Scalable Bloom Filters

Paulo ®rgio Almeida Carlos Baquero Nuno Preguica
CCTC/Departamento de Infoatica CITl/Departamento de Inforatica
Universidade do Minho FCT, Universidade Nova de Lisboa

David Hutchison
Computing Department

Lancaster University

Abstract 1 Introduction

Bloom filters [1] provide space-efficient storage of

Bloom Filters provide space-efficient storage of sets S€tS at the cost of a probability of false positive on

at the cost of a probability of false positives on mem- membership queries. Insertion and membership test-

bership queries. The size of the filter must be defimed M9 M Bloom filters implies an amount of randomiza-

priori based on the number of elements to store andthet'on' since elements are transformed using one-way

desired false positive probability, being impossible to hash functions. Testing for the presence of elements

store extra elements without increasing the false posi- that have actually been inserted in the filter will always

tive probability. This leads typically to a conservative 9'V€ 2 positive result; there are no false negatives. On

assumption regarding maximum set size, possibly bythe contrary, there is always some probability of false

orders of magnitude, and a consequent space waste positives: elements that have not been inserted into the

This paper proposes Scalable Bloom Filters, a vari- filter can erroneously pass the membership test.

ant of Bloom Filters that can adapt dynamically to the .) . .
An important property of Bloom filters is the lin-

number of elements stored, while assuring a maximum _ .)
ear relation between the filter size and the number of

false positive probability.
P P y elements that can be stored. For any given maximum
false positive probability, it is possible to determine
how much filter state is needed per element [2]. As

Keywords: Data Structures, Bloom Filters, Dis- expected, lower false positive rates require more state

tributed Systems, Randomized Algorithms per element.

If the maximum allowable error probability and [9] proposes a multi-segment Bloom Filter that allows
the number of elements to store are both known, it efficient access when this data structure is stored on
is straightforward to dimension an appropriate filter. disk; a similar approach [10] is used in a network
However, it is not always possible to know in advance routing algorithm; Compressed Bloom Filters [11] im-
how many elements will need to be stored; this leads to prove performance when the Bloom Filter is passed as
over-dimensioning the filters or relinquishing the max- a message, by using larger but sparser filters that lead

imum error probability. to smaller compressed sizes.

In this paper we provide a solution for the case in All these variants suffer from the same limitation of
which not only is the number of elements not known in the original Bloom filters: it is necessary to dimension,
advance but also we need to strictly enforce some max-a priori, the size of the filters. We believe that it would
imum error probability. We prove that this is possible, be possible to drop this limitation for most (or even all)
by means of a novel construction: Scalable Bloom Fil- of these proposals by creating scalable variants along

ters (SBF). the lines of SBF.

After a brief review of related work, this paper is or-

_ _ _ _ 3 Bloom Filters
ganised as follows. Section 3 reviews the basic math-

ematical properties of Bloom filters. Section 4 intro- o N _
A Bloom filter is traditionally implemented by a

duces Scalable Bloom Filters and gives an evaluation))])
single array ofM bits, where M is the filter size. On

of their properties. Section 5 ends the paper with our .) o
filter creation all bits are reset to zeroes. A filter is also

conclusions. _ _
parameterized by a constanthat defines the number
of hash functions used to activate and test bits on the
2 Related Work
filter. Each hash function should output one index in
i) .M. When inserting an elementon the filter, the bits
In recent years, Bloom filters have received in-
in the k indexesh, (e), ha(e), ..., hi(e) are set.

creased attention, and they are now being used in a
large number of systems, including peer-to-peer sys- |n particular, a filter withM = 15 bits andk =
tems [3, 4], web caches [5], database systems [6] and3 hash functions could become as follows, after the

others [7, 2]. Several variants of the basic Bloom filter insertion of one element:

technique have been proposed in the literature.

In [5] the authors introduce the idea oftaunting
Bloom filter, allowing elements to be removed from The same procedure is used to insert other ele-
the set represented by the Bloom filter; Spectral Bloom ments, each time setting the bits given by the corre-

Filters [8] use a similar approach to store multi-sets; spondingk indexes.

In order to query a Bloom filter, say for ele- in each slice. Each slice is depicted here in a column.

ment zx, it suffices to verify if all bits in indexes ololo
hi(x), ho(x),..., hi(x) are set. If one or more of ol1lo
these bits is not set, then the queried element is def- ololo
initely not present on the filter. Otherwise, if all these 1101
bits are set, then the element is considered to be on the 010]0
N—————
filter. Given this procedure, an error probability exists k

for positive matches, since the tested indexes might -
3.1 False Positives

have been set by the insertion of other elements.

False positives can occur when testing for the pres-
With the above setup, all hash functions are used

ence of a given element not present in the filter, and
to generate indexes ovéd. Since these hash func-

all & bits given byh;(z), 1 < i < k, happen to be set
tions are independent, nothing prevents collisions in

due to the insertion of other elements. Intuitively, if
the outputs. In the most extreme case we could have

the number of slices or the slice sizen are increased
hi(xz) = ho(x) = ... = hi(z). This means that in the

the error probability will decrease.
general case each element will be described byA to

distinct indexes. Although for large values/if a col- The probability of a given bit being set in a slice

lision seldom occurs, this aspect makes some elementsgs the fill ratiop between the number of set bits in the

more prone to false positives (and also complicates theslice and the slice size:. For a large valuen, this

analytical derivation of probabilities) [12]. ratio will be approximately the same across all slices,
and the false positive probability for the filter will

A variant of Bloom filters [2], which we adoptin be
this paper, consists of partitioning thld bits among P =pF.
the k hash functions, thus creatirigslices ofm =

In the example above, with one element inserie,
M /k bits. In this variant, each hash functibf(), with

1/5 and the overall error probabilit® is (1/5)3, thus
1 <i < k, produces an index ovet for its respective
slice. Therefore, each element is always described by0.8%-
exactly k£ bits, which results in a more robust filter, In each slice, the probability that a giveérbit be-
with no element specially sensitive to false positives. comes set after introducing one elemerit/fis; it will
remain unset with probability — 1/m. If n elements
For M = 15 andk = 3 afilter would have 3 slices have been inserted, the probability that the given bit is
with 5 bits in each. After insertion of one element, the still 0is (1 — 1/m)™. Therefore, the probability that a

resulting configuration would have exactly one bit set specific bit in a slice is set afterinsertions, which is

also the expected fill ratip, is
1 n
p=1-— <1 —) .
m

3.2 Bounding the Error

From the analysis in the previous section, it is evi-
dent that the error probabilit{ increases witm and
decreases withn and k. We now determine how to

choosée: (and thusm) such that, for a given filter size

M, we can maximize the number of stored elements

n, while keeping the error probability below a certain

valueP.

For usable values of., 1 — 1/m is almost the same
ase~!/™ (from the Taylor series expansion); we can

use this approximation to obtain:

—n/m
)

px1l—e
from which we obtain
n~—-mln(l—p).

From M

km and P = p* we obtainm

M Inp/1n P; therefore:
Inpln(1 — p)
~M————.
—InP

For any given error probability? and filter sizeM,
n is maximized by making = 1/2, regardless of
or M. As p corresponds to the fill ratio of a slice, a
filter depicts an optimal use when slices are half full.
With p = 1/2 we obtain

(In2)?2

, ~ M .
& I P|

In this expression it is clear that the number of ele-
mentsn that can be stored, for a given ertBr is lin-

ear on the filter sizé\/. Finally, from P = p* and

P | 0.1% | 0.01% | 0.001% | 0.0001%
k 10 14 17 20

m | 26214 | 18724 | 15420 | 13107
n | 18232| 13674 | 10939 9116

Table 1. Several capacities for a bloom

filter with 32 Kilobytes.

with p = 1 we obtain

k=1 .
089 P
With these formulae it is now possible to determine
the optimal filter parameters in order to respect a max-
imum error probability. For example, to have a maxi-
mum error 0f0.1% we should have at leas0 slices,

sincelog, 5a57 ~ 9.96 (210 = 1024). If this filter is

allocated 32 kilobytes, each slice will have 26214 bits
and the filter is predicted to hold up to 18232 elements.

See Table 1.

4 Scalable Bloom Filters

A Scalable Bloom Filter addresses the problem of
having to choose an a priori maximum size for the set,
and allows an arbitrary growth of the set being repre-

sented. The two key ideas are:

e A SBF is made up of a series of one or more
(plain) Bloom Filters; when filters get full due
to the limit on the fill ratio, a new one is added;
qguerying is made by testing for the presence in

each filter.

e Each successive bloom filter is created with a
tighter maximum error probability on a geometric
progression, so that the compounded probability
over the whole series converges to some wanted £

value, even accounting for an infinite series.

The SBF starts with one filter witky slices and er-
ror probability Py. When this filter gets full, a new one
is added withk, slices andP; = Pyr error probabil-
ity, wherer is the tightening ratio witld < r» < 1. At
a given moment we will havéfilters with error prob-

.. P()T’l_l

abilities Py, Pyr, Pyr2, . The compounded
error probability for the SBF will be:

-1

P=1-JJa-Pnr).

=0

We can use the known approximation

1— H) < Z P,
to obtain an upper bound (which will be tight for small
P):

< lim
T l—oo

-1
P< Z Zpor
1=0

and therefore

1
P < Py

The number of slices for each filter will be:
ko = log, Pyt

and

-1

ki =logy P! = ko +ilogyr

To have eaclt; as an integer, a natural choice will

ber = 1/2, resulting in:

ki = ko +1,

5e+06

static
- s=1
— s=2

4e+06

%)

ABF size in bi
3e+06

2e+06

1e+06

0e+00

T T T T T
5000 10000 15000 20000

set size

Figure 1. Space usage as a function of
set size. Two SBFs, with slice growth
factors s = 1 and s = 2, are compared

with a static bloom. Both with r 0.5,

mo = 128 and P = 10~°.

which means an extra slice per new filter. The com-
pounded error probability for the SBF will be bounded
by:

P < 2P, =2'"ho,
Another possibility is to use an other thanl /2 and
round up the resulting:;'s to obtain the number of
slices. We will see below that choosimgaround 0.8
— 0.9 will result in better average space usage for wide

ranges of growth.

4.1 Scalable Growth

The estimation of the set size that is to be stored
in a filter may be wrong, possibly by several orders of
magnitude. We may also want to use not much more
memory than needed at a given time, and start a filter
with a small size. Therefore, a SBF should be able to

adapt to variations in size of several orders of magni-

tude in an efficient way.

~ 7 s=27(1/4)
- s=20(102)

When a new filter is added to a SBF, its size can

l}or‘n%

be chosen orthogonally to the required false positive

probability. A flexible growth can be obtained by mak-

relative space usage
2
I

ing the filter sizes grow exponentially. We can have a

SBF made up of a series of filters with slices having

l_ll T T T T

sizesmyg, mos, mos>, ..., mgs
1e+00 1le+02 le+04 1le+06

growth magnitude

Given that filters stop being used when the fill ratio
reached /2, filter 7 will hold approximately: Figure 2. Relative space usage with re-

i spect to a static filter as a function of set
n; & mos'1n 2

growth. With » = 0.5 and P = 107°.
elements. The SBF withstages will hold about

-1
(In2)mo Z 5t element set is only slightly more than for a static filter
=0

dimensioned for that size.
elements. This geometric progression allows a fast

adaptation to set sizes of different orders of magnitude. To better understand adaptation to growth, we
A practical choice will bes = 2, which preservess; should not plot space usage against an absolute set
as a power of 2, ifn, already starts as such; this is size, but against the relative growth over the initial
useful, as the range of a hash function is typically a size. We should have a scale-free graph telling us how
power of 2. much space will be used according to the orders of

magnitude in size the filter has to adapt to. Figure 2
In general, other values efmay be used. Figure 1

plots the space usage relative to a static filter dimen-
shows the required size for the SBF as a function of

sioned for the required size. Here we can see that if the
set sizen, fors = 1 ands = 2. The cases = 1

set had to grow by 6 orders of magnitude, §o£ 2 the
gives a constant: in all stages; this case is not feasible

SBF would use about twice the space of a static filter
as it would lead to much inefficiency, as the number

exactly dimensioned for the final size, and foe 4
of stages required grows linearly with set size, and in

about 50% more space. In terms of space usage we
each stage an extra slice would be required (fee

can see that practical valuesglike 2, 4 or above can
1/2); this would result in rapidly increasing space per

be chosen, and values bel@and approaching will
element and computational cost for the hash functions.

give progressively worse results.
For s = 2 we can see that not only the number of

stages remains low, as it increases logarithmically with Another aspect to consider in the choicesa$ the

the set size, but also the space required for the 22624number of stages required for the SBF. Figure 3 plots

100
1
15

— growth=10"6
- growth=10"2

80
1

1.0

average use ratio

0.5
1

07-3, growth=10"6
07-3, growth=10"2
076, growth=10"6
076, growth=10"2
T
6

p=
p=
p=
p=

B e

0.0

T T
7 8

Figure 3. Number of stages as a function Figure 4. Average relative space usage as
of s. afunction of s, for different combinations

of set growth and P, for optimal .

the number of stages as a functionspfor two cases

of set growth:10? and10°. This figure confirms that and number of stages, with the convenience of having
s should not be chosen near 1 and that the practicala power of two, we can conclude that 2 or 4 will be
choice ofs as a power of two is a sensible one with a sensible choice for. To keep the number of stages
this respect. small, we can choose = 2 if we expect a small set

growth ands = 4 if we expect a larger growth.
From these figures one could be led to think that

the larger thes the better. However, astends to in-

4.2 Choosing the Error Probability Ratio
finity, each successive stage of the SBF will take con-

siderably more space which will remain poorly used
The other parameter of a SBF that we need to

for considerably more time until it gets full. A better

choose is the error probability ratio We can choose
criterion is to consider the average space usage over

values other thaf.5 and round up the resulting num-
the lifetime of the SBF from an empty set until the fi-

ber of slices for stage
nal set size. Figure 4 plots this average space usage

relative to a static filter (dimensioned for the final set ki = ko +ilogyrt.

size), as a function of, for several combinations of

Figure 5 compares the space usage as a function of set
error probability (0~2 and10~%) and set growth1(?

growth for different combinations @? andr. It shows
and10). These curves cover a wide range of scenar-

that if we use am larger thar).5, although we start by
ios; they show that, as long ass not very close to 1,

using more space (we need more initial slicks, as
increasings is not profitable.

Py needs to be smaller for the geometric series to con-

Combining these two criteria, i.e. average space verge to the samg), after some point we end up using

RIS
000
S0
TUUD

r
r
r
r

relative space usage
2
|
optimal r

— s=27(1/2)
--- s=2

- s=4
T T T T T T T T
1e+00 1le+02 le+04 1e+06 1e+00 1e+02 le+04 1e+06

growth magnitude growth magnitude

Figure 5. Relative space usage as a func- Figure 6. Optimal r as a function of
tion of growth, for different combinations growth magnitude, for s € {V/2,2,4} and

of Pand rand s = 2. P =1076.

. 5 Conclusions
less and less space as the set grows, as we add slices

less frequently at each new stage. It specially pays to

: . Bloom Filters and the existing variants require a
use a large- for a tighter error probability?, as the g g

. I _ priori dimensioning of the maximum size of the set
few extra slices needed initially will be a small over-

. to be stored in the filter. Given that it is not always
head over the already large number of slices needed 4

possible to know in advance how many elements will
forr = 0.5.

need to be stored, this leads to over-dimensioning the

Figure 4 shows average relative space usage, calcufilters, possibly by several orders of magnitude.

lated for the optimat that minimizes average space, . .
P ae sp In this paper we have introduced Scalable Bloom

for each combination of growth andvalues (the opti-) . .
Filters (SBF), a mechanism that allows representing

malr does not depend oR). ,) o)
P) sets without having to know a priori the maximum set

size and yet being able to choose from the start the

In order to select an appropriate value forwe
maximum false positive probability. The mechanism

can observe how the optimalbehaves for different
adapts to set growth by using a series of classic Bloom

growth ands values. Figure 6 shows the optimahs
Filters of increasing sizes and tighter error probabili-

a function of set growth, for three different valuessof
ties, added as needed.
(v/2,2,4). Considering the choice of = 2 for small
expected growth ang = 4 for larger growth, one can A SBF is parameterized not only by the initial size
see that- around 0.8 — 0.9 is a sensible choice, that and error probability but also by the growth rate of the

gives better space usage than the natueall /2. size and by the error probability tightening rate. In this

paper we have studied the impact of these parameters

on space usage and shown how they can be chosen for

a range of scenarios.

References

[1]

(2]

3]

[4]

[5]

[6]

B. H. Bloom, Space/time trade-offs in hash cod-
ing with allowable errors, Commun. ACM 13 (7)

(1970) 422-426.

F. Chang, W. chang Feng, K. Li, Approximate
caches for packet classification, in: Proc. of
the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies (IN-

FOCOM 2004), IEEE, 2004.

P. Reynolds, A. Vahdat, Efficient peer-to-peer

keyword searching., in: M. Endler, D. C.
Schmidt (Eds.), Middleware, Vol. 2672 of Lec-
ture Notes in Computer Science, Springer, 2003,

pp. 21-40.

S. C. Rhea, J. Kubiatowicz, Probabilistic location
and routing., in: Proc. of the 21st Annual Joint
Conference of the IEEE Computer and Commu-

nications Societies (INFOCOM 2002), 2002.

L. Fan, P. Cao, J. Almeida, A. Z. Broder, Sum-
mary cache: a scalable wide-area web cache
sharing protocol, IEEE/ACM Trans. Netw. 8 (3)

(2000) 281-293.

L. F. Mackert, G. M. Lohman, R* optimizer
validation and performance evaluation for dis-
tributed queries, in: Proceedings of the Twelfth

International Conference on Very Large Data

Bases (VLDB ’'86), Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1986, pp.

149-159.

[7] A. Broder, M. Mitzenmacher, Network applica-

[8]

[9]

[10]

[11]

[12]

tions of bloom filters: A survey, in: Proc. of

Allerton Conference, 2002.

S. Cohen, Y. Matias, Spectral bloom filters, in:

Proceedings of the 2003 ACM SIGMOD interna-

tional conference on Management of data (SIG-
MOD ’'03), ACM Press, New York, NY, USA,

2003, pp. 241-252.

U. Manber, S. Wu, An algorithm for approximate
membership checking with application to pass-
word security, Inf. Process. Lett. 50 (4) (1994)

191-197.

S. Dharmapurikar, P. Krishnamurthy, D. E. Tay-
lor, Longest prefix matching using bloom filters,
in: Proceedings of the 2003 conference on Appli-
cations, technologies, architectures, and proto-
cols for computer communications (SIGCOMM
'03), ACM Press, New York, NY, USA, 2003,

pp. 201-212.

M. Mitzenmacher, Compressed bloom filters,

IEEE/ACM Trans. Netw. 10 (5) (2002) 604—612

P. Bose, H. Guo, E. Kranakis, A. Maheshwari,
P. Morin, J. Morrison, M. Smid, Y. Tang, On

the false-positive rate of bloom filters, submit-
ted to Information Processing Letters, available

at http://citeseer.ist.psu.edu/649161.html (2004).

