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Abstract

We express dominance constraints in the once-only nesting fragment of stratified context
unification, which therefore is NP-complete.

1 Introduction

In this paper we express dominance constraints [15,19,4,5,1] in stratified context
unification (CU) [20,13]. This yields a new small NP-hard fragment of stratified CU
and shows the potential of stratified CU for use in applications where dominance
constraints alone are not expressive enough.

Dominance constraints are positive conjunctive first-order (FO) logic formulas for
finite trees that talk about the descendant relation betweennodes. Dominance con-
straints have first been introduced in computational linguistics [15], where they
found numerous application in the modeling of natural language syntax, discourse,
and semantics [19,4,5].

In the context of XML database theory, dominance constraints are called conjunc-
tive queries in trees [8], in which they select n-tuples of nodes. Conjunctive and
FO queries in trees received considerable interest in the context of XPath, the W3C
standard query language for XML node selection [7,16]. The link to FO logic be-
comes even closer with the introduction of variables in XPath 2.0 [6].

More expressive second-order (SO) logics for finite trees have been studied since
the sixties, motivated by the close relationship to tree automata [23,3]. A well-
studied language is the weak monadic SO logic with 2 successors (WS2S). Monadic
SO logic has equally found much recent interest in the context of information ex-
traction from XML documents [7,11].

Context unification is the satisfiability problem of context equations for trees [2].
It is the natural extension of string unification [14] to trees. It can also be seen as
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a form of linear second-order unification [10]. Whether context unification is de-
cidable is a prominent open question. Only some fragments ofCU could be shown
decidable so far [2,20,21,12,14], among themstratified CU[20]. It is of particular
interest, since it can express one-step rewriting constraints [18] for which decid-
ability could not be shown by more direct methods. Quite recently, it came as a
surprise that stratified CU can be solved in NP and is hence NP-complete [13].

Dominance constraints are known to be expressible by CU equations [17]. Their
satisfiability problem is NP-complete [9]. Whether dominance constraints can be
expressed in any of the decidable fragments of CU was left open. In this paper,
we introduce theonce-only SO-nesting fragment of stratified CU, and show how to
express dominance constraints there. Since satisfiabilityof dominance constraints
is NP-hard [9], it follows that the once-only SO-nesting fragment of stratified CU
is NP-complete. We also characterize the precise part of theonce-only SO-nesting
fragment that is equivalent to dominance constraints.

2 Dominance Constraints

Let Σ be ranked signature offunction symbols. For simplicity, we assume thatΣ
contains only binary function symbolsf, g and constantsa, b. All results presented
hold for arbitrary ranked signatures, too. It is sufficient to assume thatΣ contains
at least one constant and one function symbol of an arity≥ 2.

A tree τ ∈ TΣ is a ground term overΣ. We define a nodeπ of τ to be a word
over strictly positive natural numbers, identifying a nodewith the path leading to
it from the root. The root node corresponds to the empty wordǫ. We write the
concatenation of two words asπ · π′. The set of all nodes of a tree is defined by
nodes(f(τ1, τ2)) = {ε} ∪ {1 · π | π ∈ nodes(τ1)} ∪ {2 · π | π ∈ nodes(τ2)} and
nodes(a) = {ǫ}. Every treeτ has alabeling functionLτ : nodes(τ) → Σ given by
La(ε) = a, Lf(τ1,τ2)(ε) = f , Lf(τ1,τ2)(1 · π) = Lτ1(π) andLf(τ1,τ2)(2 · π) = Lτ2(π).

We freely identify a treeτ with a logical structure with domainnodes(τ). This
structure provides the dominance relation so thatτ |= π⊳∗π′ iff π is a prefix ofπ′,
i.e., if nodeπ is an ancestor of or equal toπ′. There are ternary labeling relations for
all binary function symbolsf ∈ Σ so thatτ |= π:f(π1, π2) is valid iff Lτ (π) = f ,
π1 = π · 1 andπ2 = π · 2. And finally, there are unary labeling relations for all
constantsa ∈ Σ so thatτ |= π:a iff Lτ (π) = a.

For defining dominance constraints overΣ, we assume an infinite set of node vari-
ablesX,Y, Z. A dominance constraintϕ overΣ is a conjunction of dominance and
labeling literals, wherea, f ∈ Σ:

ϕ ::= X⊳∗Y | X:f(X1, X2) | X:a | ϕ ∧ ϕ′

A (FO formula over) dominance constraintsϕ is interpreted over tree structures. A
modelof ϕ consists of a tree structureτ and a variable assignmentα of variables to
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Fig. 1. An unsatisfiable dominance constraint

nodes(τ) which satisfyϕ in the usual Tarskian way. We writeτ, α |= ϕ if the pair
(τ, α) is a model ofϕ and say thatϕ is satisfiable.

The dominance constraintX:f(Y, Y ) is an example of an unsatisfiable constraint,
since brothers are always distinct. Similarly, the constraint in Fig. 1 is unsatisfiable,
since siblings in a tree cannot have common descendants. Theconflict at variable
Y becomes obvious when we draw the constraint as a digraph whose nodes are the
variables of the constraint. The variables in labeling literals are connected by solid
edges (representing fatherhood) and those in dominance literals by dotted edges
(standing for ancesterhood).

Proposition 1 Satisfiability of dominance constraints is NP-complete.

This was shown by Koller, Niehren, and Treinen [9]. The difficult part is the NP-
hardness proof. Membership to NP is easy. It is sufficient to guess one of the rela-
tionsequal, above, belowandbesidefor each pair of variables in the constraint and
to test for consistency.

3 Stratified Context Unification

Context unification talks about relations between trees and relations between con-
texts. The notion of nodes in trees is hidden in the notion of contexts.

A context overΣ is a functionγ : TΣ → TΣ of the formγ = λx.t, wheret is
a ground term overΣ ∪ {x} with a single occurrence of thehole markerx. The
holeof γ is the unique node oft that is labeled byx. Function application fills the
hole. It replaces the hole marker by the argument that the function receives, i.e.
γ(t′) = t[t′/x] for t′ ∈ TΣ.

We assume two sorts of variables, a infinite set ofFO-variablesx, y and a infinite
set ofSO-variablesC. Variable assignmentsσ map FO-variables to trees and SO-
variables to contexts. There are two sorts of terms:

FO-terms t ::= x | a | f(t, t′) | s(t)

SO-terms s ::= C | • | f(t, s′) | f(s′, t) | s ◦ s′

FO-termst evaluate to treesσ(t) and SO-termss to contextsσ(s) as defined in Fig.
2. The constant• stands for the empty context, i.e., the identity function.

An FO-equationis a pair of FO-termst=t′ and aSO-equationa pair of SO-terms
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σ(a) = a

σ(f(t, t′)) = f(σ(t), σ(t′))

σ(s(t)) = σ(s)(σ(t))

σ(•) = λx.x

σ(f(t, s)) = λx.f(σ(t), σ(s)(x))

σ(f(s, t)) = λx.f(σ(s)(x), σ(t))

σ(s ◦ s′) = σ(s) ◦ σ(s′)

Fig. 2. Evaluation of FO-terms to treesσ(t) and SO-terms to contextsσ(s)

s=s′. A CU-equation systemE is a finite conjunction of FO and SO-equations.
Whether a variable assignmentσ satisfies an (FO-formula over an) equation system
E is defined as usual. We writeσ |= E in this case and callσ a model ofE. CU for
Σ is the satisfiability problem of CU-equation systems overΣ.

Note that SO-equations are not needed from the view point of expressiveness. They
can be defined by FO equations as follows, and thus be eliminated:

s=s′ |=| s(a)=s′(a) ∧ s(b)=s′(b) (∗)

Here,a andb are two different ground terms overΣ which exist by our assumption
in Sec. 2. Furthermore, we can always reduce complex applications s(t) in FO-
terms to more basic applications of context variables or function symbols. It is
sufficient to rewrite exhaustively using the following universally valid equations:

•(t) = t f(t′, s′)(t) = f(t′, s′(t))

f(s′, t′)(t) = f(s′(t), t′) (s ◦ s′)(t) = s(s′(t))

The richer syntax with SO-equations is advantageous for defining theonce-only
SO-nesting fragmentof CU that we introduce here. We call a variableSO-nested in
a termif it occurs in the argument of some SO-variableC, or on the right of some
C with respect to function composition◦. For instance,x andC ′ are SO-nested
in f(C(C ′(x)), y) andf(y, •) ◦ C ◦ f(•, x) ◦ C ′ while C andy not. A variable is
SO-nested in an equationif it is SO-nested in one of its sides.

Definition 1 An equation systemE belongs to theonce-only SO-nesting fragment
of CU if all variables that are SO-nested inE occur at most once inE.

The elimination procedure for SO-equations based on (*) maycopy SO-nested vari-
ables, leaving the once-only SO-nesting fragment. For instance,C = C ′ ◦ f(x, •)
becomesC(a)=C ′(f(x, a)) ∧ C(b)=C ′(f(x, b)) where the SO-nested variablex
has been copied. This is why SO-equations are crucial for defining the fragment.

Stratified CU is the restriction of CU to stratified CU-equations[20,13]. We extend
the usual setting by SO-equations, in order to account for once-only SO-nesting.

Definition 2 TheSO-prefixof a nodeπ in a FO or SO-term is the word of SO-
variables, seen on the way from the root down toπ properly beforeπ. A system of
CU-equationsE (FO or SO) isstratifiedif all its variables (FO and SO) have at
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most one SO-prefix in all terms on left and right hand sides of equations inE.

The equationsC = C ′ ◦ C and C(x) = C ′(C(y)) are not stratified since the
occurrence ofC on the left has SO-prefixǫ, while that on the right has SO-prefix
C ′. The equationx = f(x) is stratified, whilex = C(x) is not.

Theorem 1 (Levy, Schmidt-Schauß, Villaret 2006)Stratified CU is NP-complete.

For FO-equations, this results was shown in [13]. It extendsto SO-equations since
they can be eliminated while preserving stratification. Next note that once-only SO-
nesting is subsumed by stratification: once-only variableshave a unique SO-prefix,
so they cannot violate stratification. All other variables are not SO-nested so they
have the unique SO-prefixǫ.

Corollary 1 The once-only SO-nesting fragment of CU is in NP.

This follows from Theorem 1 and the fact that once-only SO-nesting implies strat-
ification. Note that the NP-hardness result for stratified CU from [22] does not
carry over. That it holds nevertheless will follow from the relation to dominance
constraints.

4 Expressing Dominance Constraints

We now show how to express dominance constraints in the once-only SO-nesting
fragment of CU. The main problem is that the two languages describe trees from
different perspectives. Dominance constraints model relations between thenodesof
the same tree, while CU-equations talk about relations between treesandcontexts.
While it is possible that a tree contains two structurally equal subtrees, is impossible
that two siblings have the same descendants. Hence, the FO-equationx=f(y, y) is
satisfiable, while the dominance constraintX:f(Y, Y ) is not.

The idea for the encoding is that contexts can locate nodes intrees. This ideas was
already used in [17] for encoding dominance constraints in CU, but unfortunately,
not in a stratified manner. In order to overcome that problem,one has to limit the
usage of first-order variables. This means that nodes shouldbe identified by their
contexts exclusively, without talking about the subtree that starts at them.

The translation[[ϕ]] is given in Fig. 3. Every node variableX is associated with
a fresh context variableCX that denotes the context of nodeX in tree models of
ϕ, starting from the root. The whole tree is modeled by the FO-variablexroot.
In order to force all contextsCX to start at the root of the tree, the translation
imposesxroot = CX( ) for all variablesX in φ. The underscorestands for fresh
existentially quantified FO-variables. The pretranslation [[ϕ]]p expresses conditions
for all literals of ϕ. LiteralsX⊳∗Y state that the context ofY extends that ofX
somehow:∃C CY = CX ◦C. LiteralsX:f(X1, X2) express the fact that the context
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[[ϕ]] = [[ϕ]]p ∧
∧

X∈V(ϕ) ∃x xroot=CX(x)

[[X⊳∗Y ]]p = ∃C CY =CX ◦ C

[[X:f(X1, X2)]]p = ∃x2 (CX1
=CX ◦ f(•, x2)) ∧ ∃x1 (CX2

=CX ◦ f(x1, •))

[[X:a]]p = xroot=CX(a)

[[ϕ1 ∧ ϕ2]]p = [[ϕ1]]p ∧ [[ϕ2]]p

Fig. 3. Encoding dominance constraints

of X1 extends that ofX by f(•, ) and that the context ofX2 extends that ofX by
f( , •). HenceCX1

= CX ◦ f(•, ) andCX2
= CX ◦ f( , •). Finally, leaf labeling

constraintsX:a state that the context ofX is to be filled bya, i.e.xroot = CX(a).

As a first example, we consider the unsatisfiable constraintY :f(X,X). Its pretrans-
lation CX=CY ◦ f(•, ) ∧ CX=CY ◦ f( , •) is unsatisfiable, since it contains two
equations forCX which yieldCY ◦f(•, ) = CY ◦f( , •) and thusf(•, ) = f( , •),
which is impossible. The translation of the constraint in Fig. 1 can be shown unsat-
isfiable in the same manner.

Next we examine the unsatisfiable constraintX:f(Y )∧X:g(Z) with f 6= g, whose
pretranslationCY = CX ◦ f(•) ∧ CZ = CX ◦ g(•) is satisfiable. Joined with the
rootedness condition of the full translation, we obtainxroot = CY ( ) = CZ( ), so
thatCX(f( )) = CX(g( )) and thusf = g, which is impossible.

In the third example, we consider a case of unsatisfiable leaflabeling:X:a∧ Y :b∧
X⊳∗Y wherea 6= b. Its pretranslationxroot = CX(a) ∧ xroot = CY (b) ∧ CY =
CX ◦ C is unsatisfiable, since the two equations forxroot yield CX(a) = CY (b),
thusCX(a) = CX(C(b)), so thata = C(b) which is impossible.

Proposition 2 (Correctness)Models ofϕ are in bijection to models of[[ϕ]].

The proof is very similar to that of [9]. It is elaborated in Section 5.

Proposition 3 (Stratification) The translation of dominance constraints maps to
the once-only SO-nesting fragment of stratified CU.

Proof: The SO-nested variables introduced in[[ϕ]] are exactly those that are exis-
tentially quantified. It is easy to check that these variables are used only once in the
scope of the quantifier. 2

Theorem 2 Satisfiability of dominance constraints overΣ can be encoded in linear
time into the once-only SO-nesting fragment of stratified context unification overΣ.

Proof: The translation[[ . ]] is clearly in linear time. It preserves satisfiability by
Proposition 2 and maps to the once-only SO-nesting fragmentof stratified CU by
Proposition 3. 2
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[[x=C(y)]]−1 = XC⊳∗XC [[C=C ′ ◦ f(•, x)]]−1 = XC′ :f(XC , )

[[x=C(a)]]−1 = XC :a [[C=C ′ ◦ f(x, •)]]−1 = XC′ :f( , XC)

[[C=C1 ◦ C2]]
−1 = XC1

⊳∗XC [[E ∧ E ′]]−1 = [[E]]−1 ∧ [[E ′]]−1

Fig. 4. Back translation of once-only SO nesting rooted CU equations with simple literals.

Corollary 2 The once-only SO-nesting fragment of stratified CU is NP-complete.

Proof: This follows from Theorem 2 and the NP-hardness of dominanceconstraint
satisfiability [17]. 2

We next characterize the range of the translation precisely, in order to distinguish
an even smaller NP-hard fragment of stratified CU. We impose the following con-
ditions beside once-only SO-nesting:

Rootedness:there exists a unique FO-variablexroot in E that is not SO-nested.
All non-nested SO-variablesx in E are rooted atxroot, i.e., xroot = C(x)
belongs toE for some FO-variablex.

Simple literals: all literals have one of the following forms:
x=C(y), x=C(a), C=C1 ◦ C2, C=C ′ ◦ f(•, x), or C=C ′ ◦ f(x, •).

All CU-equations[[ϕ]] obtained from dominance constraints satisfy these condi-
tions. Conversely, we can back-translate CU-equationsE with these properties to
dominance constraints[[E]]−1. For all SO-variablesC in E that are not SO-nested
we introduce a node variableXC and define the translation[[E]]−1 in Fig. 4. Note
that thex in the first equation has to bexroot by the rootedness constraint. For the
setN(E) of variables nested inE it obviously holds that∃N(E).E |=| [[[[E]]−1]].

5 Correctness Proof

We show the correctness of the translation as stated in Proposition 2. We have to
show that modelsτ, α |= ϕ correspond one-to-one and onto to modelsσ |= [[ϕ]].
To that end, we translate pairs(τ, α) into substitutionsσ.

Letπ1 andπ2 be nodes ofτ such thatπ1 dominatesπ2. We writeτ.π1 for the subtree
of τ rooted atπ1, which is an FO-term, andτπ1

π2
for the SO-term inτ starting atπ1

and ending atπ2, i.e., the SO-term obtained by first replacing the subtree ofτ atπ2

by • and then selecting the subtree atπ1.

We fix a mapping of node variablesX to SO-variablesCX that is one-to-one, and
we fix a single FO-variablexroot. We define a variable assignment[[τ, α]] such that
it satisfies for all node variablesX:

[[τ, α]](CX) = τ ǫ
α(X) and [[xroot]] = τ

7



It is easy to see that[[τ, α]] = [[τ ′, α′]] if and only if τ = τ ′ andα = α′. Thus,
the translations is one-to-one. To see that it is onto, we have to identify groups of
models that coincide on all variables of the equation systemunder consideration.

Lemma 1 All modelsσ |= [[ϕ]] are equal to some translation[[τ, α]], under the
assumption that model equality is limited to the variables occurring in [[ϕ]].

Proof: Let V be the set of variables in the constraintϕ. All variablesX ∈ V
satisfyσ |= xroot=CX( ). We define the treeτ by τ = σ(xroot) and the vari-
able assignmentα into τ such thatα(X) is the hole ofσ(CX). It then holds that
[[τ, α]](CX) = σ(CX) for all variablesX ∈ V and that[[τ, α]](xroot) = σ(xroot).
Hence,[[τ, α]] = σ with respect to model equality that is restricted to the variables
occurring in[[ϕ]]. 2

It remains to show that the translation of dominance constraints preserves the mod-
els modulo model translation.

Lemma 2 If τ, α |= ϕ then[[τ, α]] |= [[ϕ]].

Proof: Let σ = [[τ, α]] and assumeτ, α |= ϕ. The rootedness conditionsσ |=
xroot=CX( ) holds for all X sinceσ(xroot) = σ(CX)(τ.α(X)). It remains to
show thatσ |= [[ϕ]]p, by induction on the structure of formulaϕ.

• Caseϕ is X⊳∗Y . We have to show thatσ |= ∃C. CY =CX ◦ C. The assumption
τ, α |= ϕ means thatα(X) is a prefix ofα(Y ). Henceτα(X)

α(Y ) is well-defined and

satisfiesσ(CY ) = σ(CX) ◦ τ
α(X)
α(Y ) .

• Caseϕ is X:f(X1, X2). We need to show thatσ |= ∃x2.CX1
=CX ◦ f(•, x2) and

σ |= ∃x1.CX2
=CX ◦ f(x1, •). By symmetry it is sufficient to prove the former.

It follows from σ(CX1
) = σ(CX) ◦ f(•, τ.α(Y )).

• Caseϕ is X:a. Sinceτ, α |= ϕ, it holds thatα(X) is a leaf labeled bya in τ .
Hence,σ(xroot) = τ = σ(CX)(a), so thatσ |= xroot=CX(a).

2

Lemma 3 If [[τ, α]] |= [[ϕ]] thenτ, α |= ϕ.

Proof: Again, letσ = [[τ, α]] and assumeσ |= [[ϕ]]. The proof is by induction on
the structure ofϕ.

• Caseϕ is X⊳∗Y . By σ |= [[ϕ]]p there is some contextγ such thatτ ǫ
α(Y ) = τ ǫ

α(X) ◦
γ. Thus,α(X) is a prefix ofα(Y ) so thatτ, α |= X⊳∗Y .

• Caseϕ is X:f(X1, X2). Sinceσ |= [[ϕ]]p there exist treesτ2 andτ1 such that
τ ǫ
α(X1) = τ ǫ

α(X) ◦ λx.f(x, τ2) andτ ǫ
α(X2) = τ ǫ

α(X) ◦ λx.f(τ1, x). Hence,α(X1) =
α(X).1, α(X2) = α(X).2 andLτ (α(X)) = f . This is equivalent toτ, α |=
X:f(X1, X2).

• Caseϕ is X:a. Sinceσ |= [[ϕ]], it holds thatτ = τ ǫ
α(X)(a). This is equivalent to

Lτ (X) = a, and thus toτ, α |= X:a.

2
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6 Conclusion and Future Work

We have shown that dominance constraints can be expressed inthe once-only SO-
nesting fragment of stratified CU. This classifies dominance constraints within the
decidable fragments of CU, and it yields a new small fragment of stratified CU that
is NP-hard, the once-only SO-nesting fragment. In addition, it shows that stratified
CU is sufficiently expressive for many applications to natural language semantics,
including the modeling of scope underspecification.

So far, however, it remains unclear whether the additional expressiveness of strat-
ified CU can help to improve modeling natural language phenomena. An answer
exists in the case of parallelism [5], as stratified CU lacks sufficient expressiveness
for modeling VP-ellipsis in natural language semantics. This is in contrast to well-
nested CU [12], another NP-complete fragment of CU, which however subsumes
only a fragment of dominance constraints (where minimal solutions can be built
without guessing new material absent in the constraint).

A drawback of stratified CU so far is that it is lacking efficientpolynomial time al-
gorithms for solving constraints in relevant fragments. This is in contrast tonormal
dominance constraints, a fragment of dominance constraints for which satisfiabil-
ity is in linear time [1]. So an interesting question for future work is to distinguish
efficient fragments of stratified CU which allow for polynomial time algorithms.
A more general open question is whether there exist polynomial time fragments of
CU which are sufficient for modeling relevant classes of VP-ellipsis.

Acknowledgements.Many thanks to Manfred Schmidt-Schauß for helpful discus-
sion, and for inducing us to this result.
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