
DESCRIPTION AND ANALYSIS OF A BOTTOM-UP DFA MINIMIZATION

ALGORITHM

JORGE ALMEIDA AND MARC ZEITOUN

Abstract. We establish linear-time reductions between the minimization of a deterministic finite au-
tomaton (DFA) and the conjunction of 3 subproblems: the minimization of a strongly connected DFA,
the isomorphism problem for a set of strongly connected minimized DFAs, and the minimization of a
connected DFA consisting in two strongly connected components, both of which are minimized. We
apply this procedure to minimize, in linear time, automata whose nontrivial strongly connected com-
ponents are cycles.

1. Introduction

Finite automata have been successfully used in numerous fields of computer science such as pattern
matching, compilation, natural language processing, databases, system verification. They can represent
a broad range of objects, from dictionaries to models of transition systems. Properties expressed in
high-level description formalisms must also often be “compiled” into automata before algorithms can be
applied. For real-world applications, such automata may have a huge number of states, and reducing
their size often proves to be crucial for subsequent treatment. Finite automata on finite words have a
minimal, canonical representation with respect to the language they determine. This paper focuses on
the process to compute this minimal representation, called minimization.

Under the usual assumption that letters and states are represented by integers that can be com-
pared in O(1)-time, the best-known algorithm for minimizing a deterministic finite automaton (DFA) is
Hopcroft’s [11], with a O(ℓm log m) worst case time complexity where ℓ is the number of letters and m the
number of states (see [10, 13, 3] for complexity analyses). Brzozowski’s algorithm [5] works theoretically
in exponential time, but has in practice a surprisingly good behavior (see [7]).

Minimization algorithms usually start from the equivalence separating final and non-final states, and
refine it until stabilization occurs. In this paper, starting from the equality relation, we merge states which
are detected to be equivalent. We reduce the minimization problem of a DFA to subproblems involving
its strongly connected components on one hand, and its directed acyclic structure on the other hand.
More precisely, for any function f such that f(n)/n is nondecreasing, we show that the minimization
problem can be solved in time O(f(d + ℓ)), where ℓ still denotes the number of input symbols and d is
the number of transitions (which can be smaller than ℓm since the algorithm can deal with incomplete
automata), if and only if three subproblems have the same worst case complexity. These subproblems
are (1) the minimization of a strongly connected DFA (2) the computation of isomorphisms between
strongly connected, minimized DFAs, and (3) the minimization of connected DFAs having exactly two
strongly connected components, both of which are already minimized. The reduction is presented by the
generic algorithm 1 using subroutines solving the subproblems, which will be explained in detail later.

Using pattern matching techniques, we obtain as an application a O(d+ℓ)-time minimization algorithm
for automata whose nontrivial strongly connected components are cycles (this particular application was
announced, without proof, in [2]). This extends Revuz’s minimization algorithm [14] for acyclic DFAs,
which was designed to compress dictionaries and works in O(d + ℓ)-time with O(m + ℓ) memory. Other
algorithms for minimizing acyclic DFAs in linear time [17] or to maintain a minimal DFA after adjunction
of one word to its language have also been developed, see e.g., [6].

Date: December 24, 2007.
Key words and phrases. Finite automaton, minimization, algorithms, formal languages.
2000 MSC: 68Q45.
Work partly supported by the Pessoa project Egide-Grices 11113YM Automata, profinite semigroups and symbolic

dynamics. J. Almeida: work also partly supported by the Centro de Matemática da Universidade do Porto, financed by
FCT through the programmes POCTI and POSI, with Portuguese and European Community structural funds.

1

Algorithm 1 Minimization algorithm (outline)

1: procedure Minimize(Automaton A)
2: X ← ZeroHeight(A)
3: while X 6= ∅ do

4: MinimizeSCC(X)
5: MergeIsomorphicSCC(X)
6: Wrap(A, X)
7: X ← NextHeight(A, X)
8: end while

9: end procedure

2. Automata and data structures

We work on a finite alphabet A = {0, . . . , ℓ− 1} with ℓ ≥ 2 letters. We denote by A∗ the free monoid
generated by A, and by |x| the length of a word x ∈ A∗. We assume that A is known, and can be used as
index set for arrays. In Section 4, we also use the usual total order on A, viewed as a set of integers. A
deterministic finite automaton (DFA) is a tuple A = (A, S, F, δ, s0) where A is the alphabet, S is a finite
set of states, F ⊆ S is the set of final states, δ : S × A → S is a partial mapping called the transition
function, and s0 is the initial state. We let m = |S| be the number of states, d = |δ| be the number of
transitions, and n = d + ℓ.

The state δ(s, a), when it exists, is also written s · a. We represent the transition (s, a, s · a) by

s
a
−→ s · a. We use the word edge to mean a transition. An automaton defines a directed graph with

vertex set S and edge set {(s, s · a) | s ∈ S, a ∈ A}. A strongly connected component (scc) of A is a
strongly connected component of this graph, and A is strongly connected if so is its associated graph. We
retain the terminology of [8]: a strongly connected component (scc) of a graph is an equivalence class for
the mutual reachability relation. In particular, a vertex u such that the only path from u to u is empty
is an scc, which is said to be trivial.

Given a state s ∈ S, the language recognized by A from s is the set LA(s) ⊆ A∗ of words labeling a
path from s to some final state. Two states s, t are (Nerode) equivalent if LA(s) = LA(t). We write [s]
for the class of s in this equivalence. The minimization procedure consists in computing this equivalence
relation. Merging the states of each class into a single state produces the minimal automaton recognizing
the same language from the initial state, see [12]. A DFA is minimal, or minimized, if no two distinct
states are equivalent. We are interested in the complexity of minimization in terms of the parameters ℓ,
m, d and n.

We assume that the DFA A is accessible and co-accessible, that is, all states are reachable from s0 and
can reach a final state. Other states are useless regarding the accepted language, and removing them
can be done in O(d + m)-time. Further, the initial state is irrelevant for the computation of equivalent
states (it just serves for determining the initial state of the minimized DFA). For this reason, we drop the
initial state, keeping in mind that we started from an accessible automaton, so that we have m ≤ d + 1
and O(d + m) = O(d).

For a class C of DFAs, we study the following problem.

C-minimization Minimizing a DFA of the class C.

Input:: A finite deterministic automaton from C.
Output:: Its minimal automaton given by the equivalence relation on states.

The automaton can be given by a matrix of (S ∪ {_})S×A whose (s, a) entry is s · a if it is defined,
or _ otherwise. Using lists yields a smaller representation: for each s ∈ S, we are given a list of the

form (a1, s1, . . . , ak, sk), with ai ∈ A and si ∈ S, describing all outgoing transitions s
ai−→ si. (These

lists can be computed from the matrix in O(ℓm)-time.) A list (a1, s1, . . . , ak, sk) of (A.S)∗ is sorted if
a1 < a2 < · · · < ak. We write Out(s) for the sorted list of outgoing transitions of s ∈ S.

We first sort outgoing transitions. Recall that, given a finite set X , one can sort a sequence u1, . . . , uk ∈
X∗ in time O(|u1 · · ·uk|+ |X |) using radix-sort [1]. Applying this result to transitions of a DFA yields
the following simple statement.

Lemma 2.1. Let A be an accessible DFA (with an initial state). Given, for each state of A, a list of all
its outgoing transitions, one can compute in O(n)-time all sorted lists of outgoing transitions of states
of A, where n = d + ℓ.

2

Proof. For each list Out(s) = (a1, s1, . . . , ak, sk), first build the transition list ((s, a1, s1), . . . , (s, ak, sk)).
Since A is accessible, we have m ≤ d + 1, so this step takes O(d + m) = O(d)-time. One then uses
radix sort on the list of all such transitions to order them lexicographically according to the first two
components, which costs O(d+m)+O(d+ ℓ) = O(n). In the sorted list obtained, the transitions (s, a, t)
with the same state s are consecutive and sorted according to the second component. It remains to
scan this list to break it into pieces corresponding to the same state s, to build each of the sorted lists.
Altogether, this requires O(d + ℓ) = O(n)-time. �

The complexity O(d) is the best possible for minimization algorithms, since one needs to visit all
transitions. Note that O(n) = O(d) if each letter of A labels at least one transition. Therefore, by
Lemma 2.1, one can start with a sorted list representation for DFAs. We assume that lists are doubly
linked: one can access each of the predecessors of a state, individually, in O(1)-time.

3. A reduction for the minimization problem

3.1. Minimizing acyclic DFAs. Our algorithm is inspired by Revuz’s [14] for acyclic automata, which
we briefly recall. Recall that [t] denotes the class of the state t in the Nerode equivalence. We associate
with each state s such that Out(s) = (a1, s1, . . . , ak, sk) the tuple τ(s) = (εs, a1, [s1], . . . , ak, [sk]), where
εs = 1 if s ∈ F and ε = 0 otherwise. The algorithm first computes the height of each state, which is the
length of the longest path to a final state. Note that equivalent states must have the same height. At
stage h = 0, 1, . . . , up to the maximal height H , the algorithm merges states of height h. Since [s] = [t] if
and only if τ(s) = τ(t), radix sorting the words τ(s) for states of height h yields a list with equal words at
consecutive places, which allows identifying equivalent states of height h. A minor complication is that
using H times radix sort produces a complexity of O(d + Hℓ). This motivates the following statement,
appearing in [14, Theorem 2 and page 187].

Lemma 3.1. Given a set X and u1, . . . , uk ∈ X∗, one can compute in time O(|u1 · · ·uk|) the equality
classes on (u1, . . . , uk), using an already allocated 0-initialized X-indexed array which is reset after the
computation.

Proof. Let K = |u1 · · ·uk|. We do not want X , which may be huge compared to K if many letters are
unused, to appear in the complexity bound. In one scan, one rewrites the sequence u1, . . . , uk using only
consecutive positive integer letters, thus obtaining words u′

1, . . . , u
′
k, as follows. We store the encoding of

x ∈ X in T [x], where T is the 0-initialized array. We replace the occurrence of each scanned letter x by
its encoding T [x] if x has already been encoded (T [x] 6= 0). Otherwise, we first increment the number
of distinct letters already encountered, we assign the result to T [x], and we push x on a stack (which
therefore contains the nonzero entries of T). This rewriting requires O(K) operations. The size of the
alphabet of consecutive integers is O(K), so applying radix-sort to u′

1..., u
′
k determines equality classes

in time O(K) (since u′
i = u′

j if and only if ui = uj). Finally, using the stack, one switches back to 0 all
nonzero entries of T in time O(K). �

Using the algorithm of Lemma 3.1 instead of radix sort directly to minimize acyclic automata yields the
desired O(n) time complexity: O(ℓ) time is needed to allocate the 0-indexed array, and K = O(d+m) =
O(d) time to determine equality classes.

3.2. The bottom-up minimization algorithm.

3.2.1. Description. The same scheme applied to arbitrary DFAs brings additional difficulties. First, the
notion of height has to be modified, since there may be paths of arbitrary length to a final state. We
define the height of a state by considering each strongly connected component (scc) as a single state.
This requires that one first compute the directed acyclic graph (DAG) of scc’s of the automaton, which
can be done in O(d)-time with Tarjan’s algorithm [16, 8]. We maintain this DAG along the algorithm.
(Expressions such as an scc is below another scc refer to the partial order induced by this DAG.) In the
rest of the paper, we identify each scc with its set of states. We use an array of size m storing, for each
state s, the number of its scc. Conversely for each scc, we record its list of states. We also use the same
data structures for all equivalence relations, to have access in O(1)-time to the equivalence class of a
state computed so far. To define heights, we assign weight 0 to an edge belonging to an scc and weight
1 to all other edges. The weight of a path is the sum of the weights of all edges in the path. The height
of a state is then the maximal weight of some path to a final state, which is well defined. By definition,
all states of a given scc have the same height.

3

One could compute the height along one traversal, as for a DAG, but the problem is that two states

at different heights may well be equivalent. For instance, consider the automaton s1

a
−→ s0

a
−→ s0 with

both s1, s0 final. The height of s1 is 1 and the height of s0 is 0. However, s1 is equivalent to s0. We
say that s1 can be wrapped onto the scc of s0. Formally, starting from an automaton with exactly two
scc’s C0 and C1, where C1 is connected to C0 and both C0, C1 are already minimized as individual
automata (taking into account, for C1, the transitions leading to C0), wrapping consists in determining
pairs of equivalent states of C1 ×C0. If such a pair exists, then C0 is nontrivial, and every state of C1 is
equivalent to some state of C0. In the example, our algorithm shall wrap s1 onto the cycle s0 (identifying
s0 and s1). However, doing so changes the height of s1 (from 1 to 0) and more generally, wrapping states
may decrease the height of states that lie above them. The other difficulty is that both computations
are linked: the height is needed to determine which state to wrap at some point in the algorithm, and
one also needs to modify the heights after a wrapping.

To avoid recomputing the heights several times, we do not compute them beforehand, and we main-
tain information to determine on the fly, before stage k, which states must be treated at this stage.
Nonetheless, to help understanding the computation on-the-fly, we give a description of how we would
precompute the height of all states in O(n)-time: one assigns a mass to each state (stored in its data
structure). A state with i outgoing 1-weighted edges has initially mass i. The mass of an scc is the
maximal mass of its states. The mass of a state decreases during the execution of the algorithm. We
record for each scc its number of states and its number of states of mass 0. Initially, these two numbers
are equal only for minimal scc (in the DAG of scc). Each time we decrease the mass of a state, we check
whether it reaches mass 0. If so, we increment the number of states having mass 0 for its scc. If this
number reaches the total number of states in the scc, then the scc itself reaches mass 0, and we add it
to a list of scc of mass 0.

Initially, we assign height 0 to all states in scc of mass 0. Further heights will be computed later on,
at different steps of the algorithm. When states of height less than h − 1 have been treated, we need
to compute the set of states of height h. These states are obtained, at that stage, as those belonging to
scc’s of mass 0. Then, these states are not considered anymore for the height computation (we remove

the corresponding scc from the list of scc’s of mass 0). Moreover, for each transition t
a
−→ s ending in

a state s to which we just assigned height h, we decrease the mass of state t by 1, increase the count
of mass 0 states of its scc if t reaches mass 0, and put its scc in the list of scc’s of mass 0 if this count
reaches its number of states. Observe that each transition is considered at most once, so that the overall
time complexity, for the height computation, is O(d).

An outline of a generic minimization algorithm is described in Algorithm 1. It uses three subroutines,
MinimizeSCC, MergeIsomorphicSCC and Wrap, assumed to be given, and described below. It
computes a sequence of automata A−1 = A, A0, A1, . . . , AH such that AH is the minimal automaton of
A. Stage h ∈ [0, H] merges equivalent states of height h of Ah−1 to produce Ah. The automaton Ah is
obtained at the end of the hth iteration of the main loop of Algorithm 1, after that all merging of states
of height at most h will have been performed.

The variable X always holds (states of) a subset of the set of scc’s of the current automaton, for which
merging should occur at lines 4–6. It is initialized, at line 2, with all scc’s of mass 0 (precomputed by
Tarjan’s algorithm). At line 7, it receives the candidate states for merging at the next iteration, that is,
the part of Ah−1 consisting of states of height h, at that stage.

Let us explain the calls of lines 4–7. The first two of them only merge states of X . The call of line 6
possibly merges states of the part of Ah−1 not yet treated (cf. Fig. 1) with states of X .

The call MinimizeSCC(X) minimizes separately each scc C1, . . . , Cp of X , taking also into account
the transitions going to an scc below X . Let C be an scc of X . Some states of C may have transitions
to scc’s below C in the DAG of scc. However, since the algorithm proceeds bottom-up, the part of
the automaton below C is already minimized when C is considered. Therefore, one can first use a
minimization algorithm on C as if it were an automaton by itself, not considering the transitions falling
below C. This gives us a partition into equivalence classes ∼1. We then refine this partition according
to the equivalence ∼2 induced by the transitions going below C: two states are ∼2-equivalent if and
only if they reach the same states of the part already treated by the algorithm, by the same transition
labels. The call MinimizeSCC(X) computes the equivalence ∼1 ∩ ∼2. To refine ∼1, once computed,

by ∼2 we associate to a state s ∈ C with transitions s
ai−→ si (1 ≤ i ≤ k) falling below C the word

(εs, [s]1, a1, [s1]2, . . . , ak, [sk]2). By Lemma 3.1, one can sort these words in time O(di) where di is
the number of such transitions, assuming that an array of size max(2, m, ℓ) has been allocated at the
beginning of the algorithm, once for all. The overall cost is therefore O(d + max(2, m, ℓ)) = O(n).

4

Part of Ah−1 not yet treated

States of height ≤ h− 1 in Ah−1

X : C1 C2 · · · Cp

Figure 1. Automaton Ah−1 during the algorithm

Let C′
1, . . . , C

′
p be the scc’s of X after line 4. The call MergeIsomorphicSCC(X) merges all scc’s

in X that are isomorphic, and X gets modified accordingly: it then contains a set of representatives
{C′

i1
, . . . , C′

ij
}, j ≤ p, of isomorphic scc’s (so that we make coarser the equivalence on states computed

so far). As in the previous case, we then have to refine this partition according to the transitions falling
below X .

The call Wrap(A, X) occurs when X is already minimized. It consists in possibly identifying states
of scc’s that are located above one of the C′

ik
to an already minimized scc of X , as explained earlier in

the example s1

a
−→ s0

a
−→ s0. Note that if some state t above X in the DAG of scc’s is equivalent to

some state in C′
ik

, then all states belonging to scc’s between t and X are also equivalent to some state
in C′

ik
. The procedure Wrap(A, X) precisely merges these scc to X . Again, to validate that two states

are equivalent, we have to take into account transitions falling below X .
The last step in each iteration of the main loop, line 7, is the update X ← NextHeight(A, X)

computing the set of scc’s to consider during the next iteration. The height of states, as defined above,
is not invariant through the call Wrap(A, X): a state may have its height lowered. For that reason,
we update in the call NextHeight(A, X) the weights of edges as follows: all edges leading to a state
of X are assigned weight 0 (instead of 1 previously). The weights of all other edges remain unchanged.
We then compute, only at this point, the mass of each state having an outgoing edge whose weight has
been affected. The states reaching mass 0 are put in a list. They are exactly those we need for the next
iteration, and are returned by the call to NextHeight. Since the weight of each edge is modified at
most once, the overall cost of all calls to NextHeight is O(d).

3.2.2. Correctness. We prove that Algorithm 1 indeed computes the minimal automaton. First, we
only identify equivalent states, since merging is only done by the minimization subroutines of lines 4–6
assumed to be correct.

We have to prove that, whenever two states are equivalent, they are merged in the last automaton
AH . Arguing by contradiction, assume that two equivalent states s, t of A have not been merged and
suppose that the pair (s, t) is minimal in the DAG of scc’s for this property. That is, if s′ is below s,
t′ is below t, and s′, t′ are equivalent and distinct, then s = s′ and t = t′. States s and t cannot occur
in the same value of the variable X since, otherwise, they would be merged at line 4 if they belong to
the same scc, or at line 5 otherwise. Suppose that s is the first to occur in the value of X . Then, two
cases may arise. One case is that t is wrapped to another state at line 6 while s belongs to X . This is
impossible since, as X has been previously minimized (lines 4 and 5), no state of X \ {s} is equivalent
to s. It remains the case where s, t occur in X in two different iterations is, it of the main loop, with
is < it. Observe that, for every letter a such s · a falls below s or t · a falls below t, since s · a and t · a are
equivalent, by the minimality of the pair (s, t), they will be merged by the algorithm before s appears in
the value of X . Since the remaining edges do not intervene in determining when t will appear in X , it
follows that s and t will be found in the same value of X , a case which has already been excluded. This
proves that Algorithm 1 is correct.

3.2.3. Reductions. We have isolated in our algorithm three subroutines to merge equivalent states in three
different situations: (1) minimizing a strongly connected component, (2) merging isomorphic strongly
connected components, and (3) wrapping. We formulate these subproblems for a class C of strongly
connected DFAs.

C-msca Minimizing strongly connected automata of C.

Input:: A strongly connected DFA belonging to C.
5

Output:: Its minimal automaton given by the equivalence relation on states.

C-mmscc Merging minimized DFAs from C which are strongly connected.

Input:: A set of minimized and strongly connected DFAs (Ai)1≤i≤m of C.
Output:: (a) A partition

⋃
j∈J Ij of [1, m] such that Ap, Aq are isomorphic if and only if p, q are in the

same Ij . (b) A representative of each class. (c) For each element in a class different from the chosen
representative, an isomorphism to the representative.

C-wrapping Wrapping on a minimized scc of C.

Input:: A DFA consisting of a minimized scc A0 from C of height 0 and an scc A1 from C of height 1.
Output:: Its minimal DFA given by the equivalence relation on states.

For a class C of DFAs, let dfa(C) be the class of DFAs whose scc’s are in C for some choice of final
states.

If there is an O(f(n))-time algorithm for dfa(C)-minimization, then C-msca, C-mmscc and C-
wrapping also have an O(f(n))-time solution. This is clear for C-msca and C-wrapping which are
the minimization problem on particular instances. For C-mmscc, assume we are given several strongly
connected nontrivial automata (Ai)1≤i≤m from C. Let a, b /∈ A be two distinct letters. Choose a state
ti in each Ai and consider the DFA A built by adding states s1, . . . , sm to the disjoint union of the

automata Ai, where the si’s are new states, and transitions si
a
−→ si+1 and si

b
−→ ti (see Fig. 2). The

disjoint union of automata Ai = (Ai, Si, Fi, δi), 1 ≤ i ≤ n, is the automaton A = (
⋃

Ai,
⊎

Si,
⊎

Fi,
⊎

δi)
(whose state set is the disjoint union

⊎
Si). Obviously, A is in dfa(C) and has O(D) transitions, where D

s0 s1 . . . sk−1 sk

A0 : t0 A1: t1 . . .
Ak−1: tk−1 Ak: tk

a a a a

b b b b

Figure 2. Merging minimal sc-automata

is the total number of transitions of all Ai’s. Minimizing A exactly merges those Ai that are isomorphic,
since the Ai’s are minimal.

3.2.4. Complexity. We have shown in Section 3.2.3 that if dfa(C)-minimization can be solved in O(f(n))
time, then so can C-mmscc, C-msca, and C-wrapping.

Conversely, we use the algorithm of Section 3.2.1, which calls subroutines solving these subproblems in
order to solve dfa(C)-minimization. Assume that the subroutines run in time O(f(n)), where f(x+y) ≥
f(x) + f(y) (which is the case, e.g., if f(n)/n is nondecreasing). The time complexity for minimizing
the automaton is the sum of (1) the complexity of all calls to the three subroutines, (2) the overhead
to compute heights, and (3) the overhead to refine relations (e.g., to compute ∼1 ∩ ∼2). For (1), each
subroutine is called several times, on subautomata of sizes n1, . . . , np, where

∑
ni = n, yielding an overall

complexity of f(n1)+ · · ·+ f(np) = O(f(n)) by the assumption on f . We have seen in Section 3.2.1 that
the complexity for (2) is O(n) = O(f(n)). Finally, for (3), note that the refinements occur at most three
times on each state (after the calls of lines 6, 4 and 5). The equivalence is computed by storing the class
Class[s] of state s and the list States[c] of states of class c, using arrays. Merging two states s and t
amounts to removing, say s, from States[Class[s]], appending it to States[Class[t]], and changing
the value of Class[s]. These operations can be done in O(1)-time (Implementing the removal in O(1)-
time is done by maintaining a pointer for each state s to its position in the list States[Class[s]].)
Hence the overall complexity is O(f(n)). We can state our main result.

Theorem 3.2. Let C be a class of strongly connected DFAs containing the trivial DFAs (one state,
no edge) and let f be a function such that f(n)/n is nondecreasing. Then, the dfa(C)-minimization
problem is solvable in O(f(n))-time if and only if C-mmscc, C-msca, and C-wrapping are solvable in
O(f(n))-time.

We have to include trivial components in C for the wrapping, since we need to be able to wrap a single
state to a (nontrivial) scc. Note that if we take for C the class of trivial scc’s, we reobtain the linear
complexity for the minimization of acyclic automata [14]. In the next section we apply Theorem 3.2 to
a larger subclass of automata which one can still minimize in time O(n).

6

4. Minimizing disjoint-cycle automata

A disjoint-cycle automaton is an automaton such that all strongly connected components are (possibly
trivial) cycles. In other words, two cycles on distinct sets of vertices share no vertices. One can detect
whether an automaton is disjoint-cycle, by checking for each state that at most one outgoing edge remains
in the same strongly connected component.

We show in this section that the mmscc, msca and wrapping problems for strongly connected com-
ponents of this class are solvable in O(n)-time (Lemmas 4.2, 4.3 and 4.4 below). In view of Theorem 3.2,
this will entail the following result, announced in [2].

Theorem 4.1. One can minimize a disjoint-cycle automaton on ℓ letters with d transitions in time
O(d + ℓ).

The fact that scc’s of a disjoint-cycle automaton are cycles allows us to work on words instead of
working directly on automata. Recall that the conjugates of a word b1 · · · bp (where bi are letters) are
the words of the form bibi+1 · · · bp · b1 · · · bi−1. A circular word is a conjugation class. Slightly abusing
notation, we represent a circular word by any word of its class.

We can associate to the cycle s0

a0−→ s1

a1−→ · · ·
ak−→ s0 the circular word (ε0, a0)(ε1, a1) · · · (εk, ak)

where εi = 1 if si is final and εi = 0 otherwise. Conversely, from such a circular word, one can recover a
unique cycle (up to the name of the states).

Lemma 4.2. msca is solvable in linear time for disjoint-cycle automata.

Proof. Recall that the primitive root of a word w is the shortest word r such that w = rk for some k.

It is easy to see that minimizing a cycle s0

a0−→ s1

a2−→ · · ·
ak−→ s0 amounts to finding a primitive root of

its associated circular word: this primitive root is itself a circular word, and the cycle associated to it is
the minimal automaton of the original cycle. It is classical that this computation can be performed in
linear time (see e.g. [9] for instance). �

Lemma 4.3. mmscc is solvable in linear time for disjoint-cycle automata.

Proof. The problem can be formulated as follows in terms of circular words: we are given k circular words
and we want to merge them into equality classes in linear time, with respect to the sum of their lengths.
For that purpose, we compute for each circular word its associated Lyndon word, that is its smallest
representant, in the lexicographic order. (This is the place where we use the fact that the alphabet is
ordered.) Since we assumed that comparisons take linear time, the computation of the associated Lyndon
word can be performed in linear time for each word, in terms of its length [4, 15]. It remains to group
in classes circular words having the same Lyndon word, which can be done using Lemma 3.1. �

Lemma 4.4. wrapping is solvable in linear time for disjoint-cycle automata.

Proof. Let A be an automaton having a single minimal scc in the DAG of strongly connected components.
We distinguish two cases, depending on whether the highest scc is trivial (Fig. 3 (a)) or not (Fig. 3 (b)).
In case (a), s can be wrapped on the cycle if and only if s is equivalent to t, that is if a = b. In case (b),

s

t

Case (a)

a
b

s

t

Case (b)

a
b

c

Figure 3. Two cases for the wrapping problem

the only possible wrapping would identify s and t, hence a = b. Therefore, there should exist a transition
from t labeled c, where c labels the transition from s inside its scc. This is not the case since, as the
automaton is deterministic, we have c 6= a, and the only transition from t is labeled by a. Hence no
wrapping occurs in this case. �

7

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms. Addison-Wesley, 1975.
Second printing.

[2] J. Almeida and M. Zeitoun. The equational theory of ω-terms for finite R-trivial semigroups. In Proceedings of Semi-
groups and Languages (Lisbon 2002), pages 1–23. World Scientific, 2004.

[3] D. Beauquier, J. Berstel, and Ph. Chrétienne. Éléments d’Algorithmique. Masson, 1992. In French.
http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html .

[4] K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10:240–242, 1980.
[5] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. MRI Symposia Series,

12:529–561, 1962. Polytechnic Press, Polytechnic Institute of Brooklyn.
[6] R. Carrasco and M. Forcada. Incremental construction and maintenance of minimal finite-state automata. Computa-

tional Linguistics, 28(1):207–216, 2002.
[7] J.-M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and finite automaton constructions. Theor.

Comput. Sci., 289(1):137–163, 2002.
[8] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill, 2001.
[9] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994. With a preface by Zvi Galil.

[10] D. Gries. Describing an algorithm by Hopcroft. Acta Inform., 2:97–109, 1973.
[11] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Z. Kohavi, editor, Theory of

machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), pages 189–196. Academic Press, 1971.
[12] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation (2nd

Edition). Addison Wesley, 2000.
[13] T. Knuutila. Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci., 250:333–363, 2001.
[14] D. Revuz. Minimisation of acyclic deterministic automata in linear time. Theoret. Comput. Sci., 92:181–189, 1992.
[15] Y. Shiloach. Fast canonization of circular strings. J. Algorithms, 2:107–121, 1981.
[16] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.
[17] B. W. Watson. A new algorithm for the construction of minimal acyclic DFAs. Sci. Comput. Program., 48(2-3):81–97,

2003.

Centro de Matemática e Departamento de Matemática Pura, Faculdade de Ciências,, Universidade do

Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.

E-mail address: jalmeida@fc.up.pt

LaBRI, Université Bordeaux & CNRS UMR 5800. 351 cours de la Libération, 33405 Talence Cedex,

France.

E-mail address: mz@labri.fr

8

http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html
mailto:jalmeida@fc.up.pt
mailto:mz@labri.fr

	1. Introduction
	2. Automata and data structures
	3. A reduction for the minimization problem
	3.1. Minimizing acyclic DFAs
	3.2. The bottom-up minimization algorithm

	4. Minimizing disjoint-cycle automata
	References

