
ar
X

iv
:0

70
8.

42
84

v1
 [

cs
.D

M
]

 3
1

A
ug

 2
00

7

Optimal Per-Edge Processing Times in the Semi-Streaming Model∗

Mariano Zelkea†

aHumboldt-Universität zu Berlin, Institut für Informatik, 10099 Berlin, Germany

We present semi-streaming algorithms for basic graph problems that have optimal per-edge processing times
and therefore surpass all previous semi-streaming algorithms for these tasks. The semi-streaming model, which
is appropriate when dealing with massive graphs, forbids random access to the input and restricts the memory to
O(n · polylogn) bits.

Particularly, the formerly best per-edge processing times for finding the connected components and a bipartition
areO(α(n)), for determining k-vertex and k-edge connectivityO(k2

n) andO(n·log n) respectively for any constant
k and for computing a minimum spanning forest O(log n). All these time bounds we reduce to O(1).

Every presented algorithm determines a solution asymptotically as fast as the best corresponding algorithm
up to date in the classical RAM model, which therefore cannot convert the advantage of unlimited memory and
random access into superior computing times for these problems.

Keywords: graph algorithms, streaming algorithms, per-edge processing time

1. Introduction

When facing computational tasks on massive
graphs the postulate of the classical RAM model,
that is, storing the whole input in memory allow-
ing random access to it, is no longer adequate.
In fact, information building up the graph may
arrive at no specified order and the attempt of
completely storing it exceeds common main mem-
ories. Regarding this Muthukrishnan[8] 2003 pro-
posed the semi-streaming model as a more restric-
tive model of computation. According to this the
edges of the input graphG appear at arbitrary or-
der and the memory is limited to O(n ·polylogn)
bits, where n is the number of vertices in G. An
important parameter of a semi-streaming algo-
rithm is described by the per-edge processing time
T , i.e., the time the algorithm needs to handle
each single edge. This time determines at which
frequency the edges may arrive. The second pa-
rameter of the semi-streaming model denotes the
number P of passes the algorithm takes over the
input stream. All considered algorithms in this
paper use only one pass.
Despite the heavy restrictions in the semi-

∗Supported by the DFG Research Center Matheon

“Mathematics for key technologies” in Berlin
†Email address: zelke@informatik.hu-berlin.de

streaming model there are algorithms known solv-
ing basic graph problems. In [4] semi-streaming
algorithms are given for computing the connected
components and a bipartition of a graph as well
as a minimum spanning tree of a weighted graph.
There are approaches to determine the k-edge
connectivity [5] and the k-vertex connectivity
[5],[13] of a graph for any constant k.
In this paper we present semi-streaming algo-

rithms for computing the connected components
and a bipartition of a graph, to calculate the k-
vertex and k-edge connectivity for any constant
k and to find a minimum spanning forest MSF.
All these algorithms have constant and therefore
optimal per-edge processing times.
Section 2 gives the usual definitions, in Section

3 we discuss our definition of the per-edge pro-
cessing time which is a slight refinement of pre-
vious definitions. We develop our semi-streaming
algorithms in Section 4. In Section 5 we debate
on how the obtained algorithms compete with the
corresponding algorithms in the RAM model. A
final conclusion is found in Section 6.

2. Preliminaries and Definitions

By G we denote a graph G(V,E) with vertex
set V and edge set E. We call n = |V | and

1

http://arxiv.org/abs/0708.4284v1

2 Mariano Zelke

m = |E| the number of vertices and edges re-
spectively. Every graph considered in this paper
is undirected and contains no loops but might
have multiple edges. For computing an MSF we
consider G to be a weighted graph, that is, with
a nonnegative weight associated with each edge.
Regarding the memory constraints of the semi-
streaming model we assume every weight to be
storable in O(polylogn) bits.

We define α(m,n) to be a natural inverse of
Ackermann’s function A(·, ·) as defined in [12]:
α(m,n) := min{i ≥ 1 | A(i, ⌊m/n⌋) > logn}. We
abbreviate α(n) to denote α(n, n).

Bipartition. A graph G is called bipartite if the
vertices can be split in two parts, a bipartition,
such that no edge runs between two vertices in the
same parts. The problem of finding a bipartition
is to find two such parts or stating that there is
no bipartition since the graph is not bipartite.

Connectivity. We name two vertices connected
if there is a path between them. A graphG is con-
nected if any pair of vertices in G is connected, a
connected component of G is an induced subgraph
C of G such that C is connected and maximal. A
spanning forest of G is a subgraph of G with-
out any cycles having the same connected com-
ponents as G. Given a positive integer k, a graph
G is said to be k-vertex connected (k-edge con-

nected) if the removal of any k−1 vertices (edges)
leaves the graph connected. A subset S of the ver-
tices (edges) of G we call an l-separator (l-cut)
if l = |S| and the graph obtained by removing
S from G has more connected components than
G. The local vertex-connectivity κ(x, y;G) (local
edge-connectivity λ(x, y;G)) denotes the number
of vertex-disjoint (edge-disjoint) paths between x
and y in G. By a classical result of Menger (see
e.g. [1]) the local vertex- (edge-) connectivity be-
tween x and y equals the minimum number of
vertices (edges) that must be removed to obtain
x and y in different connected components.

MSF/MST. For an edge-weighted graph G the
minimum spanning forest MSF is a subgraph G′

of G with minimum total cost consisting of the
same connected components as G. If G is con-

nected we name G′, which is then connected as
well, the minimum spanning tree MST of G.

Certificates. Given any graph property P and
a graph G, a certificate of G for P is a graph G′

on the same vertex set such that G has P if and
only if G′ has P .
For any graph G on vertex set V and any prop-

erty P a strong certificate of G for P is a graph
G′ on vertex set V such that for any graph H on
V , G ∪H has P if and only if G′ ∪H has P .
A certificate is said to be sparse if the number

of edges is O(n).

Semi-Streaming Algorithm. A graph stream

of a graph G is a sequence of the m edges of G
in arbitrary oder. A semi-streaming algorithm A
gets a graph stream as an input and is restricted
to use a space of at most O(n · polylogn) bits.
The algorithm may access the input stream for
P passes in a sequential one-way order. All algo-
rithms considered in this paper use only P = 1
pass. The per-edge processing time T of A we de-
fine to be the minimum time allowed between the
revealing of two consecutive edges in the input
stream. That definition of T renders the defini-
tions of previous papers more precisely, we give
a discussion concerning that in Section 3. There
we also comment on the computing time which
denotes the total time required by A to determine
the property in question of the input graph.

3. Discussion of Per-Edge Processing Time

In previous papers about semi-streaming algo-
rithms that consider the per-edge processing time
T ([4],[5],[13]), T is used in an ambiguous way.
While being used as the worst-case time to pro-
cess a single edge on the one hand it is equally
used on the other hand, even if not explicitly
stated, as amortized time charged over the num-
ber of edges. In fact, if tools as dynamic trees or
disjoint set data structures are utilized they give
rise to amortized times since their time bounds
are of amortized type, too. Processing the input
edges is then assumed to be evenly spread over
the whole computing time which is just m · T .
This definition is not appropriate for a stream-

Optimal Per-Edge Processing Times in the Semi-Streaming Model 3

ing algorithm: As Muthukrishnan[8] pointed out
the computing time, i.e., the time to evaluate the
property in question for items read in so far, is
not the most important parameter of a stream-
ing algorithm. What is more crucial is the max-
imum frequency of incoming items that can still
be considered by the algorithm. That refers to
the speed at which external storage devices can
present their data content to a streaming algo-
rithm and constitutes the frequency at which ob-
served phenomena can be taken into account. To
this aim it is desirable to maximize the possible
rate of incoming items by postponing as much
operations as possible to a point after which all
items are received, possibly accepting a higher
computing time.
To model this worthwhile property of a stream-

ing algorithm A we propose the definition of the
per-edge processing time T to be the minimum
allowable time between two consecutive edges in
the graph stream. The final determination of the
property in question may require some postpro-
cessing after reading all input edges. This time is
considered in the computing time which incorpo-
rates the sum of the per-edge processing times of
all edges and the postprocessing time.

4. Computing Certificates and Buffering
Edges

To achieve our optimal per-edge processing
times we exploit the general method of sparsifi-
cation as presented by Eppstein et al.[3]. Feigen-
baum et al.[5] pointed out how the results of [3]
can be adopted for the semi-streaming model.
Thus they received the formerly best bounds on T
for almost all problems considered in this paper.
We refine their method to obtain an improvement
of their results. For a comparison of our new
bounds with the previous ones see Table 1.

Due to the memory limitations of the semi-
streaming model it is not possible to memorize
a whole graph which is too dense, that is, if
m/n ≫ logn. A way to determine graph prop-
erties without completely storing the graph is to
find a sparse certificate C of the graph for the
property in question. Consisting of a linear num-

ber of edges the certificate can be stored within
the memory restrictions and testing it answers
the question for the original graph. The con-
cept of certificates has been applied for the semi-
streaming model in [5] and [13]. However, in [13]
every input edge initiates an update of the certifi-
cate which is time-consuming and avoids a faster
per-edge processing.
To increase the manageable frequency of in-

coming edges, updating the certificate can be
done not for every single edge but for a group of
edges. While considering such a group of edges
the next incoming edges can be buffered to com-
pose the group for the following update.
To permit this updating in groups of edges the

utilized certificate must be a strong certificate,
an assumption that is not required in [13]. That
is because strong certificates obey two important
attributes for any fixed graph property: Firstly,
they behave transitively, that is, if C is a strong
certificate for G and C′ is a strong certificate for
C, then C′ is a strong certificate for G. Secondly,
if G′ and H ′ are strong certificates of G and H
respectively, then G′ ∪ H ′ is a strong certificate
of G ∪H .
The technique of group-wise updating is used

by Eppstein et al.[3] yielding fast dynamic al-
gorithms and has been transferred to the semi-
streaming model by Feigenbaum et al.[5]. The
following theorem is a slightly extended version
of their result augmented with space considera-
tions. We will need details of the proof later on.

Theorem 1 Let G be a graph and let C be a

sparse and strong certificate of G for a graph

property P. If C can be computed in space O(m)
and time f(n,m), then there is a one-pass semi-

streaming algorithm building C of G with per-edge

processing time T = f(n,O(n))/n.

Proof. We denote the edges of the input stream
as e1, e2, . . . , em and the subgraph of G contain-
ing the first i edges in the stream as Gi. We
inductively assume that we computed a sparse
and strong certificate Cjn of the graph Gjn for
1 ≤ j < ⌊m/n⌋ using a time of f(n,O(n))/n
per already processed edge. During the com-
putation of Cjn we buffered the next n edges
ejn+1, ejn+2, . . . , e(j+1)n.

4 Mariano Zelke

Table 1
Previously best per-edge processing times T compared to our new bounds

Problem Previous Best T New T
Connected components O(α(n)) O(1)

Bipartition O(α(n)) O(1)

{2,3}-vertex connectivity O(α(n)) O(1)
4-vertex connectivity O(log n) O(1)
k-vertex connectivity O(k2n) O(1)

{2,3}-edge connectivity O(α(n)) O(1)
4-edge connectivity O(nα(n)) O(1)
k-edge connectivity O(n · logn) O(1)

Minimum spanning forest O(log n) O(1)

All previous bounds are due to [5], apart from k-vertex connectivity which is a result of [13]. k is any
constant, α(n) the inverse of Ackermann’s function.

Because of the properties of strong certificates
T = Cjn ∪ {ejn+1, ejn+2, . . . , e(j+1)n} is a strong
certificate for G(j+1)n. Since Cjn is sparse, T con-
sists of O(n) edges as well. Computing C(j+1)n

as a sparse and strong certificate of T can be re-
alized in a space linear in the space needed to
memorize the edges of T , which is O(n ·polylogn)
bits, without exceeding the memory limitation
of the semi-streaming model. By transitivity
C(j+1)n is a strong certificate of G(j+1)n. A time
of f(n,O(n)) suffices to compute C(j+1)n, hence
the input edges can arrive with a time delay of
f(n,O(n))/n building the group of the next n
edges to update the certificate after the compu-
tation of C(j+1)n is completed.

Finally for k = ⌊m/n⌋ the last group of edges
{ekn+1, ekn+2, . . . , em} can simply be added to
Ckn to obtain a sparse and strong certificate of
the input graph G for the property P . ⊓⊔

To obtain our semi-streaming algorithms with op-
timal per-edge processing times, all that remains
to do is to present the required certificates and to
show in which time and space bounds they can
be computed. At first glance it may seem sur-
prising that Feigenbaum et al.[5] using the same
technique of updating certificates with groups of
edges do not meet the bounds we present in this
paper. The reason is that they just observe that
results of Eppstein et al.[3] can be transfered to

the semi-streaming model. However, Eppstein et
al. develop dynamic graph algorithms requiring
powerful abilities: The algorithm must be able to
answer a query for the subgraph of already read
edges at any time and it must handle edge dele-
tions. In the semi-streaming model the property
is queried only at the end of the stream and there
are no edge deletions. Thus we can drop both re-
quirements for faster per-edge processing times.

In the following the input graph for our semi-
streaming algorithms is denoted by G with n ver-
tices and m edges as usual.

4.1. Connected Components
We use a spanning forest F ofG as a certificate.

F is not only a strong certificate for connectiv-
ity it also has the same connected components as
G. F can be computed by a depth-first search in
time and space of O(n+m) and is sparse by defi-
nition. Using Theorem 1 we get a semi-streaming
algorithm computing a spanning forest of G with
per-edge processing time T = O(1). To identify
the connected components of G in the postpro-
cessing step we can run a depth-first search on
the final certificate in time O(n). The resulting
computing time is m · T +O(n) = O(n+m).

4.2. Bipartition
As a certificate for bipartiteness of G we use

F+, which is a spanning forest of G augmented

Optimal Per-Edge Processing Times in the Semi-Streaming Model 5

with one more edge of G inducing an odd cycle if
there is any. If no such cycle exists F+ is just a
spanning forest. By [3] F+ is a strong certificate
of G and sparse by definition. It can be com-
puted by a depth-first search which is alternately
coloring the visited vertices and is therefore able
to find an odd cycle. To do so a time and space
of O(n + m) suffices, yielding a semi-streaming
algorithm with T = O(1). On the final certificate
we can run again a depth-first search coloring the
vertices alternately in time O(n) during the post-
processing step. That produces a bipartition of
the vertices or identifies an odd cycle in G in a
computing time of O(n+m).

4.3. k-Vertex Connectivity
For k-vertex connectivity, k being any con-

stant, we use as a certificate of G a subgraph Ck

which is derived by an algorithm presented by
Nagamochi and Ibaraki[9]. Ck can be computed
in time and space of O(n+m), contains at most
kn edges and is therefore sparse. Beyond it, as
a main result of [9] Ck preserves the local vertex
connectivity up to k for any pair of nodes in G:

κ(x, y;Ck) ≥ min{κ(x, y;G), k} ∀x, y ∈ V (1)

This quality of Ck leads to useful properties:

Lemma 2 Every l-separator S in Ck, l < k, is
an l-separator in G and its removal leaves the

same connected components in both Ck \ S and

G \ S.

Proof. In Ck \ S we find two nonempty, disjoint
connected components X and Y with vertices x ∈
X and y ∈ Y . Assume that S is not an l-separator
in G, therefore there exists a path Z from x to y
inG\S. Let x′ be the last vertex on Z inX and y′

the first one in Y . The part of Z between x′ and y′

we call Z ′. In Ck we find at most l vertex-disjoint
paths between x′ and y′, all of them using vertices
of S. In G these paths exist as well with the
additional path Z ′ which is vertex-disjoint from
the other paths by construction. Therefore the
local connectivity between x′ and y′ in G exceeds
that in Ck contradicting property 1 of Ck.
Since Ck \ S is a subgraph of G \ S every con-

nected component of Ck\S is included in one con-
nected component of G \ S. Assume that W is a

connected component in G\S which contains two
vertices i and j within different connected com-
ponents of Ck \ S, namely I ∋ i and J ∋ j. As in
the first part of this proof we can find a path Z
from i to j in W with x′ being the last vertex in
I and y′ the first one in J on Z. We can deduce
the same contradiction as above. ⊓⊔

So Ck is usable for our purposes:

Lemma 3 Ck is a strong certificate for k-vertex
connectivity of G.

Proof. If Ck∪H is k-vertex connected then G∪H
including Ck ∪H as a subgraph is k-vertex con-
nected as well. Assume for the proof of the con-
verse direction that G ∪H is k-vertex connected
and Ck ∪ H is not. Then Ck ∪ H contains an l-
separator S for some l < k. After the removal of S
the remaining vertices of Ck ∪H can be grouped
into two nonempty sets A and B, such that no
edge joins a vertex of A with a vertex of B. It
is immediate that H does not contain any edges
between A and B.
Clearly, removing S from Ck produces the same

sets A and B, still with no edge joining them. The
properties of Ck shown in Lemma 2 make sure
that the removal of S from G leaves A and B
without any joining edge, too. With H having no
edges between A and B the graph G ∪H cannot
be k-vertex connected. ⊓⊔

Using Theorem 1 yields a semi-streaming algo-
rithm computing a sparse and strong certificate of
k-vertex connectivity in per-edge processing time
T = O(1). To test the final certificate for k-
vertex connectivity in a postprocessing step we
can use an algorithm of Gabow[7] on it. That al-
gorithm runs in time O((k5/2 + n)kn) = O(kn2)
and, what is more important, uses a space lin-
ear in the number of edges of the final certificate,
hence is respecting the memory constraints of the
semi-streaming model. The resulting computing
time is O(m+ kn2).

4.4. k-Edge Connectivity
We use the same Ck as utilized in Section 4.3

produced by the algorithm of Nagamochi and
Ibaraki presented in [9], where it is shown that

6 Mariano Zelke

Ck reflects the local edge-connectivity of G in the
following way:

λ(x, y;Ck) ≥ min{λ(x, y;G), k} ∀x, y ∈ V (2)

Therefore Lemma 2 and Lemma 3 can be formu-
lated and proven with respect to l-cuts, l < k,
and k-edge connectivity. Accordingly we have
a semi-streaming algorithm computing a strong
and sparse certificate for k-edge connectivity us-
ing T = O(1). To determine k-edge connectivity
of the final certificate we can use an algorithm of
Gabow[6] using a space linear in the number of
edges of the final certificate. It takes a time of
O(m + k2n log(n/k)) which is also the resulting
computing time of our semi-streaming algorithm.

4.5. Minimum Spanning Forest
Let us first take a look at the algorithm we

use as a subroutine for our semi-streaming al-
gorithm computing an MSF of a given graph.
We utilize the MST algorithm of Pettie and
Ramachandran[11] which uses a space of O(m).
A remark on how we use an algorithm comput-
ing an MST to obtain an MSF we give below.
The algorithm of [11] uses a time of O(T ∗(m,n)),
where T ∗(m,n) denotes the minimum number of
edge-weight comparisons needed to find an MST
of a graph with n vertices and m edges. The algo-
rithm uses decision trees which are provably opti-
mal but whose exact depth is unknown. Because
of that the exact running time of the algorithm is
not known even it is optimal.

The currently tightest time bound for the MST
problem is given by algorithms due to Chazelle[2]
and Pettie[10] that run in time O(m · α(m,n)).
Consequently the optimal algorithm of Pettie and
Ramachandran[11] inherits this running time,
T ∗(m,n) = O(m · α(m,n)). Based on the def-
inition α(m,n) = O(1) if m/n ≥ logn. Therefore
on a sufficiently dense graph the algorithm of [11]
computes an MST in time O(m).

Using this optimal algorithm as our subroutine
we can find a semi-streaming algorithm with per-
edge processing time T = O(1) in the following
way. We use the technique described in Theorem
1 of merging a computed subgraph with buffered
edges and then calculating a new subgraph of the
merged graph while buffering the next group of

edges. Unlike before we use groups of edges con-
sisting of r = n · logn edges instead of n. Such a
number of edges can be memorized in the semi-
streaming model using O(n · polylogn) bits, even
if weights are assigned to the edges which we as-
sume to be storable in O(polylogn) bits each.
By taking up the notation of the proof of The-

orem 1, Cjr is the memorized MSF of the graph
Gjr made up of the edges e1, e2, . . . , ejr. We
merge the buffered next r edges with Cjr to ob-
tain T = Cjr∪{ejr+1, ejr+2, . . . , e(j+1)r}. For the
number mT of edges in T we have mT ≥ n · logn
and therefore the optimal MST algorithm uses a
time of O(mT) to compute the MSF C(j+1)r of T .
Since mT < 2r the computation of C(j+1)r takes
a time of O(r). To fill the buffer of the next r
edges in the meantime, the edges can arrive with
a time delay of O(1).
It remains to show that what we compute in

the described way is indeed an MSF of the in-
put graph G. Every edge of Gjr that is not in
Cjr is the heaviest on a cycle in Gjr and cannot
be in an MSF of Gjr . On the other hand Cjr

does not contain any dispensable edges since it
includes no cycles: The removal of any edge from
Cjr produces two connected components in Cjr

whose vertices form a common connected com-
ponent in Gjr . Therefore Cjr forms an MSF of
Gjr , inductively showing that we really obtain an
MSF of G in this manner.
Now we can state the computing time of our

semi-streaming algorithm which depends on the
density of the input graph G. If G has at most
r = n · logn edges, all edges are read and buffered
in time O(m) and then the optimal algorithm
of Pettie and Ramachandran[11] computes an
MSF in time O(T ∗(m,n)), producing a comput-
ing time of O(T ∗(m,n)), since Ω(m) is a lower
bound for T ∗(m,n).
If G has more than r edges we successively up-

date an MSF with groups of edges. Note that, dif-
ferent from the described procedure in the proof
of Theorem 1, the last group of edges is not simply
merged to the up to now computed C⌊m/r⌋r. In-
stead the MSF of the merged graph is calculated
to obtain the final MSF, which is also the MSF of
the input graph, in the postprocessing step. We
can fill the last group of edges up to a complete

Optimal Per-Edge Processing Times in the Semi-Streaming Model 7

group of r edges by using dummy edges weighted
heavier than any edge in the input stream. This
way we ensure that the last merged graph for the
postprocessing with mf ≥ r edges is sufficiently
dense for the optimal MST algorithm running
on it. So for the postprocessing time we have
O(T ∗(mf , n)) = O(mf · α(mf , n)) = O(mf).
Therefore the computing time isO(m)+O(mf) =
O(m), which is trivially O(T ∗(m,n)).

Let us give two minor remarks about the algo-
rithm of Pettie and Ramachandran[11] we use.
Firstly, the algorithm of [11] assumes the edge
weights to be distinct. We do not require that
property since ties can be broken while reading
the input edges in a way described in [3]. Sec-
ondly, the algorithm of [11] works on connected
graphs. Before running it, we can use a depth-
first search to identify the connected components
which are then processed separately. Identify-
ing the connected components takes a time of
O(m) = O(T ∗(m,n)), so the running time of our
subroutine persists as well as the per-edge pro-
cessing time of our semi-streaming algorithm.

5. Discussion

In this section we compare the obtained semi-
streaming algorithms to algorithms determining
the same properties in the classical RAM model
allowing random access to all the edges of a graph
without any memory constraints.
First note that the presented semi-streaming

algorithms have optimal per-edge processing
times, that is, no semi-streaming algorithm ex-
ists allowing asymptotically shorter times: Every
single edge must be considered to determine a so-
lution for the problems considered in this paper,
so a time of Ω(1) per edge is a lower bound for
these problems.
Let us now take a look at the presented semi-

streaming algorithms testing k-vertex and k-edge
connectivity. For k-vertex connectivity with k be-
ing a constant the fastest algorithm in the RAM
model to date is due to Gabow[7] which runs
in O(kn2). Gabow obtains this result even in
graphs with multiple edges by preprocessing the
input graph with the algorithm of Nagamochi

and Ibaraki[9] in time O(m) producing a running
time of O(kn2 +m) on graphs and multigraphs.
This asymptotically equals our computing time,
which is not surprising since we use Gabow’s al-
gorithm as our subroutine. The same situation
we find when looking at k-edge connectivity. Our
achieved computing time of O(m+ k2n log(n/k))
is asymptotically as fast as the fastest algorithm
in the RAM model due to Gabow[6] which we use
as a subroutine. So both our connectivity algo-
rithms have a computing time that is asymptoti-
cally the same as the fastest known corresponding
algorithms in the RAM model.
It is possible that there are faster but still un-

known algorithms in the RAM model for k-vertex
and k-edge connectivity which cannot be utilized
in the semi-streaming model because they con-
sume to much space. The converse is true for the
problems of finding connected components, a bi-
partition and an MSF of a given graph. The pre-
sented semi-streaming algorithms have asymptot-
ically the same computing time as the fastest pos-
sible algorithms in the RAM-model. That can
easily be seen for connected components and bi-
partition: We obtain in each case a computing
time of O(n+m) which is trivially a lower bound
for any algorithm in the RAMmodel solving these
problems. For computing an MSF we get a com-
puting time of O(T ∗(m,n)), where T ∗(m,n) is
the lower time bound for any RAM algorithm.
For the asymptotic time needed to determine a

solution there is no difference for k-edge and k-
vertex connectivity between the currently fastest
algorithms in the RAM model and the presented
semi-streaming algorithms. Unless faster con-
nectivity algorithms in the RAM model are de-
veloped there is no demand for a random ac-
cess to the edges and for a memory exceeding
O(n · polylogn) bits. For computing the con-
nected components, a bipartition and an MSF
such a demand will never emerge since the pre-
sented semi-streaming algorithms have optimal
computing times. The RAM model cannot capi-
talize on its mighty potential of unlimited mem-
ory and random access to beat the computing
times of the weaker semi-streaming model.

We close this section by indicating a tradeoff be-

8 Mariano Zelke

tween memory and time when computing an MSF
in the semi-streaming model. If the memory con-
straint of the semi-streaming algorithm is reduced
from O(n · polylogn) to O(n · log2−ε n) bits, only
s = o(n · logn) edges can be memorized. So
the optimal MST algorithm we use as a subrou-
tine needs a time of O(T ∗(s, n)). Provided that
T ∗(s, n) = ω(s) we obtain a per-edge processing
time of ω(1) and therefore a computing time of
ω(m). Both bounds are significantly larger than
the corresponding ones when O(n ·polylogn) bits
of memory are permitted. However, if it turns
out that T ∗(m,n) = O(m) for any m, it suffices
to store Θ(n) edges to obtain both optimal per-
edge and computing time in the semi-streaming
model.

6. Conclusion

We presented semi-streaming algorithms for
computing the connected components, a bipar-
tition, the k-vertex and k-edge connectivity for
any constant k and an MSF of a given graph.
The presented per-edge processing times T sur-
pass former semi-streaming algorithms and are
optimal because they are constant. All intro-
duced semi-streaming algorithms are asymptot-
ically as fast as the fastest corresponding algo-
rithms in the RAM model. For connected com-
ponents, bipartition and MSF we actually achieve
the time bounds of the best possible RAM algo-
rithms.

The main idea for our semi-streaming algo-
rithms is quite simple: A sparse memorized sub-
graph is merged with buffered edges and while
computing a sparse subgraph of the merged one
the next edges are buffered. We believe this
idea to be fruitful for other graph problems as
well when tackling them without random access
and within the memory constraints of the semi-
streaming model.

REFERENCES

1. B. Bollobás. Graph Theory, An Introductory
Course. Springer, New York, 1979.

2. B. Chazelle. A minimum spanning tree algo-

rithm with inverse-Ackermann type complex-
ity. J. ACM 47(6):1028–1047, 2000.

3. D. Eppstein, Z. Galil, G. F. Italiano, and A.
Nissenzweig. Sparsification - A technique for
speeding up dynamic graph algorithms. Jour-
nal of the ACM, 44(1): 669–696, 1997.

4. J. Feigenbaum, S. Kannan, A. McGregor, S.
Suri, and J. Zhang. On graph problems in
a semi-streaming model. ICALP 2004, In:
LNCS 3142, 531-543, 2004.

5. J. Feigenbaum, S. Kannan, A. McGregor, S.
Suri, and J. Zhang. Graph Distances in the
Streaming Model: the Value of Space. SODA
2005: 745-754.

6. H. N. Gabow. A Matroid Approach to Find-
ing Edge Connectivity and Packing Arbores-
cences. Journal of Computer and System Sci-
ences, Volume 50, Issue 2, 259-273, 1995.

7. H. N. Gabow. Using expander graphs to find
vertex connectivity. In: Proceedings of the
41st IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society,
Los Alamitos, CA, 2000, pp. 410–420.

8. S. Muthukrishnan. Data streams: Algo-
rithms and applications. 2003. Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps

9. N. Nagamochi and T. Ibaraki. A linear time
algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph.
Algorithmica, 7:583–596, 1992.

10. S. Pettie. Finding minimum spanning trees
in O(mα(m,n)) time. Tech. Rep. TR99-23,
Univ. of Texas at Austin, Austin, Tex.

11. S. Pettie and V. Ramachandran. An Optimal
Minimum Spanning Tree Algorithm. J. ACM
49(1): 16–34, 2002.

12. R.E. Tarjan. Data Structures and Network
Algorithms. CBMS-NSF Regional Conference
Series in Applied Mathematics, 1983.

13. M. Zelke. k-Connectivity in the
Semi-Streaming Model. available at
arXiv:cs.DM/0608066.

http://athos.rutgers.edu/~muthu/stream-1-1.ps
http://arxiv.org/abs/cs/0608066

	Introduction
	Preliminaries and Definitions
	Discussion of Per-Edge Processing Time
	Computing Certificates and Buffering Edges
	Connected Components
	Bipartition
	k-Vertex Connectivity
	k-Edge Connectivity
	Minimum Spanning Forest

	Discussion
	Conclusion

