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Abstract. It is decidable for deterministic MSO definable graph-to-string or graph-
to-tree transducers whether they are equivalent on a context-free set of graphs.

It is well known that the equivalence problem for nondeterministic (one-way) fi-
nite state transducers is undecidable, even when they cannot read or write the empty
string [Gri68]. In contrast, equivalenceis decidable for deterministic finite state trans-
ducers, even for two-way transducers [Gur82]. The questionarises whether these results
can be generalized from strings to transducers working on more complex structures like,
e.g., trees or graphs. There is no accepted notion of finite state transducer working on
graphs; instead, it is believed that transductions expressed in monadic second-order
logic (MSO) are the natural counterpart of finite state transductions on graphs. The
idea is to define an output graph by interpreting fixed MSO formulas on a given in-
put graph. In fact, if the input and output graphs of such an MSO graph transducer are
strings, then the resulting transductions (in the deterministic case) are precisely the de-
terministic two-way finite state transductions [EH01]. Hence, by the above, equivalence
is decidable for deterministic MSO string transducers. A nondeterministic MSO graph
transducer can easily simulate a nondeterministic finite state transducer that cannot read
the empty string; hence, equivalence is undecidable. Actually, even for deterministic
MSO graph transducers equivalence is undecidable. This is due to the fact that MSO is
undecidable for graphs (Propositions 5.21 and 5.2.2 of [Cou97]). The question remains
whether deterministic MSO tree transducers have a decidable equivalence problem. Re-
cently, these transducers have been characterized by certain attribute grammars [BE00]
and macro tree transducers [EM99]. However, for both modelsit is unknown whether
equivalence is decidable. Here we give an affirmative answer: equivalence of determin-
istic MSO tree transducers is decidable. This result has several applications; for in-
stance, it implies that XML queries of linear size increase have decidable equivalence,
by the results of [MSV03], [EM03a], [EM03b], and [Man03]. Our proof generalizes
the one of [Gur82] (see also [Iba82]): it is based on the fact that certain sets are semi-
linear. The reader is assumed to be familiar with MSO on graphs and with MSO graph
transducers, see, e.g., [Cou97,Cou94].

Convention: All lemmas stated in this paper areeffective.
A graph alphabet is a pair(Σ,Γ ) of alphabets of node and edge labels, respectively.

A graph over(Σ,Γ ) is a tuple(V,E, λ) whereV is the finite set of nodes,E ⊆ V ×
Γ × V is the set of edges, andλ : V → Σ is the node labeling function. The set of
all graphs over(Σ,Γ ) is denotedGR(Σ,Γ ). The languageMSO(Σ,Γ ) of monadic
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second-order (MSO) formulas over(Σ,Γ ) uses node variablesx, y, . . . and node-set
variablesX,Y, . . . ; both can be quantified with∃ and∀. It has atomic formulaslabσ(x)
for σ ∈ Σ, denoting thatx is labeledσ, edgγ(x, y) for γ ∈ Γ , denoting that there is
a γ-labeled edge fromx to y, andx ∈ X denoting thatx is inX . Forg ∈ GR(Σ,Γ )
and a closed formulaψ in MSO(Σ,Γ ) we write g |= ψ if g satisfiesψ; similarly, if
ψ has free variablesx or x, y andu, v are nodes ofg, then we write(g, u) |= ψ or
(g, u, v) |= ψ if g satisfiesψ with x = u or with x = u, y = v, respectively.

Let (Σ1, Γ1), (Σ2, Γ2) be graph alphabets. Adeterministic MSO graph transducer
M (from (Σ1, Γ1) to (Σ2, Γ2)) is a tuple(C,ϕdom, Ψ,X) whereC is a finite set ofcopy
names, ϕdom ∈ MSO(Σ1, Γ1) is the closeddomain formula, Ψ = {ψc,σ(x)}c∈C,σ∈Σ2

is a family ofnode formulas, i.e., MSO formulasψc,σ(x) over(Σ1, Γ1) with one free
variablex, andX = {χc,c′,γ(x, y)}c,c′∈C,γ∈Γ2

is a family ofedge formulas, i.e., MSO
formulasχc,c′,γ(x, y) over(Σ1, Γ1) with two free variablesx, y.

Giveng ∈ GR(Σ1, Γ1), the graphh = τM (g) ∈ GR(Σ2, Γ2) is defined ifg |=
ϕdom, and thenVh = {(c, u) | c ∈ C, u ∈ Vg, there is exactly oneσ ∈ Σ2 such
that (g, u) |= ψc,σ(x)}, Eh = {((c, u), γ, (c′, u′)) | (c, u), (c′, u′) ∈ Vh, γ ∈ Γ2,
and (g, u, u′) |= χc,c′,γ(x, y)}, andλh = {((c, u), σ) | (c, u) ∈ Vh, σ ∈ Σ2, and
(g, u) |= ψc,σ(x)}. Hence,τM is a partial function fromGR(Σ1, Γ1) to GR(Σ2, Γ2)
with dom(τM ) = {g ∈ GR(Σ1, Γ1) | g |= ϕdom}.

A (nondeterministic) MSO graph transduceris obtained from a deterministic one by
allowing all formulas to use fixed free node-set variablesY1, Y2, . . . , called parameters.
For each valuation of the parameters (by sets of nodes of the input graph) that satisfies
the domain formula, the other formulas define the output graph as before. Hence each
such valuation may lead to a different output graph for the given input graph. Thus,
τM ⊆ GR(Σ1, Γ1)×GR(Σ2, Γ2).

The following lemma contains a basic fact about MSO definablegraph transduc-
tions; see, e.g., Proposition 3.2 in [Cou94].

Lemma 1. The (deterministic) MSO graph transductions are closed under composi-
tion.

Notation. LetM1;M2 denote a transducerM for whichτM = τM2
◦ τM1

; note that
M is deterministic, ifM1 andM2 are. By Lemma 1,M1;M2 effectively exists.

In the sequel we often identify a transducerM with its transductionτM , and simply
write, e.g.,M(g) in place ofτM (g).

Let M be an MSO graph transducer and letX,Y be sets of graphs. ThenM is
called an MSOX-to-Y transducer, ifdom(M) ⊆ X andrange(M) ⊆ Y , and it is an
MSOX transducer if additionallyY = X .

A discrete graph(dgraph, for short) is a graph without edges. Letg be a dgraph over
(Σ,∅) with Σ = {σ1, . . . , σk}. DefinePar(g) as the vector(n1, . . . , nk) in N

k such
that, for1 ≤ i ≤ k, ni is the number ofσi-labeled nodes ing. Similarly, for a string
w ∈ Σ∗, Par(w) is the vector inNk such that thei-th component is the number ofσi’s
in w. We denote bydgr(w) the (unique) dgraphg such thatPar(g) = Par(w). For a
setS of dgraphs or strings,Par(S) is the set of allPar(g) for g ∈ S. A setP ⊆ N

k

is semilinearif there exists a regular languageR such thatP = Par(R). The setS is
Parikh if Par(S) is semilinear. Note that sincePar(R) = ∅ iff R = ∅, emptiness of
semilinear sets is decidable.
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A set of graphs isNR if it is generated by a context-free node replacement graph
grammar, see, e.g., [Eng97,Cou94]; it is also called C-edNCE or VR.

Lemma 2. (Theorem 7.1 of [Cou94]) The images of NR sets of graphs underMSO
graph-to-dgraph transductions are Parikh.

In fact, the class of NR sets of graphs is closed under MSO graph transductions (see
Theorem 4.2(3) of [Cou94], or Section 5 of [Eng97]) and NR sets of graphs are Parikh
(see Proposition 4.11 of [Eng97]).

A useful property of semilinear sets is their (effective) closure under intersection. It
implies the following lemma.

Lemma 3. It is decidable for a semilinear setS ⊆ N
2 whether there exists ann ∈ N

such that(n, n) ∈ S.

Proof. Let P = {(n, n) | n ∈ N} = Par((ab)∗). The lemma holds becauseS ∩ P is
semilinear [GS64] and semilinear sets have a decidable emptiness problem. ⊓⊔

We identify the stringw = a1a2 · · · an with the graph that has#-labeled nodes
v1, . . . , vn+1 and, for1 ≤ i ≤ n, anai-labeled edge fromvi to vi+1. For1 ≤ i ≤ n,
we denote byw/i thei-th letterai of w.

Lemma 4. Let∆ be an alphabet anda ∈ ∆. There exists an MSO string-to-dgraph
transducerNa

∆ such that for everyw ∈ ∆∗,

Na
∆(w) = {dgr(an) | w/n = a}.

Proof. The transducerNa
∆ uses one parameterY1 to nondeterministically choose a node

v that has an outgoinga-labeled edge. It copiesv and all input nodes to the left ofv,
and labels thema. There are no edge formulas because dgraphs have no edges. Define
Na

∆ = ({1}, ϕdom(Y1), ψ1,a(x, Y1),∅) with

ϕdom(Y1) ≡ singleton(Y1) ∧ (∃x)(∃y)(edga(x, y) ∧ x ∈ Y1)
ψ1,a(x, Y1) ≡ (∃y)(x � y ∧ y ∈ Y1)

where singleton(Y1) expresses thatY1 is a singleton, andx � y that there is a path from
x to y. ⊓⊔

We denote the disjoint union of graphsh1 andh2 by h1 ⊎ h2.

Lemma 5. LetM1,M2 be MSO graph transducers. There exists an MSO graph trans-
ducerM , denotedM1 ⊎M2, such that for every graphg,

M(g) = {h1 ⊎ h2 | h1 ∈M1(g), h2 ∈M2(g)}.

Proof. Let M1 = (C1, ϕ1, Ψ1, X1) andM2 = (C2, ϕ2, Ψ2, X2). We may assume
w.l.o.g. thatC1 is disjoint fromC2 and that the parameters ofM1 are disjoint from
those ofM2. ThenM = (C1∪C2, ϕ1∧ϕ2, Ψ1∪Ψ2, X1∪X2∪X) realizes the desired
transduction, where all edge formulas inX are set to false. ⊓⊔
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Lemma 6. Let M1,M2 be MSO graph-to-string transducers and leta, b be distinct
symbols. There exists an MSO graph-to-dgraph transducerMa,b such that for every
graphg,

Ma,b(g) = {dgr(ambn) | ∃h1 ∈M1(g), h2 ∈M2(g) : h1/m = a andh2/n = b}.

Proof. Let Mi be from(Σi, Γi) to ({#}, ∆i) for i ∈ {1, 2}. If a 6∈ ∆1 or b 6∈ ∆2

then letMa,b = (∅, false,∅,∅). Otherwise defineMa,b = (M1;N
a
∆1

) ⊎ (M2;N
b
∆2

)
according to Lemmas 1, 4, and 5. ⊓⊔

Let Σ be a ranked alphabet, i.e., an alphabetΣ together with a mappingrankΣ :
Σ → N. Letm be the maximal rank of symbols inΣ. A tree (overΣ) is an acyclic,
connected graph inGR(Σ, {1, . . . ,m}), with exactly one node that has no incoming
edges (the root), and, forσ ∈ Σ, everyσ-labeled node has exactlyrankΣ(σ) outgoing
edges, labeled1, 2, . . . , rankΣ(σ), respectively.

For a relationR ⊆ A × B and a setD ⊆ A, denote byR|D the restriction ofR to
D, i.e.,R|D = {(a, b) ∈ R | a ∈ D}.

Theorem 7. It is decidable for deterministic MSO graph-to-string or graph-to-tree
transducersM1,M2 and an NR setD of graphs whetherτM1

|D = τM2
|D.

Proof. We start with the graph-to-string case. Fori ∈ {1, 2} letDi = dom(Mi) ∩D.
We first show that it is decidable whetherD1 = D2. Clearly,D1 = D2 if and only if
Par(E(D)) = ∅, whereE is the deterministic MSO graph-to-dgraph transducer that re-
moves the edges of all graphs in the symmetric difference ofdom(M1) anddom(M2):
E = ({1},¬(ϕ1 ↔ ϕ2), {ψ1,σ(x)}σ∈Σ , ∅} whereϕi is the domain formula ofMi

for i ∈ {1, 2}, Σ is the node alphabet ofD, andψ1,σ(x) = labσ(x) for σ ∈ Σ. By
Lemma 2,Par(E(D)) is effectively semilinear, and hence its emptiness can be decided.
If D1 6= D2 then we are finished and know thatτM1

|D 6= τM2
|D. Assume now that

D1 = D2.
LetMi have output edge alphabet∆i, for i ∈ {1, 2}, and let$ be a symbol not in

∆ = ∆1∪∆2. We define deterministic MSO graph-to-string transducersM$
i =Mi;N

such thatM$
i (g) = Mi(g)$ for all g ∈ dom(Mi). HereN is the deterministic MSO

string transducer(C, true, {ψ1,#(x), ψ2,#(x)}, {χc,c′,δ(x, y)}c,c′∈C,δ∈∆∪{$}) such that
C = {1, 2}, ψ1,#(x) ≡ true,ψ2,#(x) ≡ χ1,2,$(x, y) ≡ ¬(∃z)

∨
δ∈∆ edgδ(x, z) and,

for δ ∈ ∆, χ1,1,δ(x, y) ≡ edgδ(x, y); all other edge formulas are set to false.
Since now all output strings end on the special marker$, τM1

|D 6= τM2
|D iff

∃a∃b : (d(a, b) ∧ ∃n∃g : (g ∈ D1 ∧M
$
1 (g)/n = a ∧ M$

2 (g)/n = b))

whered(a, b) denotes the statementa, b ∈ (∆ ∪ {$}) ∧ a 6= b. For givena, b, letMa,b

be the transducer of Lemma 6 fora, b,M$
1 ,M

$
2 . Then the statement displayed above

holds if and only if

∃a∃b : (d(a, b) ∧ ∃n : dgr(anbn) ∈Ma,b(D)))

iff ∃a∃b : (d(a, b) ∧ ∃n : (n, n) ∈ Par(Ma,b(D)))︸ ︷︷ ︸
P (a,b)

)
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By Lemma 2,Par(Ma,b(D)) is effectively semilinear. By Lemma 3 this means that
P (a, b) is decidable. Since there are only finitely manya, b with d(a, b), the statement
is decidable.

We now reduce the graph-to-tree case to the graph-to-stringcase. Let∆ be a ranked
alphabet and letm be the maximal rank of its elements. There is a deterministicMSO
tree-to-string transducerM∆ that translates every treet over∆ into the stringpre(t) of
its node labels in pre-order. Clearly, if we associate with adeterministic MSO graph-to-
tree transducerM (from (Σ,Γ ) to (∆, {1, . . . ,m})) the deterministic MSO graph-to-
string transducer̂M =M ;M∆, thenM1 is equivalent toM2 onD if and only if M̂1 is
equivalent toM̂2 onD. LetM∆ = ({1, 2}, true, {ψ1,#, ψ2,#}, {χc,c′,δ}c,c′∈{1,2},δ∈∆)
with ψ1,# ≡ true, ψ2,# ≡ root(x), where root(x) expresses thatx is the root node.
Further, forδ ∈ ∆, χ1,1,δ ≡ labδ(x) ∧ π(x, y) andχ1,2,δ ≡ labδ(x) ∧ root(y) ∧
¬(∃z)π(x, z) whereπ(x, y) expresses thaty is the successor ofx in the pre-order. ⊓⊔

String and Tree Transductions Clearly, Theorem 7 also holds if we restrict the input
graphs to strings or trees. In particular, deterministic MSO X-to-Y transducers have
decidable equivalence for allX,Y ∈ {string, tree}. For string transducers this reproves
the decidability result of [Gur82] (through [EH01]). For trees we obtain the following
new decidability result.

Corollary 8. The equivalence problem is decidable for deterministic MSOtree trans-
ducers.

Of course, even stronger statements hold; namely, given an NR setD of strings or
trees, it is decidable if two deterministic MSOX-to-Y transducers are equivalent when
restricted toD. For string transducers this means the following.

Corollary 9. It is decidable whether two deterministic two-way finite state transducers
are equivalent on an NR set of strings.

As discussed in Section 6 of [Eng97], the NR sets of strings are the same as the
ranges of deterministic tree-walking tree-to-string transducers. They properly contain,
for instance, the context-free languages and the ranges of deterministic two-way finite
state transducers. Since the NR sets of strings form a full AFL of Parikh languages,
Corollary 9 is in fact a special case of the general decidability result for deterministic
two-way finite state transducers in Theorem 5 of [Iba82]. It is incomparable to the
decidability of equivalence of two such transducers on an NPDT0L language [CK87].

The two statements of the next corollary follow from the characterizations of deter-
ministic MSO definable tree transductions in [BE00] and [EM03b], respectively. Note
that a tree transducer is of linear size increase if the size of the output tree is at most
linear in the size of the input tree.

Corollary 10. The equivalence problem is decidable
(1) for single-use restricted attributed tree transducersand
(2) for deterministic macro tree transducers of linear sizeincrease.
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This result is incomparable with the decidability of the equivalence problem for
nonnested separated attributed/macro tree transducers proved in [CF82]. It remains
open whether the equivalence problem is decidable for attributed tree transducers and
for deterministic macro tree transducers.

In [MSV03] thek-pebble tree transducer was introduced, and claimed to subsume
(the tree translation core of) all known XML query languages. Hence, we call determin-
istic pebble tree transducersdeterministic XML queries. Such queries can be simulated
by compositions of macro tree transducers [EM03a]. If such compositions are of linear
size increase, then they are MSO definable [Man03].

Corollary 11. The equivalence problem is decidable for deterministic XMLqueries of
linear size increase.
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