), so

log
1

Pr[Q emits S]
<
∑

|α|=ℓ

|Sα|(cH(Pα) + ǫ) ≤ (cHℓ(S) + ǫ)m .

✷

6



We note that, given a string S ∈ {1, . . . , n}m, we can store an ℓth-order Markov

process Q with log(1/Pr[Q emits S]) = Hℓ(S) in O
(

nℓ+1 log
(

m
nℓ+1 + 1

))

bits,

as a table containing #a(Sα) = #αa(S) ≤ m for αa ∈ {1, . . . , n}ℓ+1. Grossi,
Gupta and Vitter [10] investigated the space needed for such a table; they also
showed that, apart from the cost of storing the table, we can store S in Hℓ(S)
bits. However, because we do not see how to store the table in less space when
there is a constant coefficient c > 1 before Hℓ(S), we tolerate the ǫ term in
Corollary 3 and the following theorem.

Theorem 4 Fix c ≥ 1 and ǫ > 0 and let ℓ and n be functions from m to the

positive integers. Consider a string S ∈ {1, . . . , n}m. If nℓ+1/c logn ∈ o(m)
and m is sufficiently large, then K(S) < (cHℓ(S) + ǫ)m.

PROOF. By Corollary 3, since nℓ+1/c log n ∈ o(m) andm is sufficiently large,
we can store an ℓth-order Markov process Q with log(1/Pr[Q emits S]) <
(cHℓ(S)+ ǫ/2)m in ǫm/2− 1 bits. Shannon [20] showed how, given Q, we can
store S in ⌈log(1/Pr[Q emits S])⌉ bits. Thus, we can store Q and S together
in fewer than (cHℓ(S) + ǫ)m bits. ✷

3 Lower bounds

Consider the so-called birthday paradox : If we draw m times from {1, . . . , n},
then the probability at least two of the numbers drawn are the same is about

1 − 1/e
m(m−1)

2n . Thus, for ℓ ≥ 1, if n1/2 ∈ ω(m) and S is chosen randomly,
then with high probability Hℓ(S) = 0 because no character appears more
than once in S. (Notice also H0(S) ≤ logm ≤ log(n)/2 for sufficiently large
m.) Thus, we cannot lift the restriction on n and ℓ in Theorem 4 to n1/2−ǫ ∈
O(m). We use a similar but more complicated argument to show we cannot
even lift the restriction to nℓ+1/c−ǫ ∈ O(m). Essentially, we use a Chernoff
bound on the probability of there being any frequent ℓ-tuples in S. Since
the probability of an ℓ-tuple occurring somewhere in S depends on whether
it occurs in neighbouring positions, we apply the following intuitive lemma
(proven in, e.g., [17]) before we apply the Chernoff bound.

Lemma 5 Let X1, . . . , Xm be binary random variables such that, for 1 ≤ i ≤
m and b ∈ {0, 1}i−1, Pr

[

Xi = 1
∣

∣

∣ X1 · · ·Xi−1 = b
]

≤ p. Let Y1, . . . , Ym be

independent binary random variables, each equal to 1 with probability p. For
0 ≤ q ≤ 1,

Pr





m
∑

j=1

Xj ≥ qm



 ≤ Pr





m
∑

j=1

Yj ≥ qm



 .
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Theorem 6 Fix c ≥ 1, ǫ with 0 < ǫ < 1/c and ℓ ≥ 1 and let n be a

function from m to the positive integers. Choose a string S ∈ {1, . . . , n}m

uniformly at random. If nℓ+1/c−ǫ ∈ Ω(m) and m is sufficiently large, then

K(S) >
(

cHℓ(S) +
ǫ
3
log n

)

m with high probability.

PROOF. Since there are nm choices for S and only

∑

{

2i : 0 ≤ i ≤ ⌊(1− ǫ/3)m log n⌋
}

≤ 2n(1−ǫ/3)m − 1

binary strings of length at most (1 − ǫ/3)m log n, we have K(S) ≥ (1 − ǫ/3)
m log n with probability greater than 1 − 2/nǫm/3. Thus, we need only show
cHℓ(S) < (1− 2ǫ/3) logn with high probability. By definition,

Hℓ(S)

≤max
|α|=ℓ

{H0(Sα)}

≤max
|α|=ℓ

{log |{a : a ∈ Sα}|}

≤max
|α|=ℓ

{

log
(

|{a : a ∈ Sα, a 6∈ α}|+ ℓ
)}

.

Notice n ∈ ω
(

m
1

ℓ+1/c

)

. We will show

Pr
[

|{a : a ∈ Sα, a 6∈ α}| ≥ n1/c−2ǫ/3 − ℓ
]

≤
1

2nǫ/3−ℓ

for each α ∈ {1, . . . , n}ℓ, so

Pr

[

max
|α|=ℓ

{|{a : a ∈ Sα, a 6∈ α}|} ≥ n1/c−2ǫ/3 − ℓ

]

≤
nℓ

2nǫ/3−ℓ
,

Pr

[

max
|α|=ℓ

{

log
(

|{a : a ∈ Sα, a 6∈ α}|+ ℓ
)}

≥
(

1

c
−

2ǫ

3

)

log n

]

≤
nℓ

2nǫ/3−ℓ

and cHℓ(S) < (1− 2ǫc/3) logn ≤ (1− 2ǫ/3) logn with high probability.

Consider α ∈ {1, . . . , n}ℓ. Let X1, . . . , Xm−ℓ be binary random variables, with
Xi = 1 if si · · · si+ℓ−1 = α and si+ℓ 6∈ α. Notice |{a : a ∈ Sα, a 6∈ α}| + ℓ ≤
∑m−ℓ

i=1 Xi + ℓ. For ℓ + 1 ≤ i ≤ m − ℓ, by definition, Xi is independent of
X1, . . . , Xi−ℓ−1; if any ofXi−ℓ, . . . , Xi−1 are 1, then at least one of si, . . . , si+ℓ−1

is not in α, so Xi = 0; and
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Pr
[

Xi = 1
∣

∣

∣ Xi−ℓ = · · · = Xi−1 = 0
]

=
Pr [Xi = 1 andXi−ℓ = · · · = Xi−1 = 0]

Pr [Xi−ℓ = · · · = Xi−1 = 0]

=
Pr[Xi = 1]

1− Pr [Xi−ℓ = 1 or . . . orXi−1 = 1]

≤
Pr[Xi = 1]

1−
∑i−1

j=i−ℓ Pr[Xj = 1]

≤
1/nℓ

1− ℓ/nℓ

=
1

nℓ − ℓ
.

Let Y1, . . . , Ym−ℓ be independent binary random variables, each equal to 1

with probability p = 1
nℓ−ℓ

, and let q = n1/c−2ǫ/3−ℓ
m−ℓ

. If q > 1 the proof is finished,

because Pr
[

∑m−ℓ
i=1 Xi ≥ q(m− ℓ)

]

= 0; otherwise by Lemma 5,

Pr

[

m−ℓ
∑

i=1

Xi ≥ q(m− ℓ)

]

≤ Pr

[

m−ℓ
∑

i=1

Yi ≥ q(m− ℓ)

]

and it remains for us to show

Pr

[

m−ℓ
∑

i=1

Yi ≥ q(m− ℓ)

]

≤
1

2nǫ/3−ℓ
.

Since ℓ is fixed and nℓ+1/c−ǫ ∈ Ω(m), we have p(m − ℓ) ∈ O(n1/c−ǫ) ⊂
o(q(m − ℓ)); thus, for sufficiently large m, q(m − ℓ) ≥ 6p(m − ℓ) and we
can use the following simple Chernoff bound [11]:

Pr

[

m−ℓ
∑

i=1

Yi ≥ q(m− ℓ)

]

≤
1

2q(m−ℓ)
=

1

2n1/c−2ǫ/3−ℓ
.

Finally, since ǫ < 1/c,

Pr

[

m−ℓ
∑

i=1

Yi ≥ q(m− ℓ)

]

≤
1

2nǫ/3−ℓ
.

✷
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Corollary 7 Fix c ≥ 1 and ǫ with 0 < ǫ < 1/c and let P be a probability

distribution over {1, . . . , n}. In the worst case, for any probability distribution

Q with D(P‖Q) ≤ (c− 1)H(P ) + o(log n), storing Q takes ω(n1/c−ǫ) bits.

PROOF. For the sake of a contradiction, assume there exists an algorithm A
that, given any probability distribution P over {1, . . . , n}, stores a probability
distribution Q with D(P‖Q) ≤ (c−1)H(P )+ o(logn) in O(n1/c−ǫ) bits. Then
a proof similar to that of Theorem 4, but substituting A for Lemma 2, yields:

Fix c ≥ 1 and ǫ with 0 < ǫ < 1/c and let ℓ and n be functions from m to

the positive integers. Consider a string S ∈ {1, . . . , n}m. If nℓ+1/c−ǫ ∈ o(m),
then K(S) ≤ (cHℓ(S) + o(log n))m.

Suppose we fix c and ℓ, choose ǫ < 1/c and n such that nℓ+1/c−ǫ ∈ o(m) but
nℓ+1/c−ǫ/2 ∈ Ω(m), and choose a string S ∈ {1, . . . , n}m uniformly at random.
The claim above gives K(S) ≤ (cHℓ(S) + o(log n))m but by Theorem 6, for

sufficiently large m, K(S) >
(

cHℓ(S) +
ǫ
6
logn

)

m with high probability. ✷

4 Future work

Suppose we want to store a probability distribution P over a set of strings.
We recently proved that, in theory, if the relative entropy is small between
P and the probability distribution induced by a low-order Markov process Q,
the we can store P accurately and efficiently by storing an approximation of
Q. We hope experiments will show this technique to be practical.

Our proof of Theorem 6 is slightly complicated because if, for some ℓ-tuple
α, a non-empty string is both a suffix and a prefix of α, then occurrences of
α can overlap and any one occurrence increases the probability of others. In
this paper we used the fact that if two occurrences of α overlap, the the first
must be immediately followed by a character in α. We recently proved that,
moreover, it must be immediately followed by one of O(log ℓ) characters. We
are now trying to use this result to prove a version of Theorem 6 that does
not require ℓ to be fixed.

We are also trying another approach to generalize Theorem 6. Results about
linear de Bruijn sequences are often proved by considering them as Eulerian
tours on certain graphs, called de Bruijn graphs. In fact, any string can be
considered as a walk on a de Bruijn graph; random strings correspond to
random walks. Since de Bruijn graphs are good expanders, random walks on
them have properties that may be useful in reasoning about random strings.
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