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Abstract

Bloom Filters provide space-efficient storage of sets

at the cost of a probability of false positives on mem-

bership queries. The size of the filter must be defineda

priori based on the number of elements to store and the

desired false positive probability, being impossible to

store extra elements without increasing the false posi-

tive probability. This leads typically to a conservative

assumption regarding maximum set size, possibly by

orders of magnitude, and a consequent space waste.

This paper proposes Scalable Bloom Filters, a vari-

ant of Bloom Filters that can adapt dynamically to the

number of elements stored, while assuring a maximum

false positive probability.

Keywords: Data Structures, Bloom Filters, Dis-

tributed Systems, Randomized Algorithms

1 Introduction

Bloom filters [1] provide space-efficient storage of

sets at the cost of a probability of false positive on

membership queries. Insertion and membership test-

ing in Bloom filters implies an amount of randomiza-

tion, since elements are transformed using one-way

hash functions. Testing for the presence of elements

that have actually been inserted in the filter will always

give a positive result; there are no false negatives. On

the contrary, there is always some probability of false

positives: elements that have not been inserted into the

filter can erroneously pass the membership test.

An important property of Bloom filters is the lin-

ear relation between the filter size and the number of

elements that can be stored. For any given maximum

false positive probability, it is possible to determine

how much filter state is needed per element [2]. As

expected, lower false positive rates require more state

per element.
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If the maximum allowable error probability and

the number of elements to store are both known, it

is straightforward to dimension an appropriate filter.

However, it is not always possible to know in advance

how many elements will need to be stored; this leads to

over-dimensioning the filters or relinquishing the max-

imum error probability.

In this paper we provide a solution for the case in

which not only is the number of elements not known in

advance but also we need to strictly enforce some max-

imum error probability. We prove that this is possible,

by means of a novel construction: Scalable Bloom Fil-

ters (SBF).

After a brief review of related work, this paper is or-

ganised as follows. Section 3 reviews the basic math-

ematical properties of Bloom filters. Section 4 intro-

duces Scalable Bloom Filters and gives an evaluation

of their properties. Section 5 ends the paper with our

conclusions.

2 Related Work

In recent years, Bloom filters have received in-

creased attention, and they are now being used in a

large number of systems, including peer-to-peer sys-

tems [3, 4], web caches [5], database systems [6] and

others [7, 2]. Several variants of the basic Bloom filter

technique have been proposed in the literature.

In [5] the authors introduce the idea of acounting

Bloom filter, allowing elements to be removed from

the set represented by the Bloom filter; Spectral Bloom

Filters [8] use a similar approach to store multi-sets;

[9] proposes a multi-segment Bloom Filter that allows

efficient access when this data structure is stored on

disk; a similar approach [10] is used in a network

routing algorithm; Compressed Bloom Filters [11] im-

prove performance when the Bloom Filter is passed as

a message, by using larger but sparser filters that lead

to smaller compressed sizes.

All these variants suffer from the same limitation of

the original Bloom filters: it is necessary to dimension,

a priori, the size of the filters. We believe that it would

be possible to drop this limitation for most (or even all)

of these proposals by creating scalable variants along

the lines of SBF.

3 Bloom Filters

A Bloom filter is traditionally implemented by a

single array ofM bits, where M is the filter size. On

filter creation all bits are reset to zeroes. A filter is also

parameterized by a constantk that defines the number

of hash functions used to activate and test bits on the

filter. Each hash function should output one index in

M . When inserting an elemente on the filter, the bits

in thek indexesh1(e), h2(e), . . . , hk(e) are set.

In particular, a filter withM = 15 bits andk =

3 hash functions could become as follows, after the

insertion of one element:

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

The same procedure is used to insert other ele-

ments, each time setting the bits given by the corre-

spondingk indexes.
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In order to query a Bloom filter, say for ele-

ment x, it suffices to verify if all bits in indexes

h1(x), h2(x), . . . , hk(x) are set. If one or more of

these bits is not set, then the queried element is def-

initely not present on the filter. Otherwise, if all these

bits are set, then the element is considered to be on the

filter. Given this procedure, an error probability exists

for positive matches, since the tested indexes might

have been set by the insertion of other elements.

With the above setup, all hash functions are used

to generate indexes overM . Since these hash func-

tions are independent, nothing prevents collisions in

the outputs. In the most extreme case we could have

h1(x) = h2(x) = . . . = hk(x). This means that in the

general case each element will be described by 1 tok

distinct indexes. Although for large values ofM a col-

lision seldom occurs, this aspect makes some elements

more prone to false positives (and also complicates the

analytical derivation of probabilities) [12].

A variant of Bloom filters [2], which we adopt in

this paper, consists of partitioning theM bits among

the k hash functions, thus creatingk slices ofm =

M/k bits. In this variant, each hash functionhi(), with

1 ≤ i ≤ k, produces an index overm for its respective

slice. Therefore, each element is always described by

exactly k bits, which results in a more robust filter,

with no element specially sensitive to false positives.

ForM = 15 andk = 3 a filter would have 3 slices

with 5 bits in each. After insertion of one element, the

resulting configuration would have exactly one bit set

in each slice. Each slice is depicted here in a column.

0 0 0

0 1 0

0 0 0

1 0 1

0 0 0| {z }
k

3.1 False Positives

False positives can occur when testing for the pres-

ence of a given elementx, not present in the filter, and

all k bits given byhi(x), 1 ≤ i ≤ k, happen to be set

due to the insertion of other elements. Intuitively, if

the number of slicesk or the slice sizem are increased

the error probability will decrease.

The probability of a given bit being set in a slice

is the fill ratiop between the number of set bits in the

slice and the slice sizem. For a large valuem, this

ratio will be approximately the same across all slices,

and the false positive probabilityP for the filter will

be

P = pk.

In the example above, with one element inserted,p is

1/5 and the overall error probabilityP is (1/5)3, thus

0.8%.

In each slice, the probability that a given0 bit be-

comes set after introducing one element is1/m; it will

remain unset with probability1− 1/m. If n elements

have been inserted, the probability that the given bit is

still 0 is (1− 1/m)n. Therefore, the probability that a

specific bit in a slice is set aftern insertions, which is
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also the expected fill ratiop, is

p = 1−
(

1− 1
m

)n

.

3.2 Bounding the Error

From the analysis in the previous section, it is evi-

dent that the error probabilityP increases withn and

decreases withm andk. We now determine how to

choosek (and thusm) such that, for a given filter size

M , we can maximize the number of stored elements

n, while keeping the error probability below a certain

valueP .

For usable values ofm, 1−1/m is almost the same

ase−1/m (from the Taylor series expansion); we can

use this approximation to obtain:

p ≈ 1− e−n/m,

from which we obtain

n ≈ −m ln(1− p).

From M = km and P = pk we obtain m =

M ln p/ lnP ; therefore:

n ≈ M
ln p ln(1− p)

− lnP
.

For any given error probabilityP and filter sizeM ,

n is maximized by makingp = 1/2, regardless ofP

or M . As p corresponds to the fill ratio of a slice, a

filter depicts an optimal use when slices are half full.

With p = 1/2 we obtain

n ≈ M
(ln 2)2

| lnP |
.

In this expression it is clear that the number of ele-

mentsn that can be stored, for a given errorP , is lin-

ear on the filter sizeM . Finally, from P = pk and

P 0.1% 0.01% 0.001% 0.0001%

k 10 14 17 20

m 26214 18724 15420 13107

n 18232 13674 10939 9116

Table 1. Several capacities for a bloom

filter with 32 Kilobytes.

with p = 1
2 we obtain

k = log2

1
P

.

With these formulae it is now possible to determine

the optimal filter parameters in order to respect a max-

imum error probability. For example, to have a maxi-

mum error of0.1% we should have at least10 slices,

sincelog2
1

0.001 ≈ 9.96 (210 = 1024). If this filter is

allocated 32 kilobytes, each slice will have 26214 bits

and the filter is predicted to hold up to 18232 elements.

See Table 1.

4 Scalable Bloom Filters

A Scalable Bloom Filter addresses the problem of

having to choose an a priori maximum size for the set,

and allows an arbitrary growth of the set being repre-

sented. The two key ideas are:

• A SBF is made up of a series of one or more

(plain) Bloom Filters; when filters get full due

to the limit on the fill ratio, a new one is added;

querying is made by testing for the presence in

each filter.
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• Each successive bloom filter is created with a

tighter maximum error probability on a geometric

progression, so that the compounded probability

over the whole series converges to some wanted

value, even accounting for an infinite series.

The SBF starts with one filter withk0 slices and er-

ror probabilityP0. When this filter gets full, a new one

is added withk1 slices andP1 = P0r error probabil-

ity, wherer is the tightening ratio with0 < r < 1. At

a given moment we will havel filters with error prob-

abilities P0, P0r, P0r
2, . . . P0r

l−1. The compounded

error probability for the SBF will be:

P = 1−
l−1∏
i=0

(1− P0r
i).

We can use the known approximation

1−
∏

i

(1− Pi) ≤
∑

i

Pi,

to obtain an upper bound (which will be tight for small

Pi):

P ≤
l−1∑
i=0

P0r
i ≤ lim

l→∞

l−1∑
i=0

P0r
i

and therefore

P ≤ P0
1

1− r
.

The number of slices for each filter will be:

k0 = log2 P−1
0

and

ki = log2 P−1
i = k0 + i log2 r−1.

To have eachki as an integer, a natural choice will

ber = 1/2, resulting in:

ki = k0 + i,
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Figure 1. Space usage as a function of

set size. Two SBFs, with slice growth

factors s = 1 and s = 2, are compared

with a static bloom. Both with r = 0.5,

m0 = 128 and P = 10−6.

which means an extra slice per new filter. The com-

pounded error probability for the SBF will be bounded

by:

P ≤ 2P0 = 21−k0 .

Another possibility is to use anr other than1/2 and

round up the resultingki’s to obtain the number of

slices. We will see below that choosingr around 0.8

– 0.9 will result in better average space usage for wide

ranges of growth.

4.1 Scalable Growth

The estimation of the set size that is to be stored

in a filter may be wrong, possibly by several orders of

magnitude. We may also want to use not much more

memory than needed at a given time, and start a filter

with a small size. Therefore, a SBF should be able to

adapt to variations in size of several orders of magni-
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tude in an efficient way.

When a new filter is added to a SBF, its size can

be chosen orthogonally to the required false positive

probability. A flexible growth can be obtained by mak-

ing the filter sizes grow exponentially. We can have a

SBF made up of a series of filters with slices having

sizesm0,m0s,m0s
2, . . . ,m0s

l−1.

Given that filters stop being used when the fill ratio

reaches1/2, filter i will hold approximately:

ni ≈ m0s
i ln 2

elements. The SBF withl stages will hold about

(ln 2)m0

l−1∑
i=0

si

elements. This geometric progression allows a fast

adaptation to set sizes of different orders of magnitude.

A practical choice will bes = 2, which preservesmi

as a power of 2, ifm0 already starts as such; this is

useful, as the range of a hash function is typically a

power of 2.

In general, other values ofs may be used. Figure 1

shows the required size for the SBF as a function of

set size,n, for s = 1 ands = 2. The cases = 1

gives a constantm in all stages; this case is not feasible

as it would lead to much inefficiency, as the number

of stages required grows linearly with set size, and in

each stage an extra slice would be required (forr =

1/2); this would result in rapidly increasing space per

element and computational cost for the hash functions.

For s = 2 we can see that not only the number of

stages remains low, as it increases logarithmically with

the set size, but also the space required for the 22624

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e+00 1e+02 1e+04 1e+06

0
1

2
3

4

growth magnitude

re
la

tiv
e 

sp
ac

e 
us

ag
e

● s=2^(1/4)
s=2^(1/2)
s=2
s=4
s=16

Figure 2. Relative space usage with re-

spect to a static filter as a function of set

growth. With r = 0.5 and P = 10−6.

element set is only slightly more than for a static filter

dimensioned for that size.

To better understand adaptation to growth, we

should not plot space usage against an absolute set

size, but against the relative growth over the initial

size. We should have a scale-free graph telling us how

much space will be used according to the orders of

magnitude in size the filter has to adapt to. Figure 2

plots the space usage relative to a static filter dimen-

sioned for the required size. Here we can see that if the

set had to grow by 6 orders of magnitude, fors = 2 the

SBF would use about twice the space of a static filter

exactly dimensioned for the final size, and fors = 4

about 50% more space. In terms of space usage we

can see that practical values ofs like 2, 4 or above can

be chosen, and values below2 and approaching1 will

give progressively worse results.

Another aspect to consider in the choice ofs is the

number of stages required for the SBF. Figure 3 plots
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Figure 3. Number of stages as a function

of s.

the number of stages as a function ofs, for two cases

of set growth:102 and106. This figure confirms that

s should not be chosen near 1 and that the practical

choice ofs as a power of two is a sensible one with

this respect.

From these figures one could be led to think that

the larger thes the better. However, ass tends to in-

finity, each successive stage of the SBF will take con-

siderably more space which will remain poorly used

for considerably more time until it gets full. A better

criterion is to consider the average space usage over

the lifetime of the SBF from an empty set until the fi-

nal set size. Figure 4 plots this average space usage

relative to a static filter (dimensioned for the final set

size), as a function ofs, for several combinations of

error probability (10−3 and10−6) and set growth (102

and106). These curves cover a wide range of scenar-

ios; they show that, as long ass is not very close to 1,

increasings is not profitable.

Combining these two criteria, i.e. average space
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Figure 4. Average relative space usage as

a function of s, for different combinations

of set growth and P , for optimal r.

and number of stages, with the convenience of having

a power of two, we can conclude that 2 or 4 will be

a sensible choice fors. To keep the number of stages

small, we can chooses = 2 if we expect a small set

growth ands = 4 if we expect a larger growth.

4.2 Choosing the Error Probability Ratio

The other parameter of a SBF that we need to

choose is the error probability ratior. We can choose

values other than0.5 and round up the resulting num-

ber of slices for stagei:

ki = k0 + i log2 r−1.

Figure 5 compares the space usage as a function of set

growth for different combinations ofP andr. It shows

that if we use anr larger than0.5, although we start by

using more space (we need more initial slices,k0, as

P0 needs to be smaller for the geometric series to con-

verge to the sameP ), after some point we end up using
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Figure 5. Relative space usage as a func-

tion of growth, for different combinations

of P and r and s = 2.

less and less space as the set grows, as we add slices

less frequently at each new stage. It specially pays to

use a larger for a tighter error probabilityP , as the

few extra slices needed initially will be a small over-

head over the already large number of slices needed

for r = 0.5.

Figure 4 shows average relative space usage, calcu-

lated for the optimalr that minimizes average space,

for each combination of growth ands values (the opti-

mal r does not depend onP ).

In order to select an appropriate value forr we

can observe how the optimalr behaves for different

growth ands values. Figure 6 shows the optimalr as

a function of set growth, for three different values ofs

(
√

2, 2, 4). Considering the choice ofs = 2 for small

expected growth ands = 4 for larger growth, one can

see thatr around 0.8 – 0.9 is a sensible choice, that

gives better space usage than the naturalr = 1/2.
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Figure 6. Optimal r as a function of

growth magnitude, for s ∈ {
√

2, 2, 4} and

P = 10−6.

5 Conclusions

Bloom Filters and the existing variants require a

priori dimensioning of the maximum size of the set

to be stored in the filter. Given that it is not always

possible to know in advance how many elements will

need to be stored, this leads to over-dimensioning the

filters, possibly by several orders of magnitude.

In this paper we have introduced Scalable Bloom

Filters (SBF), a mechanism that allows representing

sets without having to know a priori the maximum set

size and yet being able to choose from the start the

maximum false positive probability. The mechanism

adapts to set growth by using a series of classic Bloom

Filters of increasing sizes and tighter error probabili-

ties, added as needed.

A SBF is parameterized not only by the initial size

and error probability but also by the growth rate of the

size and by the error probability tightening rate. In this
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paper we have studied the impact of these parameters

on space usage and shown how they can be chosen for

a range of scenarios.
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