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Dominance Constraints in
Stratified Context Unification

Katrin Erk? Joachim Niehreh

LINRIA Futurs at Lille, France, Mostrare Project
2 University of Texas at Austin, Linguistics Department

Abstract

We express dominance constraints in the once-only nesting fragmenaiifiextr context
unification, which therefore is NP-complete.

1 Introduction

In this paper we express dominance constraints [15,1%]4rbstratified context
unification (CU) [20,13]. This yields a new small NP-hard fragnt of stratified CU
and shows the potential of stratified CU for use in applicaisere dominance
constraints alone are not expressive enough.

Dominance constraints are positive conjunctive first-o(&®©) logic formulas for
finite trees that talk about the descendant relation betwedas. Dominance con-
straints have first been introduced in computational lisgies [15], where they
found numerous application in the modeling of natural laggusyntax, discourse,
and semantics [19,4,5].

In the context of XML database theory, dominance constsaing called conjunc-
tive queries in trees [8], in which they select n-tuples ofle® Conjunctive and
FO queries in trees received considerable interest in thiegbof XPath, the W3C
standard query language for XML node selection [7,16]. Thieto FO logic be-
comes even closer with the introduction of variables in XFP2a0 [6].

More expressive second-order (SO) logics for finite tree® teeen studied since
the sixties, motivated by the close relationship to treemata [23,3]. A well-
studied language is the weak monadic SO logic with 2 succefat52S). Monadic
SO logic has equally found much recent interest in the camkformation ex-
traction from XML documents [7,11].

Context unification is the satisfiability problem of conteguations for trees [2].
It is the natural extension of string unification [14] to tset can also be seen as
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a form of linear second-order unification [10]. Whether cahtaification is de-
cidable is a prominent open question. Only some fragmen®Jtould be shown
decidable so far [2,20,21,12,14], among thetmnatified CU[20]. It is of particular
interest, since it can express one-step rewriting comé&r§i 8] for which decid-
ability could not be shown by more direct methods. Quite mégeit came as a
surprise that stratified CU can be solved in NP and is hencedwipiete [13].

Dominance constraints are known to be expressible by CU emsail7]. Their
satisfiability problem is NP-complete [9]. Whether dominamonstraints can be
expressed in any of the decidable fragments of CU was left.dpethis paper,
we introduce th@nce-only SO-nesting fragment of stratified ,Gldd show how to
express dominance constraints there. Since satisfiabfligdipminance constraints
is NP-hard [9], it follows that the once-only SO-nestinggimeent of stratified CU
is NP-complete. We also characterize the precise part afrthe-only SO-nesting
fragment that is equivalent to dominance constraints.

2 Dominance Constraints

Let X be ranked signature dfinction symbolsFor simplicity, we assume that
contains only binary function symbofs g and constants, b. All results presented
hold for arbitrary ranked signatures, too. It is sufficiemassume that contains
at least one constant and one function symbol of an arity

A treet € Ty is a ground term oveE. We define a node of 7 to be a word
over strictly positive natural numbers, identifying a natdi¢h the path leading to

it from the root. The root node corresponds to the empty word/e write the
concatenation of two words as- 7’. The set of all nodes of a tree is defined by
nodesf(m,m)) = {e}U{l x| 7 € nodes$r)} U{2-7 | 7 € node$r,)} and
nodesa) = {¢}. Every treer has aabeling functionL, : nodegr) — X given by
La(5> = a, Lf(ﬁ,Tz)(g) = fi Lf(n,rz)(l 'ﬂ-) = LTl (7‘(‘) ande(7'1,7'2)<2 : 7T) = L7'2 (ﬂ-)

We freely identify a treer with a logical structure with domainodes$r). This
structure provides the dominance relation so that 7<=’ iff 7 is a prefix ofr’,
i.e., if noder is an ancestor of or equal td. There are ternary labeling relations for
all binary function symbolg € ¥ so thatr = 7:f(m, m) is valid iff L.(7) = f,

m = w1 andm, = 7 - 2. And finally, there are unary labeling relations for all
constants € ¥ so thatr = m:a iff L.(7) = a.

For defining dominance constraints ovgrwe assume an infinite set of node vari-
ablesX, Y, Z. A dominance constraint overy: is a conjunction of dominance and
labeling literals, where, f € X:

o= XY | Xof (X1, Xa) | Xia | p A ¢

A (FO formula over) dominance constraintss interpreted over tree structures. A
modelof ¢ consists of a tree structureand a variable assignmemntof variables to



X:f(Xl,XQ) /\X1<1*Y/\X2<]*Y 1 2

Fig. 1. An unsatisfiable dominance constraint

nodes$r) which satisfyy in the usual Tarskian way. We write o |= ¢ if the pair
(1, «) is a model ofp and say thap is satisfiable.

The dominance constraitX: f(Y,Y') is an example of an unsatisfiable constraint,
since brothers are always distinct. Similarly, the comstia Fig. 1 is unsatisfiable,
since siblings in a tree cannot have common descendantscortfikct at variable

Y becomes obvious when we draw the constraint as a digraphewtoakes are the
variables of the constraint. The variables in labelingédte are connected by solid
edges (representing fatherhood) and those in dominaresalfitby dotted edges
(standing for ancesterhood).

Proposition 1 Satisfiability of dominance constraints is NP-complete.

This was shown by Koller, Niehren, and Treinen [9]. The diffigart is the NP-
hardness proof. Membership to NP is easy. It is sufficienutesg one of the rela-
tionsequal above belowandbesidefor each pair of variables in the constraint and
to test for consistency.

3 Stratified Context Unification

Context unification talks about relations between trees aladions between con-
texts. The notion of nodes in trees is hidden in the notiorootexts.

A context overX is a functiony : Ty, — T% of the form~ = \z.t, wheret is
a ground term oveE U {z} with a single occurrence of theole markerz. The
hole of ~ is the unique node afthat is labeled by:. Function application fills the
hole. It replaces the hole marker by the argument that thetifum receives, i.e.
y(t") = t[t' /x] fort' € Tx,.

We assume two sorts of variables, a infinite seffOFvariablesz, y and a infinite
set of SO-variableg”. Variable assignments map FO-variables to trees and SO-
variables to contexts. There are two sorts of terms:

FO-terms  t:=x|al f(t,t) | s(t)
SO-terms  s==C|eo| f(t,s) | f(s,t) | sos

FO-termg evaluate to trees(t) and SO-terms to contextsr(s) as defined in Fig.
2. The constans stands for the empty context, i.e., the identity function.

An FO-equationis a pair of FO-terms$=t’ and aSO-equatiora pair of SO-terms



) =

f(t,8)) = Ax.f(a(t),0(s)(x))
f(s,1)) = Az.f(o(s)(x), o (1))
sos')=a(s)oa(s)

Fig. 2. Evaluation of FO-terms to tree$t) and SO-terms to contexts s)

(
o(f(t, 1)) = flo(t),o(t)) o
(
(

s=s'. A CU-equation systenk’ is a finite conjunction of FO and SO-equations.
Whether a variable assignmensatisfies an (FO-formula over an) equation system
E is defined as usual. We write|= E in this case and catt a model ofE. CU for

Y is the satisfiability problem of CU-equation systems over

Note that SO-equations are not needed from the view pointmessiveness. They
can be defined by FO equations as follows, and thus be eliednat

s=s' H s(a)=s"(a) A s(b)=5'(b) (%)

Here,a andb are two different ground terms ovErwhich exist by our assumption
in Sec. 2. Furthermore, we can always reduce complex apiplsas(t) in FO-
terms to more basic applications of context variables oction symbols. It is
sufficient to rewrite exhaustively using the following uargally valid equations:

o(t) =t f,s)(t) = f(¥,8'(t))
f(& (@) = ('), 1) (sos)(t) = s(s'(1))

The richer syntax with SO-equations is advantageous fonidefithe once-only
SO-nesting fragmemtf CU that we introduce here. We call a variaBl®-nested in
a termif it occurs in the argument of some SO-varialileor on the right of some
C' with respect to function composition For instanceg andC’ are SO-nested
in f(C(C'(x)),y) and f(y,e) o C' o f(e,x) o C’ while C' andy not. A variable is
SO-nested in an equatiohit is SO-nested in one of its sides.

Definition 1 An equation systery belongs to th@nce-only SO-nesting fragment
of CU if all variables that are SO-nested ifi occur at most once k.

The elimination procedure for SO-equations based on (*) cagy SO-nested vari-
ables, leaving the once-only SO-nesting fragment. Foait#t,C' = C’ o f(z, )
becomex (a)=C"(f(z,a)) A C(b)=C"(f(x,b)) where the SO-nested variable
has been copied. This is why SO-equations are crucial fonidgfthe fragment.

Stratified CU is the restriction of CU to stratified CU-equatifi2313]. We extend
the usual setting by SO-equations, in order to account foe-amly SO-nesting.

Definition 2 The SO-prefixof a noder in a FO or SO-term is the word of SO-
variables, seen on the way from the root downrtproperly beforer. A system of
CU-equationsE (FO or SO) isstratifiedif all its variables (FO and SO) have at



most one SO-prefix in all terms on left and right hand sidegjof&ons ink.

The equations” = ¢’ o C andC(z) = C'(C(y)) are not stratified since the
occurrence of” on the left has SO-prefix, while that on the right has SO-prefix
C". The equatior = f(x) is stratified, whiler = C'(z) is not.

Theorem 1 (Levy, Schmidt-SchauR3, Villaret 2006)Stratified CU is NP-complete.

For FO-equations, this results was shown in [13]. It extdod3O-equations since
they can be eliminated while preserving stratification. iNmte that once-only SO-

nesting is subsumed by stratification: once-only variabas a unique SO-prefix,

so they cannot violate stratification. All other variables aot SO-nested so they
have the unique SO-prefix

Corollary 1 The once-only SO-nesting fragment of CU is in NP.

This follows from Theorem 1 and the fact that once-only SGting implies strat-
ification. Note that the NP-hardness result for stratified @mnf [22] does not
carry over. That it holds nevertheless will follow from thedation to dominance
constraints.

4 Expressing Dominance Constraints

We now show how to express dominance constraints in the onlgeSO-nesting
fragment of CU. The main problem is that the two languagesridestrees from
different perspectives. Dominance constraints modeliogla between theodesof
the same tree, while CU-equations talk about relations k@tiveesandcontexts
While it is possible that a tree contains two structurallyagubtrees, is impossible
that two siblings have the same descendants. Hence, thg&&ienxz=f(y,y) is
satisfiable, while the dominance constraifitf (Y, Y) is not.

The idea for the encoding is that contexts can locate nodieees. This ideas was
already used in [17] for encoding dominance constraints in liLlY unfortunately,
not in a stratified manner. In order to overcome that probleme, has to limit the
usage of first-order variables. This means that nodes slosuidentified by their
contexts exclusively, without talking about the subtres #tarts at them.

The translatior,] is given in Fig. 3. Every node variabl& is associated with
a fresh context variabl€’'y that denotes the context of nodein tree models of
v, starting from the root. The whole tree is modeled by the E@able xrgot.

In order to force all context§'y to start at the root of the tree, the translation
imposestrgot = Cx(-) for all variablesX in ¢. The underscorestands for fresh
existentially quantified FO-variables. The pretransratﬂ@]]p expresses conditions
for all literals of . Literals X<*Y state that the context af extends that of\
somehow3C' Cy = CxoC. Literals X: f( Xy, X,) express the fact that the context



[ell = [ell, A Axev) F7 zroot=Cx ()

[[X<1*Y]]p = dC Cy=CxoC
[X f(Xl,XQ)]]p = Jxy (Cx,=Cx o f(e,23)) A Fz; (Cx,=Cx o f(x1,e))
[X:a], = zroot=Cx(a)
[er Ao, = [, Allpll,

Fig. 3. Encoding dominance constraints

of X, extends that oX by f(e, _) and that the context oX, extends that o by
f(.,e). HenceCx, = Cx o f(e,_) andCx, = Cx o f(-, ). Finally, leaf labeling
constraintsX :a state that the context of is to be filled bya, i.e. zrgot = Cx (a).

As afirst example, we consider the unsatisfiable constraiftx, X). Its pretrans-
lation Cx=Cy o f(e,_) AN Cx=Cy o f(_, e) is unsatisfiable, since it contains two
equations fo”x which yieldCy o f(e, ) = Cy o f(_, ®) and thusf(e, ) = f(_, e),
which is impossible. The translation of the constraint ig. Ai can be shown unsat-
isfiable in the same manner.

Next we examine the unsatisfiable constrainf (Y') A X:g(Z) with f # g, whose
pretranslatiorCy = Cx o f(e) A C; = Cx o g(e) is satisfiable. Joined with the
rootedness condition of the full translation, we obtajgot = Cy(-) = Cz(-), SO
thatCx (f(-)) = Cx(g(-)) and thusf = g, which is impossible.

In the third example, we consider a case of unsatisfiablddeating: X:a A Y:b A
X<'Y wherea # b. Its pretranslationygot = Cx(a) A zrgot = Cy (b)) A Cy =
Cx o C is unsatisfiable, since the two equations fggot yield Cx(a) = Cy (b),
thusCx (a) = Cx(C(b)), so thata = C(b) which is impossible.

Proposition 2 (Correctness)Models ofy are in bijection to models dfy].
The proof is very similar to that of [9]. It is elaborated incBen 5.

Proposition 3 (Stratification) The translation of dominance constraints maps to
the once-only SO-nesting fragment of stratified CU.

Proof: The SO-nested variables introduced[is] are exactly those that are exis-
tentially quantified. It is easy to check that these varighle used only once in the
scope of the quantifier. O

Theorem 2 Satisfiability of dominance constraints ovecan be encoded in linear
time into the once-only SO-nesting fragment of stratifiett&xt unification ovek.

Proof: The translatior . || is clearly in linear time. It preserves satisfiability by
Proposition 2 and maps to the once-only SO-nesting fragwifestratified CU by
Proposition 3. O



[+=C(y)] " = X< Xe [C=C"o f(o.2)] " = Xorf(Xe, )
[t=C(a)] " = Xc:a [C=C"o f(x,0)] " = Xorf(-, Xc)
[C=CioCo] " =Xy Xe  [EAE] =[E]" A[E]™

I
I

Fig. 4. Back translation of once-only SO nesting rooted CU equations witHesiitgrals.
Corollary 2 The once-only SO-nesting fragment of stratified CU is NP-cetapl

Proof: This follows from Theorem 2 and the NP-hardness of dominapostraint
satisfiability [17]. O

We next characterize the range of the translation pregiselyrder to distinguish
an even smaller NP-hard fragment of stratified CU. We imposédthowing con-
ditions beside once-only SO-nesting:

Rootedness:there exists a unique FO-variablgggt in £ that is not SO-nested.
All non-nested SO-variables in E are rooted atcrgot, i-€., zropot = C(x)
belongs toF for some FO-variable.

Simple literals: all literals have one of the following forms:
x=C(y), x=C(a), C=C; 0 Cy, C=C"0 f(e,z),0rC=C"0 f(x,e).

All CU-equations|¢]| obtained from dominance constraints satisfy these condi-
tions. Conversely, we can back-translate CU-equationgth these properties to
dominance constrainfg=]] . For all SO-variable€ in E that are not SO-nested
we introduce a node variabl€. and define the translatigiz] " in Fig. 4. Note
that thex in the first equation has to be,.; by the rootedness constraint. For the
setN(E) of variables nested i it obviously holds thaBN (E).E H [[E] ']

5 Correctness Proof

We show the correctness of the translation as stated in Bitapo2. We have to
show that models, « = ¢ correspond one-to-one and onto to models- [[¢].
To that end, we translate pairs, «) into substitutions .

Let r; andm, be nodes of such thatr; dominatesr,. We writer.m; for the subtree
of 7 rooted atr;, which is an FO-term, and’! for the SO-term inr starting atr,
and ending at, i.e., the SO-term obtained by first replacing the subtreeaifr,
by e and then selecting the subtreerat

We fix a mapping of node variables to SO-variable€’'y that is one-to-one, and
we fix a single FO-variablergot. We define a variable assignmént ] such that
it satisfies for all node variables:

[7.al(Cx) = 75x)  and  [wroot] = 7



It is easy to see thdtr, o] = [[7/,d/] if and only if 7 = 7" anda = «’. Thus,
the translations is one-to-one. To see that it is onto, we bavdentify groups of
models that coincide on all variables of the equation systeder consideration.

Lemma 1 All modelso = [¢] are equal to some translatiofr, af], under the
assumption that model equality is limited to the variablesusring in [[¢].

Proof: Let V' be the set of variables in the constraintAll variables X € V
satisfyo = zroot=Cx(.). We define the tree by 7 = o(xrgot) and the vari-
able assignment into 7 such that(X) is the hole ofo(C). It then holds that
[, a] (Cx) = o(Cx) for all variablesX € V and that][r, of|(zroot) = o(zroot)-
Hence,[r, af] = o with respect to model equality that is restricted to thealslgs
occurring inf[¢]. O

It remains to show that the translation of dominance coimggareserves the mod-
els modulo model translation.

Lemma 2 If 7, = ¢ then[r, of E [¢]-

Proof: Leto = [, a] and assume,a = ¢. The rootedness conditions |=
zroot=Cx(-) holds for all X sinceo(zrgot) = o(Cx)(T.a(X)). It remains to
show thatr = [[¢]],,, by induction on the structure of formuja

e Casep is X<'Y. We have to show that = 3C. Cy=Cx o C. The assumption

T, = ¢ means thaty(X) is a prefix ofa(Y). Henceq‘j((ff)) is well-defined and

satisfiess(Cy) = 0(Cx) o 735

e Casepis X:f(X;, Xy). We need to show that = Jx,.C'x,=Cx o f(e, z5) and
o = J11.Cx,=Cx o f(z1,e). By symmetry it is sufficient to prove the former.
It follows from o(Cx,) = 0(Cx) o f(e, .a(Y')).

e Caseyp is X:a. Sincer,a = ¢, it holds thate(X) is a leaf labeled by in 7.
Henceo(zroot) = 7 = 0(Cx)(a), so thate = zrgot=Cx(a).

O

Lemma 3 If [, a] | [¢] thenT, a = .

Proof: Again, leto = [[7,a]] and assume = [¢]. The proof is by induction on
the structure obp.

o Casepis X<'Y. By o [= [¢], there is some contextsuch thatry ., = 75 x) ©
7. Thus,a(X) is a prefix ofa(Y') so thatr, o = X<*Y'.

o Casep is X:f(X1, Xz). Sinceo |= [¢], there exist trees, and7; such that
a(X).1, a(Xy) = a(X).2 and L. (a(X)) = f. This is equivalent ta, a |=
X f(Xy, Xa).

o Casepis X:a. Sinceo = [¢], it holds thatr = 75 (a). This is equivalent to
L, (X)=a,andthusta, a F X:a.

O



6 Conclusion and Future Work

We have shown that dominance constraints can be exprestse amce-only SO-

nesting fragment of stratified CU. This classifies dominamrestraints within the

decidable fragments of CU, and it yields a new small fragméstratified CU that

is NP-hard, the once-only SO-nesting fragment. In addjiicshows that stratified
CU is sufficiently expressive for many applications to ndtlaaguage semantics,
including the modeling of scope underspecification.

So far, however, it remains unclear whether the additiorptessiveness of strat-
ified CU can help to improve modeling natural language phemama&n answer

exists in the case of parallelism [5], as stratified CU lacKBsent expressiveness
for modeling VP-ellipsis in natural language semanticssT$in contrast to well-

nested CU [12], another NP-complete fragment of CU, which wewsubsumes
only a fragment of dominance constraints (where minimaltsarhs can be built

without guessing new material absent in the constraint).

A drawback of stratified CU so far is that it is lacking efficigqaiynomial time al-
gorithms for solving constraints in relevant fragmentssi$in contrast tanormal
dominance constraints fragment of dominance constraints for which satisfiabil-
ity is in linear time [1]. So an interesting question for fregwork is to distinguish
efficient fragments of stratified CU which allow for polynoriniane algorithms.

A more general open question is whether there exist polyalimie fragments of
CU which are sufficient for modeling relevant classes of Viipgk.

AcknowledgementsMany thanks to Manfred Schmidt-Schauf3 for helpful discus-
sion, and for inducing us to this result.
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