
On the Complexity of Partial Order Trace Model Checking∗

Thierry Massart Cédric Meuter

Laurent Van Begin†

Université Libre de Bruxelles (U.L.B.),

Boulevard du Triomphe, CP-212, 1050 Bruxelles, Belgium

{tmassart,cmeuter,lvbegin}@ulb.ac.be

Keywords: computational complexity, distributed systems, formal methods

1 Introduction

The design of a distributed system is known to be a difficult task which can be eased by various

techniques including validation and debugging. The model-based design abstracts the actions the

system can do into events which change its global state. Depending on the various assumptions the

designer can make, the model can be either centralized, providing a global observation and control

on the entire system or distributed where each event is local to some process and asynchronous

communications allow the concurrent processes to communicate. The model validation checks

that it has the required properties, usually expressed by temporal logic formulae, e.g. in Ctl∗,

Ctl or Ltl [2].

In practice, this abstraction is generally not sufficient to avoid the state-explosion problem

which prevents the designer from exhaustively verifying the whole system, even with efficient

exploration techniques such as partial order reduction or symbolic model checking [2]. The designer

may therefore want to analyse or validate simpler models which describe only some facets of

the system. As such, it may be important, during the early design phases, to check scenarios

expressed for instance by Message Sequence Charts [5]. During the testing and deployment phases,

executions must be validated; runtime verification techniques [4] are typically designed for that

purpose. The practical validity of these methods depend on the number of test-cases, to give a

reasonable confidence that the system is correct. Therefore, theoretical and practical efficiency
∗Supported by the Belgian Science Policy IAP-Phase VI: MoVES and Centre Fédéré en Vérification (FNRS-

FRFC n 2.4530.02)
†Research fellow supported by the Belgian National Science Foundation (FNRS).

1

of the algorithms able to solve the problem are crucial. In the centralized case, an execution of

the system is a sequence of events. The complexity of determining if such an execution satisfies a

property has been studied in [7] where it is shown that the problem can be solved efficiently. In

the distributed case, the exact order in which two concurrent events occur in the execution is, in

general, not always known or guaranteed. By taking into account the communications between

processes, however, a partial order on the events of the execution can still be obtained. Hence

in this case, an execution can be viewed as a partially ordered set of events called partial order

trace. The global properties satisfaction on these partial order traces has been widely studied

since the 90’s. Chase and Garg have shown in [1], that the global predicate detection problem,

i.e. the reachability of a system’s state which satisfies some global predicate, is NP-complete for

an arbitrary predicate, even when there is no inter-process communication. However, various

classes of properties can be checked efficiently in polynomial time (see e.g. [3, 6] which relates

these methods). Sen and Garg extended the study to temporal operators and defined the RCtl

logic [9], a restricted form of Ctl whose model checking is polynomial on partial order traces. In

previous works, we developed symbolic Ltl [3] and Ctl [6] model checking of partial order traces

and showed their efficiency in practice.

We study here the theoretical complexity of Ctl∗, Ctl and Ltl model checking over finite

partial order traces. We show that over such partial order traces, Ctl∗ and Ctl model checking

are PSPACE-complete and that the Ltl model checking is coNP-complete.

2 Basic definitions

In this section, we recall the satisfiability problems for propositional and quantified propositional

formulae. In the rest of the paper, we assume an infinite and countable set P of propositions and

B denotes the set of Boolean values, i.e. B = {tt,ff} where tt stands for true and ff for false.

Propositional Boolean Formulae A Propositional Boolean Formula (PBF) φ is defined using

the following grammar: φ ::= " | p | ¬φ | φ ∨ φ , where " denotes the true formula, and p ∈ P.

Moreover, let ⊥ denotes the formula ¬" (the false formula). Other standard Boolean operators

(∧, ⇒, ⇔) are derived as usual. The (finite) set of propositions appearing in a PBF formula φ is

denoted by P(φ). A PBF φ is interpreted using a valuation of P(φ), i.e. a function v : P(φ))→ B.

The satisfaction of a PBF φ by a valuation v, noted v |= φ, is defined as usual. The PBF φ is

satisfiable if there exists a valuation v such that v |= φ. The size of the PBF φ, noted |φ|, is defined

inductively as follows: (i) if φ = " or φ = p then |φ| = 1, (ii) if φ = ¬φ1 then |φ| = |φ1| + 1 and

(iii) if φ = φ1 ∨ φ2 then |φ| = |φ1| + |φ2| + 1. Finally, given a PBF φ, the PBF-SAT problem

consists in determining if φ is satisfiable. This problem is known to be NP-complete [8].

2

Quantified Boolean Formulae A Quantified Boolean Formula (QBF) ψ is a formula of the

form Q1p1 · Q2p2 · . . . Qrpr · φ where (i) φ is a PBF over P and (ii) Qi ∈ {∃,∀} and pi ∈ P(φ) for

i ∈ [1, r]. Note that a PBF is a QBF without quantifiers (r = 0). In the following, we assume

that each proposition is quantified at most once. A fully QBF is a QBF where all propositions are

quantified. QBF are also interpreted over valuations. As in the PBF case, P(ψ) denotes the set of

propositions appearing in the QBF ψ. A valuation v : P(ψ))→ B satisfies a QBF ψ is noted v |= ψ.

The satisfaction is derived from the propositional case as follows. If ψ = ∀p · ψ′, then v |= ψ iff

v[p)→ tt] |= ψ′ and v[p)→ ff] |= ψ′ and, if ψ = ∃p · ψ′, then v |= ψ iff v[p)→ tt] |= ψ′ or v[p)→

ff] |= ψ′. Note that the truth value of a QBF formula ψ depends only on the valuation of its free

propositions, i.e. those used in ψ and not linked by a quantifier. In particular, if ψ is a fully QBF,

its truth value does not depend on v. Similarly to PBF, a QBF ψ is satisfiable if there exists a

valuation v such that v |= ψ. The size of a QBF ψ = Q1p1 · Q2p2 · . . . Qrpr · φ where φ is a PBF,

noted |ψ|, is equal to |φ|. Note that the number of quantifiers in ψ is bounded by |φ|. Given

a (fully) QBF ψ, the QBF-SAT problem consists in deciding if ψ is satisfiable. This problem is

known to be PSPACE-complete, even for fully QBF [8].

3 Ctl∗, Ctl and Ltl over partial order traces

Partial Order Traces A partial order trace (po-trace) is a tuple T = 〈E,P0, α, β,.〉 where (i)

E is a finite set of events; (ii) P0 ⊆ P is the finite set of propositions initially true; (iii) α : E)→ 2P

(resp. β : E)→ 2P) is a function giving for each event e the finite set of propositions set to tt (resp.

ff) such that ∀e ∈ E : α(e) ∩ β(e) = ∅; and (iii) . ⊆ E × E is a partial order relation on E such

that ∀e, e′ ∈ E: ((α(e) ∪ β(e)) ∩ (α(e′) ∪ β(e′)) 5= ∅) ⇒ (e . e′) ∨ (e′ . e), i.e. if the truth value

of at least one proposition is modified by two events, then those events must be ordered. Given

an event e ∈ E, we define ↓e = {e′ ∈ E | e′ . e}, the past of e (including e itself). The finite

set of propositions used by T is denoted by P(T), i.e P(T) = P0
⋃

e∈E

(
α(e) ∪ β(e)

)
. A cut is

a subset C ⊆ E such that ∀e ∈ C : ↓e ⊆ C. The set of cuts is denoted by cuts(T). Given a cut

C ∈ cuts(T), we define enabled(C) = {e ∈ E \ C | (↓e \ {e}) ⊆ C} the set of events enabled in C,

and C/p = {e ∈ C | p ∈ α(e)∪β(e)} the set of events of C that modifies the truth value of p. Note

that for every proposition p, the set C/p is totally ordered. The set of propositions true in a cut C,

noted PC is then defined as {p ∈ P(T) | (C/p = ∅ ∧ p ∈ P0) ∨ (C/p 5= ∅ ∧ p ∈ α(max(C/p))}. If an

event e is enabled in the cut C, then it can be fired from C leading to C ′ = C ∪{e}, noted C %C ′.

A path σ is a sequence σ = C0 . . . Ck ∈ cuts(T)∗ such that k ≥ 0 and ∀i ∈ [0, k) : Ci % Ci+1. The

size |σ| of the sequence σ is the number of firings from C0 in σ (i.e. k here)1; and we note σi the

suffix Ci, Ci+1, . . . Ck. σi is left undefined if i > |σ|. A run from a cut C is a path σ = C0 . . . Ck

1Note that |σ| could also have been defined as its number of states (i.e. k + 1 here)

3

with (i) C0 = C and (ii) Ck = E. The set of runs starting in a cut C ∈ cuts(T) is denoted by

runs(C). The size of the po-trace T = 〈E,P0, α, β,.〉, noted |T |, is equal to |E| + | . | + |P(T)|.

Ctl∗ Formulae in the temporal logic Ctl∗ are defined using the following grammar:

Ψ ::= " | p | ¬Ψ | Ψ ∨Ψ | ∃Φ | ∀Φ Φ ::= Ψ | ¬Φ | Φ ∨ Φ | ΦUΦ | ©Φ

where Ψ is a state formula, Φ is a path formula, p ∈ P, U is the until operator and © is the next

operator. Other Boolean constructs (⊥, ∧, ⇒, ⇔) are defined as in the PBF case. In our case,

Ctl∗ state (resp. path) formulae are interpreted over cuts C (paths σ) of a po-trace T . The

satisfaction relation, noted |=C (resp. |=σ) for state (resp. path) formulae, is the smallest relation

that satisfies the following:

〈T , C〉 |=C "

〈T , C〉 |=C p ∀ p ∈ PC

〈T , C〉 |=C ¬Ψ iff 〈T , C〉 5|=C Ψ

〈T , C〉 |=C Ψ1 ∨Ψ2 iff 〈T , C〉 |=C Ψ1 ∨ 〈T , C〉 |=C Ψ2

〈T , C〉 |=C ∃Φ iff ∃σ ∈ runs(C) : 〈T , σ〉 |=σ Φ

〈T , C〉 |=C ∀Φ iff ∀σ ∈ runs(C) : 〈T , σ〉 |=σ Φ

〈T , σ〉 |=σ Ψ iff 〈T , C0〉 |=C Ψ

〈T , σ〉 |=σ ¬Φ iff 〈T , σ〉 5|=σ Φ

〈T , σ〉 |=σ Φ1 ∨ Φ2 iff 〈T , σ〉 |=σ Φ1 ∨ 〈T , σ〉 |=σ Φ2

〈T , σ〉 |=σ ©Φ iff |σ| > 0 ∧ 〈T , σ1〉 |=σ Φ

〈T , σ〉 |=σ Φ1UΦ2 iff ∃i ∈ [0, |σ|] : ((〈T , σi〉 |=σ Φ2) ∧ (∀j ∈ [0, i) : 〈T , σj〉 |=σ Φ1))

where σ = C0 . . . Ck, Φ,Φ1,Φ2 are path formulae and Ψ,Ψ1,Ψ2 are state formulae.

A po-trace T satisfies a Ctl∗ state formula Ψ, noted T |= Ψ, iff 〈T , ∅〉 |=C Ψ. The size of a Ctl∗

formula Ψ, noted |Ψ|, is defined inductively as follows: (i) if Ψ = " or Ψ = p then |Ψ| = 1; (ii) if

Ψ = ¬Ψ1, Ψ = ©Ψ1, Ψ = ∃Ψ1 or Ψ = ∀Ψ1 then |Ψ| = |Ψ1| + 1; if Ψ = Ψ1 ∨ Ψ2 or Ψ = Ψ1UΨ2

then |Ψ| = |Ψ1| + |Ψ2| + 1. Ctl∗ has in particular two useful fragments :

Computation Tree Logic (Ctl) is a fragment of Ctl∗ in which each © and U operators

must be immediately preceded by a path quantifier. Formally, a Ctl formula Ψ is defined using

the grammar : Ψ ::= " | p | ¬Ψ | Ψ ∨Ψ | ∃ ©Ψ | ∀ ©Ψ | ∃[ΨUΨ] | ∀[ΨUΨ]

Linear Time Logic (Ltl) is another fragment of Ctl∗ in which each formula has the form ∀Φ

and the only state sub-formulae permitted are " and atomic propositions p ∈ P. Formally, a Ltl

formula Ψ is defined using the grammar : Ψ ::= ∀Φ Φ ::= " | p | ¬Φ | Φ ∨ Φ | ©Φ | ΦUΦ

Given a po-trace T and a formula Ψ, the model checking problem consists in determining if

T |= Ψ. In the remainder of the paper, we investigate the complexity of the model checking

problem for Ctl∗, Ctl and Ltl formulae.

4

4 Ctl∗ and Ctl Model Checking

We start with the model checking problem for Ctl∗ and Ctl. First, we will show that for Ctl, the

problem is PSPACE-hard. Since Ctl is a fragment of Ctl∗, it implies that the problem for Ctl∗

is also PSPACE-hard. Then, we show that, for Ctl∗, the problem is PSPACE-easy. Again, since

Ctl is a fragment Ctl∗, it follows that the problem for Ctl is also PSPACE-easy. Those results

allow us to conclude that for Ctl∗ and Ctl, the model checking problem is PSPACE-complete.

In order to prove that for Ctl, the model checking problem is PSPACE-hard, we exhibit a

polynomial reduction of (fully) QBF-SAT. that works as follows. Let ψ be a fully QBF with

P(ψ) = {p1, . . . , pr}. We build a po-trace TP(ψ) and a Ctl formula Ψψ and prove that ψ is

satisfiable iff TP(ψ) |= Ψψ.

The po-trace TP(ψ) = 〈E,P0, α, β,.〉 is built over set of propositions
⋃

i∈[1,r]{qi, q′i} as follows:

(i) E =
⋃

i∈[1,r]{ei, e′i}; (ii) P0 = ∅; (iii) ∀i ∈ [1, r] : α(ei) = {qi} ∧ β(ei) = ∅ ∧ α(e′i) =

{q′i} ∧ β(e′i) = ∅ and finally (iv) . = ∅.

The Ctl formula Ψψ is defined inductively as follows:

Ψψ =






ψ[p1 ← evaltt1 , . . . , pr ← evalttr] if ψ is a PBF

∃© ((evaltti ∨ evalffi) ∧Ψψ1) if ψ = ∃pi · ψ1

∀© ((evaltti ∨ evalffi) ⇒ Ψψ1) if ψ = ∀pi · ψ1

where evaltti = (qi ∧ ¬q′i), evalffi = (¬qi ∧ q′i), and where ψ[p1 ← φ1, . . . , pr ← φr] denotes the

formula ψ where every occurrence of proposition pi is replaced by the formula φi for i ∈ [1, r]. As

a first remark, it is clear that the sizes of Ψψ and TP(ψ) are polynomial in the size of ψ. Indeed,

each proposition in ψ is replaced by a sub-formula of (constant) size 4 and each quantification is

replaced by a construct of (constant) size 12. In the following, for any i ∈ [1, r], we note Ctt
i = {ei},

resp. Cff
i = {e′i}, the minimal cut satisfying evaltti , resp. evalffi . Formally, 〈TP(ψ), C

tt
i 〉 |=C evaltti

and 〈TP(ψ), C
ff
i 〉 |=C evalffi since PCtt

i
= {qi} and PCff

i
= {q′i}.

Lemma 1 Given a fully QBF ψ, TP(ψ) |= Ψψ iff ψ is satisfiable.

Proof. We prove by induction on |P(ψ)| that ψ is satisfiable iff 〈TP(ψ), ∅〉 |=C Ψψ.

Base cases. • If |P(ψ)| = 0, then P(ψ) = ∅ and ψ is a Boolean combination of ". If ψ ⇔ ",

by definition of Ψψ we have Ψψ = ψ[p1 ← evaltt1 , . . . , pr ← evalttr] = ψ ⇔ ". In this case, we

have that 〈TP(ψ), ∅〉 |=C Ψψ. If ψ ⇔ ⊥, Ψψ ⇔ ⊥, hence 〈TP(ψ), ∅〉 5|=C Ψψ. We conclude that

〈TP(ψ), ∅〉 |=C Ψψ iff ψ is satisfiable.

Induction cases. We have to consider two cases: • The first case is when ψ = ∃pi · ψ1.

In this case, ψ is satisfiable iff ψ1[pi ← "] or ψ1[pi ← ⊥] is satisfiable. By induction, this is

5

equivalent to 〈TP(ψ)\{pi}, ∅〉 |=C Ψψ1[pi←%] or 〈TP(ψ)\{pi}, ∅〉 |=C Ψψ1[pi←⊥]. By definition of Ψψ1 ,

this holds iff 〈TP(ψ)\{pi}, ∅〉 |=C Ψψ1 [qi ← ", q′i ← ⊥] or 〈TP(ψ)\{pi}, ∅〉 |=C Ψψ1 [qi ← ⊥, q′i ← "],

and by definition of Ctt
i and Cff

i , iff 〈TP(ψ), C
tt
i 〉 |=C Ψψ1 or 〈TP(ψ), C

ff
i 〉 |=C Ψψ1 . Now since

Ctt
i (resp. Cff

i) contains the only event that can satisfy evaltti (resp. evalffi), we deduce that

〈TP(ψ), C
b
i 〉 |=C Ψψ1 iff 〈TP(ψ), ∅〉 |=C ∃© (evalbi ∧Ψψ1) for any b ∈ B. We can therefore conclude

that ψ is satisfiable iff 〈TP(ψ), ∅〉 |=C ∃ © (evaltti ∧ Ψψ1) or 〈TP(ψ), ∅〉 |=C ∃ © (evalffi ∧ Ψψ1), or

equivalently if 〈TP(ψ), ∅〉 |=C (∃© (evaltti ∧Ψψ1)) ∨ (∃© (evalffi ∧Ψψ1)). Finally, this last formula

is equivalent to ∃© ((evaltti ∨ evalffi) ∧Ψψ1) = Ψψ.

• The second case is when ψ = ∀pi ·ψ1. In this case, ψ is satisfiable iff ψ1[pi ← "] and ψ1[pi ← ⊥]

are satisfiable. Similarly to the first case, by induction, definition of Ψψ1 , Ctt
i and Cff

i , this holds

iff 〈TP(ψ), C
tt
i 〉 |=C Ψψ1 and 〈TP(ψ), C

ff
i 〉 |=C Ψψ1 . Note that for any cuts C such that ∅ % C either

C = Cb
i with b ∈ B and C |= evalbi , or C 5|= evaltti ∨ evalffi . We deduce that 〈TP(ψ), C

b
i 〉 |=C Ψψ1 iff

〈TP(ψ), ∅〉 |=C ∀ © (evalbi ⇒ Ψψ1) for any b ∈ B. We can therefore conclude that ψ is satisfiable

iff 〈TP(ψ), ∅〉 |=C ∀ © (evaltti ⇒ Ψψ1) and 〈TP(ψ), ∅〉 |=C ∀ © (evalffi ⇒ Ψψ1), or equivalently if

〈TP(ψ), ∅〉 |=C (∀© (evaltti ⇒ Ψψ1)) ∧ (∀© (evalffi ⇒ Ψψ1)). Finally, the last formula is equivalent

to ∀© ((evalffi ∨ evaltti) ⇒ Ψψ1) = Ψψ. !
From Lem. 1, we get the PSPACE-hardness for Ctl.

Proposition 1 The model checking problem over po-traces is PSPACE-hard for Ctl.

Proof. Since QBF-SAT is PSPACE-complete, Ψψ and TP(ψ) have size polynomial w.r.t. the size

of a fully QBF ψ, we conclude by Lem. 1 that the proposition holds. !

Now, we show PSPACE-easiness of the model checking problem for Ctl∗ by exhibiting a

polynomial space algorithm that solves the problem.

Proposition 2 The model checking problem over po-traces is PSPACE-easy for Ctl∗

Proof. First, we exhibit a recursive algorithm that takes a partial order trace T = 〈E,P0, α, β,.〉,

a Ctl∗ state formula Ψ with a cut C (resp. a Ctl∗ trace formula Ψ with a run σ = C0C1 . . . Ck

with C = C0), and returns true if and only if 〈T , C〉 |=C Ψ (resp. 〈T , σ〉 |=σ Ψ). The recursion

follows the structure of the inference which shows 〈T , C〉 |=C Ψ or 〈T , σ〉 |=σ Ψ. Then, we show

inductively on the depth of the recursion, that this algorithm is polynomial space w.r.t. the size

of the formula Ψ and the size of the po-trace T .

Base cases. • When Ψ = " or Ψ = p. In the first case, the algorithm always returns true. In

the second case, if Ψ is a state formula then it builds PC and returns true iff p ∈ PC .

Induction cases If σ contains sub-formulae, then the algorithm works as follows:

• First, if Ψ is evaluated on a trace σ = C0 . . . Ck but it is not of the form Ψ1 ∨Ψ2, ¬Ψ1, ©Ψ1 or

Ψ1UΨ2, then Ψ is also a state formula and the algorithm returns true iff 〈T , C0〉 |=C Ψ.

6

• If Ψ = ¬Ψ1,Ψ = Ψ1 ∨Ψ2, then Ψ1 and Ψ2 are first evaluated and then the algorithm evaluates

Ψ according to the usual semantics of boolean connectors.

• If Ψ = QΨ1 with Q ∈ {∃,∀}, then Ψ is a state formula. In this case, the algorithm enumerates

all the runs σ ∈ runs(C) and then checks if 〈T , σ〉 |=σ Ψ1 holds. In the case where Q = ∃ (resp.

Q = ∀), the algorithm returns true iff at least one run σ ∈ runs(C) (resp. all the runs σ ∈ runs(C)),

is such that 〈T , σ〉 |=σ Ψ1.

• if Ψ = ©Ψ1 then the algorithm returns true iff 〈T , C1 . . . Ck〉 |=σ Ψ1 holds.

• if Ψ = Ψ1 U Ψ2, then Ψ is a path formula. For each 0 ≤ i ≤ k, the algorithm first considers the

sub-formula Ψ2 and checks if 〈T , Ci . . . Ck〉 |=σ Ψ2 holds. If it is the case, the algorithm considers

Ψ1 and checks if 〈T , Cj . . . Ck〉 |=σ Ψ1 holds for all 0 ≤ j < i. In the case of a positive answer

for all 0 ≤ j < i, the algorithm returns true. Finally, if the algorithm does not conclude for any

0 ≤ i ≤ k then it returns false.

Let us now show that the algorithm uses only a polynomial space w.r.t. the size of the formula

Ψ and the size of the partial order trace T . To simplify the presentation, we do not care about

the memory used to store one cut, PC , However, it is immediate that the memory used can

be bounded by a polynomial in the size of T by using, for instance, bit vectors to represent sets.

More precisely, we show that the number of cuts that are computed and stored at the same time

into memory by the algorithm is bounded by |T | · |Ψ|. The proof is by induction on the depth of

the recursion of the algorithm used.

Base cases • If Ψ = ", then the algorithm returns true in constant time without building cuts,

hence the result.

• If Ψ = p then Ψ is evaluated on the cut C and the algorithm builds PC . This can be achieved

in polynomial time without building new cuts by first computing for each p ∈ P(T) the set C/p.

This can be done by enumerating the events e ∈ C and checks if p ∈ α(e) ∪ β(e) (this can also be

done by enumerating α and β). If C/p is empty then p is in PC iff p ∈ P0 (this can be checked by

enumerating the elements of P0). Otherwise, we find the maximal element emax w.r.t . in C/p by

enumerating the elements in C/p and .. Finally, p is in PC iff p ∈ α(emax).

Since 0 ≤ |T | · |Ψ|, we conclude.

Induction cases • If Ψ = ¬Ψ1 or Ψ = Ψ1 ∨ Ψ2 then by induction hypothesis we know that

the algorithm evaluates Ψ1 and Ψ2 (on runs or cuts) storing at most |T | · (|Ψ| − 1) cuts (since

|Ψi| < |Ψ| for i ∈ {1, 2}), hence it evaluates Ψ by storing at most |T | · (|Ψ| − 1) ≤ |T | · |Ψ| cuts.

• If Ψ = QΨ1 with Q ∈ {∃,∀}, then the algorithm enumerates all the runs σ ∈ runs(C). This can

be done as follows: From C ′ initially equal to C, we enumerate the events e ∈ E and then test

if e ∈ enabled(C ′) and if there is no (e′, e) ∈ . such that e′ 5∈ C ′ by enumerating the elements

of . and C ′. If it is the case, we iterate from the cut C ′ ∪ {e} until we build E. At each step,

the algorithm only keeps in memory the cuts of the current investigated run. Since the size of

7

the runs are bounded by |E|, hence bounded by |T |, the number of cuts stored in memory when

enumerating all the runs σ ∈ runs(C) is bounded by |T |. Then, by induction hypothesis, the

algorithm uses memory bounded by |T | · |Ψ1| to check if 〈T , σ〉 |=σ Ψ1 holds. Since |Ψ1|+1 = |Ψ|,

we conclude that the algorithm maintains at most |T | · |Ψ| cuts in memory when evaluating Ψ.

• If Ψ = ©Ψ1, the algorithm evaluates Ψ1 on a trace. By induction hypothesis, this is achieved

by storing at most |Ψ1| · |T | cuts. Furthermore, the trace over which Ψ1 is evaluated has size

bounded by |T |. Since |Ψ| = |Ψ1|+1, we conclude that the algorithm stores at most |Ψ| · |T | cuts.

• If Ψ = Ψ1 U Ψ2, then assume that Ψ is evaluated on the run σ. By induction hypothesis, the

number of cuts stored in memory when evaluating Ψ1, resp. Ψ2, on sub-sequences of σ is bounded

by |T | · |Ψ1|, resp. |T | · |Ψ2|. Furthermore, Ψ1 and Ψ2 are evaluated on traces with size bounded

by |T |. Since |Ψ1| < |Ψ| and |Ψ2| < |Ψ|, we conclude that the number of cuts stored in memory

by the algorithm when checking Ψ is bounded by |Ψ| · |T |.

• Finally, in the case where the algorithm has to evaluate a formula Ψ on the trace C0 . . . Ck

that is not of the form ¬Ψ1, Ψ1 ∨Ψ2, ©Ψ1 or Ψ1UΨ2, then the algorithm evaluates Ψ on C0 as

explained above and we directly conclude from the previous cases. !

From Propositions 1 and 2, and since Ctl is a subset of Ctl∗, we conclude that the following

theorem holds.

Theorem 1 The model checking problem over po-trace is PSPACE-complete for Ctl∗ and Ctl.

5 Ltl Model Checking

We now prove that the model checking problem for the linear-time temporal logic Ltl is coNP-

complete on po-traces. For that purpose, we examine the dual problem of model checking LTL∃

formulae, i.e. formulae of the form ∃Φ where Φ is a restricted path formula, as defined in the

grammar of LTL. We first show that this problem is NP-easy.

Proposition 3 The model checking over po-traces is NP-easy for LTL∃

Proof. We exhibit a non-deterministic polynomial time algorithm. The algorithm works as

follows: it first guesses a run σ of the po-trace T , and then checks that the formula holds on

that run. The algorithm starts from C ′ = ∅, and for each cut of the run it guesses an event e,

checks that e ∈ enabled(C ′) and then builds the next cut C ′ ∪ {e}. The test e ∈ enabled(C ′) can

be achieved in polynomial time by enumerating the events of C ′ to ensure that e 5∈ C ′ and then

enumerate the elements of . (together with those of C ′) to ensure that e′ . e implies that e′ ∈ C ′.

Finally, note that the size of a run in runs(∅) has size |E|.

Finally, Ltl model-checking on a run can solved in polynomial time [7, Proposition 3.3]. !

8

Next, we show that the model checking problem is NP-hard for LTL∃. For that, we reduce the

global predicate detection which is known NP-complete [1]. In our framework, this problem can

be stated as follows. Given a po-trace T and a PBF φ over P(T), the global predicate detection

consists in determining if ∃C ∈ cuts(T) : 〈T , C〉 |=C φ.

Proposition 4 The model checking problem over po-traces is NP-hard for LTL∃.

Proof. Given a po-trace T , and a PBF φ, it is immediate that ∃C ∈ cuts(T) : 〈T , C〉 |=C φ if

and only if T |= ∃("Uφ). !

We can therefore conclude that the model checking problem is NP-complete for LTL∃ and

therefore coNP-complete for Ltl, as stated in the following theorem.

Theorem 2 The model checking problem over po-traces is coNP-complete for Ltl.

Hence theorem 1 and 2 show that contrarily to complete systems (Kripke structures) [2], over

po-traces, Ltl has a lower complexity that Ctl∗ and Ctl.

References

[1] C. M. Chase, V. K. Garg, Detection of global predicates: Techniques and their limitations.,

Distributed Computing 11 (4) (1998) 191–201.

[2] E. Clarke, O. Grumberg, D. Peled, Model Checking, The MIT Press, 1999.

[3] A. Genon, T. Massart, C. Meuter, Monitoring distributed controllers: When an efficient ltl

algorithm on sequences is needed to model-check traces., in: J. Misra, T. Nipkow, E. Sekerinski

(eds.), FM, vol. 4085 of LNCS, Springer, 2006.

[4] K. Havelund, Using runtime analysis to guide model checking of java programs., in:

K. Havelund, J. Penix, W. Visser (eds.), SPIN, vol. 1885 of LNCS, Springer, 2000.

[5] ITU-TS, ITU-TS Recommendation Z.120: Message Sequence Chart (MSC), Geneva (1999).

[6] G. Kalyon, T. Massart, C. Meuter, L. V. Begin, Testing distributed systems through symbolic

model checking., in: J. Derrick, J. Vain (eds.), FORTE, vol. 4574 of Lecture Notes in Computer

Science, Springer, 2007.

[7] N. Markey, P. Schnoebelen, Model checking a path., in: R. M. Amadio, D. Lugiez (eds.),

CONCUR, vol. 2761 of LNCS, Springer, 2003.

[8] C. H. Papadimitriou, Computational Complexity, Addison Wesley Longman, 1994.

[9] A. Sen, V. K. Garg, Detecting temporal logic predicates in distributed programs using compu-

tation slicing., in: M. Papatriantafilou, P. Hunel (eds.), OPODIS, vol. 3144 of LNCS, Springer,

2003.

9

