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Abstract

The Densest k-Subgraph (DkS) problem asks for a k-vertex subgraph of a given
graph with the maximum number of edges. The DkS problem is NP-hard even for
special graph classes including bipartite, planar, comparability and chordal graphs,
while no constant approximation algorithm is known for any of these classes. In
this paper we present a 3-approximation algorithm for the class of chordal graphs.
The analysis of our algorithm is based on a graph theoretic lemma of independent
interest.
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1 Introduction

In the Densest k-subgraph (DkS) problem we are given a graph G = (V, E),
|V | = n, and an integer k ≤ n, and we ask for a subgraph of G induced by
exactly k of its vertices such that the number of edges of this subgraph is
maximized. The problem is directly NP-hard as a generalization of the well
known Maximum Clique problem. In the weighted version of the DkS we are
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also given non negative weights on the edges of G and the goal is to find a
k-vertex induced subgraph of maximum total edge weight.

During last years a large body of work has been concentrated on the design of
approximation algorithms for both the DkS problem and its weighted version,
based on a variety of techniques including greedy algorithms, LP relaxations
and semidefinite programming. For a brief presentation of this body of work
the reader is referred to [3] and the references therein. The best known ap-
proximation ratio for the DkS problem, which performs well for all values of
k, is O(nδ), for some δ < 1

3
[6], while a simple greedy algorithm in [2] achieves

an approximation ratio of O(n
k
) even for the weighted version of the problem.

On the other hand, it has been shown that the DkS problem does not admit
a polynomial time approximation scheme (PTAS) [13]. However, there is not
a negative result that achieving an approximation ratio of O(nε), for some
ε > 0, is NP-hard. Concerning approximation algorithms for special cases of
the problem it is known that the DkS problem admits a PTAS for graphs of
minimum degree Ω(n) as well as for dense graphs (of Ω(n2) edges) when k is
Ω(n) [1]. Moreover, algorithms achieving approximation factors of 4 [17] and
2 [11] have been proposed for the weighted DkS problem on complete graphs
where the weights satisfy the triangle inequality.

The DkS problem is trivial on trees (any subtree of k vertices contains exactly
k − 1 edges). It is also known that DkS is polynomial for graphs of maximal
degree two [7] as well as for cographs, split graphs and k-trees [4]. On the
other hand the DkS problem remains NP-hard for bipartite graphs [4], even
of maximum degree three [7], as well as for comparability graphs, chordal
graphs [4] and planar graphs [12]. The weighted version of the DkS problem
is polynomial on trees either if we ask for a connected solution [10,14,15] or
for a disconnected one [16]. In fact, the result for the latter case is implied
by a result for the solution of the quadratic 0-1 knapsack problem on edge
series-parallel graphs in [16].

In the next section we introduce the reader to the class of chordal graphs
and their properties and we give our notation. In Section 3 we present the
approximation algorithm and the lemmas yielding our approximation ratio.
We conclude in Section 4.

2 Definitions and Notation

A clique of an undirected graph, G = (V,E), is a subset of its vertices, C ⊆ V ,
inducing a complete subgraph in G. The size |C| of a clique is the number of
its vertices. A maximal clique is a clique, which is not contained in any larger
clique. A largest maximal clique is called maximum clique. A vertex of a graph
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G is called simplicial if its adjacent vertices induce a complete subgraph in
G. An order 〈u1, u2, . . . , un〉 of the vertices of G, is called perfect elimination
order if each ui is a simplicial vertex of the subgraph of G induced by the
vertices {ui, ui+1, . . . , un}.

A graph is called chordal if every cycle of length strictly greater than three
possesses a chord, that is, an edge joining two nonconsecutive vertices of the
cycle. In the rest of this paper by G = (V,E) we denote a chordal graph. It is
well known that for a chordal graph, G = (V, E), the following hold:
(i) G has at most m ≤ |V | maximal cliques, C = {C1, C2, . . . , Cm}, which can
be found in polynomial time [9].
(ii) G has a simplicial vertex. Actually, if G is not a clique, then it has two
nonadjacent simplicial vertices [5].
(iii) G has a perfect elimination order. Moreover, any simplicial vertex can
start such an order [8].

By GA we denote the subgraph of G induced by a subset A ⊆ V of its vertices
and by GF we denote the subgraph of G induced by a subset F ⊆ E of its
edges. A direct consequence of the definition of the class of chordal graphs is
that being chordal is a hereditary property inherited by every vertex-induced
subgraph GA of G, but not by every edge-induced subgraph GF of G. It is
also obvious that for every maximal clique Ci of a vertex-induced or an edge-
induced subgraph of G, there is at least one maximal clique Cj of G such that
Ci ⊆ Cj.

By E(A) we denote the set of edges in a subgraph GA of G, while by E(A,B)
we denote the set of edges between two disjoint subsets A,B ⊆ V of vertices
of G i.e., the set of edges with one of their endpoints in A and the other in B.

By S we denote a solution to the DkS problem, that is a subset S ⊆ V such
that |S| = k, while by S∗ we denote an optimal solution, that is a solution S
for which |E(S)| is maximized.

Finally, we assume that k > |Ci|, 1 ≤ i ≤ m, for otherwise S∗ consists of any
subset of k vertices of some clique for which |Ci| ≥ k.

3 An approximation algorithm for the DkS problem on chordal
graphs

Since all the maximal cliques of a chordal graph G = (V, E) can be found
in polynomial time it is natural to study the DkS problem on those maximal
cliques instead on G itself. In this section we analyze the following simple
greedy algorithm for finding an approximate solution to the DkS problem on
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a chordal graph G.

Greedy Algorithm:
1. Let C1, C2, . . . Cm be the maximal cliques of G, sorted in

non-increasing order of their sizes.
2. Find the largest integer t such that k > |⋃t−1

i=1 Ci| = k′.
3. Return the solution S consisting of all the vertices of the

cliques C1, C2, . . . , Ct−1 plus k − k′ > 0 vertices of clique Ct.

The size of the maximal clique Ct plays a crucial role in our analysis and it
will be denoted by L = |Ct|.

We first obtain a lower bound on the number of edges |E(S)| in the solution
S derived by the Greedy Algorithm for a chordal graph G. This bound is
obtained by relating the solution S to the solution that the Greedy Algorithm
returns for a graph consisting of independent cliques of size L. Formally, for a
chordal graph G and the parameter L defined above we consider the chordal
graph G̃ consisting of at least dk/Le independent cliques all of size L.

Lemma 1 Let S and S̃ be the solutions that the Greedy Algorithm returns
for the DkS problem on graphs G and G̃, respectively. It holds that |E(S)| ≥
|E(S̃)| = k(L−1)−b(L−b)

2
, where b = k mod L.

Proof: To prove the bound of the lemma we consider also the solutions S ′

and S̃ ′ that the Greedy Algorithm returns for the Densest k′-Subgraph (Dk′S)
problem on graphs G and G̃, respectively. Recall that k′ = |⋃t−1

i=1 Ci|.

Consider first the solutions S and S ′. The solution S consists of the t − 1
largest maximal cliques of G, of k′ vertices, plus a set A ⊆ Ct, of a = k − k′

vertices, such that
⋃t−1

i=1 Ci ∩ A = ∅. Obviously, 0 < a ≤ |Ct| = L. Moreover,
S \ S ′ = A and therefore,

|E(S)| ≥ |E(S ′)|+ a(a− 1)

2
.

Consider next the solutions S ′ and S̃ ′. The solution S ′ consists of exactly the
t − 1 largest maximal cliques of G, of k′ vertices. As all the maximal cliques
of S ′ are of size at least L, it follows that all the vertices in S ′ have degree
at least L − 1. The solution S̃ ′ consists of q′ = bk′/Lc independent cliques
of size L and one more independent clique, B′, of size b′ = k′ mod L, that is
|S̃ ′| = q′L+b′. Each one of the b′ vertices in the clique B′ of S̃ ′ has degree b′−1.
Hence, the solution S ′ contains at least b′(L− 1− (b′ − 1)) = b′(L− b′) more
edges than the solution S̃ ′, that is |E(S ′)| ≥ |E(S̃ ′)| + b′(L − b′). Therefore,

|E(S)| ≥ |E(S̃ ′)|+ b′(L− b′) +
a(a− 1)

2
.

Consider finally the solutions S̃ ′ and S̃. The solution S̃ consists of q = bk/Lc
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independent cliques of size L and one more independent clique, B, of size
b = k mod L, that is |S̃| = qL + b. Moreover, |S̃| − |S̃ ′| = a.
If a ≤ b, then the solution S̃ ′ can be obtained from the S̃, by removing a
vertices of the clique B of S̃. In this case |S̃ ′| = qL + b′, where b′ = b− a, and

|E(S̃)| = |E(S̃ ′)|+ a(a−1)
2

+ b′a. Therefore,

|E(S)| ≥ |E(S̃)| − b′a + b′(L− b′) = |E(S̃)|+ b′(L− b),
and since L > b, the inequality of the lemma follows.
If a > b, then the solution S̃ ′ can be obtained from the S̃, by removing all
the b vertices of the clique B and x = a − b vertices of the q − th clique
of size L of S̃. In this case |S̃ ′| = (q − 1)L + b′, where a − b = L − b′,
and |E(S̃)| = |E(S̃ ′)| + b(b−1)

2
+ x(x−1)

2
+ xb′ = |E(S̃ ′)| + a(a−1)

2
− xb + xb′ =

|E(S̃ ′)|+ a(a−1)
2

+ (a− b)(b′ − b). Therefore,

|E(S)| ≥ |E(S̃)| − (a− b)(b′ − b) + b′(L− b′) = |E(S̃)|+ (L− b′)b,
and since L > b′ the inequality of the lemma follows.

The solution S̃ consists of k−b
L

full cliques plus b < L vertices from the clique

B. Hence, the number of edges in S̃ is

|E(S̃)| = k − b

L
· L(L− 1)

2
+

b(b− 1)

2
=

k(L− 1)− b(L− b)

2
. 2

Next lemma, which is of independent interest, gives un upper bound on the
number of edges of a chordal graph as a function of the size of its maximum
clique.

Lemma 2 Let c ≥ 2 be the size of a maximum clique of a chordal graph
G = (V,E). It holds that |E| ≤ (c − 1)(|V | − c

2
) and this bound is the best

possible.

Proof: The graph G, as a chordal one, has a perfect elimination order. We
remove from G vertices (and their incident edges) in a perfect elimination
order until the remaining number of its vertices is c.

Since the size of a maximum clique of G is c, each removed vertex has degree
at most c− 1. Thus, the number of the edges removed during this process, let
|E1|, is at most (|V | − c)(c− 1). Moreover, the remaining number of edges, let

|E2|, is at most c(c−1)
2

(when the remaining c vertices form a clique).

Therefore, it follows that

|E| = |E1|+ |E2| ≤ (|V | − c)(c− 1) +
c(c− 1)

2
= (c− 1)(|V | − c

2
).

To prove that this bound is the best possible consider the chordal graph
G = (V, E) consisting of a clique, C, of size c−1 and |V |−c+1 independent ver-
tices each one of them adjacent to all vertices of C. Observe that a maximum
clique of G consists of the clique C plus one of the independent vertices, and it
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is of size c. For this graph G it holds that |E| = (c−1)(c−2)
2

+(|V |−c+1)(c−1) =
(c− 1)(|V | − c

2
). Note that if c = |V |, then G becomes a complete graph. 2

Let us now relate the solution S of the Greedy Algorithm to an optimal
solution S∗ to the DkS problem on a chordal graph G. Let S∗ = A∪B, where
A = S∗∩S is the subset of vertices of S∗ that belong to S and B = S∗\A is the
subset of vertices of S∗ that do not belong to S. Let also Γ ⊆ A be the subset
of vertices in A that have adjacent vertices in B and F = E(B) ∪ E(Γ, B).
Obviously, Γ∩B = ∅ and |E(S∗)| = |E(A)|+|E(B)|+|E(Γ, B)| = |E(A)|+|F |.

In order to bound the number of edges in an optimal solution S∗ we shall
consider the edge-induced subgraph GF = (Γ ∪ B, F ) as well as the vertex-
induced subgraph GB∪Γ of G. Note that GB∪Γ, as a vertex-induced subgraph
of G, is a chordal graph, while GF , as an edge-induced subgraph of G, is in
general a non chordal one. Next proposition gives a useful structural property
of the subgraph GF .

Proposition 1 All the maximal cliques of the graph GF = (Γ ∪ B, F ) are of
size at most L.

Proof: The solution S of the Greedy Algorithm contains vertices from max-
imal cliques of G of size at least L and the vertices in B do not belong to S.
Therefore, the vertices in B belong to maximal cliques of G of size at most L.

Consider first the set B of vertices of the subgraph GF . Since they belong to
maximal cliques of G of size at most L, they also form in GF maximal cliques
of size at most L.
Consider next the set Γ of vertices of the subgraph GF . By the definition of
the subgraph GF , it follows that: a) they are independent in GF , and b) every
one of them has at least one adjacent vertex in B. Assume that such vertex
belongs to a maximal clique, K, of GF of size greater than L. As the vertices
of Γ are independent in GF , it follows that at least one vertex of B belongs
also in such a clique K of GF , and, therefore, to a maximal clique of G of
size greater than L, a contradiction to the definition of the set B. Hence the
vertices of Γ belong to maximal cliques of GF of size at most L.
Therefore, all maximal cliques of the graph GF are of size at most L. 2

Using Proposition 1 we can now prove that the bound of Lemma 2 holds also
for the graph GF .

Lemma 3 For the edge-induced graph GF = (Γ ∪ B,F ) of G it holds that
|F | ≤ (L− 1)(|Γ ∪B| − L

2
).

Proof:
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We work analogously as in Lemma 2. The graph GB∪Γ, as a vertex-induced
subgraph of G, is a chordal one and it has a perfect elimination order. Following
this order (of the graph GB∪Γ), we remove vertices from the graph GF until
the remaining number of its vertices is L.

By Proposition 1 the size of a maximum clique of GF is L and, hence, the
degree, in GF , of each removed vertex is at most L−1. Thus, the number of the
removed edges of GF during this process, let |E1|, is at most (|B∪Γ|−L)(L−1).

Moreover, the remaining edges of GF , let |E2|, is at most L(L−1)
2

(when the
remaining L vertices form a clique).

Therefore, it follows that

|E| = |E1|+ |E2| ≤ (|B ∪ Γ| − L)(L− 1) +
L(L− 1)

2
= (L− 1)(|B ∪ Γ| − L

2
).
2

Applying Lemma 3 on GF , (with |Γ ∪B| ≤ |S∗| = k) we obtain

|F | = |E(B)|+ |E(Γ, B)| ≤ (L− 1)(k − L

2
).

For the edges E(A) it holds that |E(A)| ≤ |E(S)|, since A ⊆ S. We also know,
by Lemma 1, that

|E(S)| ≥ k(L− 1)− b(L− b)

2
.

Therefore,

|E(S∗)|
|E(S)| =

|E(A)|+ |F |
|E(S)| ≤ 1 +

|F |
|E(S)| ≤ 1 +

(L− 1)(2k − L)

k(L− 1)− b(L− b)
.

By recalling that b = k mod L ≤ L − 1 and by distinguishing between two
cases for b (b ≤ L/2 and b > L/2) it is easy to prove that (L−1)(2k−L)

k(L−1)−b(L−b)
≤ 2.

Thus the next theorem follows.

Theorem 1 There is a 3-approximation algorithm for the DkS problem on
chordal graphs.

4 Concluding remarks

We have shown a 3-approximation algorithm for the DkS problem on chordal
graphs, which, up to our knowledge, is the first constant approximation algo-
rithm for an NP-hard variant of the problem on non-dense graphs. Concerning
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the tightness of our analysis we succeeded to construct counterexamples for
which our algorithm gives a solution of at least half of the edges of an optimal
one.

On the other hand many questions concerning the frontier between hard and
polynomial solvable or approximable, within a constant ratio, variants of the
DkS problem, remain open. Such an outstanding open question concerns the
complexity of the DkS problem on interval graphs or even on proper interval
graphs. The existence of a constant approximation algorithm for the NP-
hard variant of the DkS problem on planar graphs is another interesting open
question.

Acknowledgment. The crucial suggestions of an anonymous referee for the
simplification of the proofs of Lemmas 2 and 3 are gratefully acknowledged.
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