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A Note on the Inapproximability of Correlation Clustering

Jinsong Tan ∗

Abstract

We consider inapproximability of the correlation clustering problem defined as follows: Given
a graph G = (V,E) where each edge is labeled either ”+” (similar) or ”−” (dissimilar), correla-
tion clustering seeks to partition the vertices into clusters so that the number of pairs correctly
(resp. incorrectly) classified with respect to the labels is maximized (resp. minimized). The
two complementary problems are called MaxAgree and MinDisagree, respectively, and have
been studied on complete graphs, where every edge is labeled, and general graphs, where some
edge might not have been labeled. Natural edge-weighted versions of both problems have been
studied as well. Let S-MaxAgree denote the weighted problem where all weights are taken
from set S, we show that S-MaxAgree with weights bounded by O(|V |1/2−δ) essentially belongs
to the same hardness class in the following sense: if there is a polynomial time algorithm that
approximates S-MaxAgree within a factor of λ = O(log |V |) with high probability, then for any
choice of S ′, S ′-MaxAgree can be approximated in polynomial time within a factor of (λ + ǫ),
where ǫ > 0 can be arbitrarily small, with high probability. A similar statement also holds for
S-MinDisagree. This result implies it is hard (assuming NP 6= RP) to approximate unweighted
MaxAgree within a factor of 80/79− ǫ, improving upon a previous known factor of 116/115− ǫ
by Charikar et. al. [4].1
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1 Introduction

Motivated by applications of document clustering, Bansal, Blum and Chawla [2] introduced the
correlation clustering problem where for a corpus of documents, we represent each document by
a node, and an edge (u, v) is labeled ”+” or ”−” depending on whether the two documents are
similar or dissimilar, respectively. The goal of correlation clustering is thus to find a partition of
the nodes into clusters that agree as much as possible with the edge labels. Specifically, there
are two complementary problems. MaxAgree aims to maximize the number of agreements:
the number of + edges inside clusters plus the number of − edges across clusters; on the other
hand, MinDisagree aims to minimize the number of disagreements: the number of + edges
across different clusters plus the number of − edges inside clusters. Correlation clustering is also
viewed as a kind of agnostic learning problem [9] and seems to have been first studied by Ben-
Dor et al. [3] with applications in computational biology; Shamir et al. [10] were the first to
formalize it as a graph-theoretic problem, which they called Cluster Editing. Since Bansal et al.s
independent introduction of this problem [2], it has been studied quite extensively in recent years
[1, 4, 5, 6, 7, 11].
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MaxAgree and MinDisagree have been studied on complete graphs, where every edge is
labeled, and general graphs, where some edge might not have been labeled. The latter captures
the case where a judge responsible for producing the labels is unable to tell if certain pairs are
similar or not. Also, it is natural for the judge to give some ‘confidence level’ for the labels
he produces; this leads to the natural edge-weighted versions, which we call S-MaxAgree and
S-MinDisagree respectively, indicating the edge weights are taken from set S.

The various versions of correlation clustering are fairly well studied. For complete unweighted
case, Bansal et al. [2] gave a PTAS for MaxAgree and Charikar et al. [4] gave a 4-approximation
forMinDisagree and showed APX-hardness. For general weighted graphs, anO(log n)-approximation
algorithm was also given in [4] for MinDisagree, and algorithms with the same approximation
factor were also obtained independently by Demaine and Immorlica [5], and Emanuel and Fiat
[6]; a 1

0.7664 -approximation algorithm was given for MaxAgree in [4], and this was improved by
Swamy [11] with a 1

0.7666 -approximation algorithm.
In this paper, we focus on the general graph case. Our main contribution is to show S-

MaxAgree (resp. S-MaxAgree) with absolute values of weights bounded by O(|V |1/2−δ)
belongs to the same hardness class in the following sense: if there is a polynomial time algorithm
that approximates S-MaxAgree (resp. S-MaxAgree) within a factor of λ = O(log |V |) with
high probability, then for any choice of S ′, S ′-MaxAgree (resp. S-MaxAgree) can be approxi-
mated in polynomial time within a factor of (λ+ ǫ), for any constant ǫ > 0, with high probability.
This result implies it is hard (assuming NP 6= RP) to approximate unweighted MaxAgree
within a factor of 80/79− ǫ, improving upon a previous known factor of 116/115− ǫ by Charikar,
Guruswami and Wirth [4].

Theorem 1 ([4]) For every ǫ > 0, it is NP-hard to approximate the weighted version of Max-
Agree within a factor of 80/79− ǫ. Furthermore, it is NP-hard to approximate the unweighted
version of MaxAgree within a factor of 116/115− ǫ.

2 Definitions and Notations

We give definitions and notations in this section.

Definition 1 (S-MaxAgree) A MaxAgree problem is called S-MaxAgree if all edge weights
are taken from set S. An element in S can be either a constant or some function in the size of
the input graph.

S-MinDisagree is defined likewise. We assume 0 is always an element in S as we are interested
in the problem on general graphs in this paper. Assigning weight 0 to non-edges allows us to view
any general graph as a complete one.

Definition 2 (N-fold Roll) Given a graph G = (V,E) where V = {v1, v2, ..., vn}. Let (N − 1) be
a multiple of (n−1), an N -fold roll (denoted by GN ) of G is created by embedding multiple copies
of G into an N by n grid where there are N parallel copies of V and a node vij corresponds to vj
in the ith copy of V .

Edges of GN are created as follows. For any pair of nodes vi1j1 and vi2j2 , where i1, i2 ∈
{1, 2, ..., N}, j1, j2 ∈ {1, 2, ..., n}. Define the ‘wrapped-around’ vertical distance of the two nodes

d(vi1j1 , vi2j2) =

{

(i2 − i1 mod N) (j1 ≤ j2)

∞ (otherwise)

A pair (vi1j1 , vi2j2) is called a grid-bone if and only if

1) j1 6= j2; and

2)
d(vi1j1

,vi2j2
)

j2−j1
∈ {0, 1, ..., N−1

n−1 }.
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A grid-bone (vi1j1 , vi2j2) is an edge identical to (vj1 , vj2) (resp. non-edge), depending on whether
(vj1 , vj2) is an edge (resp. non-edge) in G. All non-grid-bone pairs (vi1j1 , vi2j2) are non-edges.

Note by construction GN consists of exactly N(N−1
n−1 +1) > N2

n duplicates of G. It is conceptually
easier to see this by indexing each duplicate with pair (i, c), where i ∈ {1, 2, ..., N} indexes the N
parallel copies of V and c ∈ {0, 1, ..., N−1

n−1 } can be thought of as the ‘slope’ of the grid-bones in
this copy. More precisely, duplicate (i, c) consists of nodes

{v(i mod N)1, v(i+c mod N)2, v(i+2c mod N)3, ..., v(i+(n−1)c mod N)n}

For our purpose that will be evident in the rest of the paper and for the sake of simpler analysis,

we assume w.l.o.g. that there are exactly N2

n duplicates of G. Note this can be thought of as

erasing all edges on (any) excessive N(N−1
n−1 + 1)− N2

n duplicates.

In this construction, we obtain N2

n disjoint duplicates of E from just N disjoint duplicates of
V , this asymptotic gap is crucial in our proof of the main technical results (i.e. Lemma 3 and 4).
We will discuss why we need this gap in the proof of Lemma 3.

Definition 3 (S-to-{−α, 0, β} randomized rounding)

Input: An instance of S-MaxAgree (S-MinDisagree) on general graph G = (V,E), where
w.l.o.g. it is assumed that γ ≤ 1, ∀ γ ∈ S; and α, β ≥ 1.

Output: The same graph with the following randomized rounding. For each edge of weight γ > 0
(resp. γ < 0), round γ to either 0 or β (resp. either −α or 0) independently and identically at
random with expectation being γ.

Denote by w(·) the weight function before rounding, and w′(·) the one after rounding. We
slightly abuse notation here by allowing both weight functions to take edges and clusterings as
parameter. For a clustering C, denote by w′

γ(C) the total post-rounding weight of C contributed
by former-γ-edges.

Definition 4 (Contributing) Given an S-MaxAgree (resp. S-MinDisagree) instance and a
clustering C, we call an edge (i, j) of weight γ a contributing edge iff γ > 0 (resp. γ < 0) and
(i, j) is inside a cluster of C, or γ < 0 (resp. γ > 0) and (i, j) is cross different clusters of C.

3 Main Theorems

Given an S-MaxAgree (resp. S-MinDisagree) instance, first construct an N -fold roll GN =
(V N , EN ), and then apply the S-to-{−α, 0, β} randomized rounding on GN . If we solve the

{−α, 0, β} instance onGN , the solution clustering C implies a total of N2

n (not necessarily distinct)

ways to cluster G, one for each of the N2

n duplicates of G. To see this, note C is simply a partition

of V N , and this partition induces a partition, thus a clustering, on each of the N2

n duplicates
of G. We call each of these clusterings a candidate solution to the initial S-MaxAgree (resp.
S-MinDisagree) instance on G and denote them as C1, C2, ..., CN2

n

.

Note although these N2

n duplicates of G share nodes of GN , their edge sets are disjoint. In

fact, these N2

n duplicates of E form a partition of EN . Lemma 1 is immediate.

Lemma 1 For both S-MaxAgree and S-MinDisagree, w(C) =
∑N2/n

i=1 w(Ci).

Our next lemma says that if an edge is not contributing before rounding, it must not be
contributing after rounding. Therefore, to calculate the weight of C both before and after the
rounding, we only need to concern ourself with the same set of edges.
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Lemma 2 For both S-MaxAgree and S-MinDisagree, let E(C) be the set of contributing
edges of C before randomized rounding is applied to GN , i.e. w(C) =

∑

e∈E(C)w(e). Then after

rounding, the new weight of C is still a summation over the same set of edges, i.e. w′(C) =
∑

e∈E(C) w
′(e).

Proof. This follows from the observation that positive edges are rounded to have either positive
or zero weights, and negative edges are rounded to have either negative or zero weights.

We are now ready to give our main technical result in Lemma 3. We concern ourself only with
S-MaxAgree here; a similar result holds for S-MinDisagree and is given in Lemma 4.

Lemma 3 Given an S-MaxAgree instance G = (V,E), let GN = (V N , EN ) be the N -fold roll
of G with S-to-{−α, 0, β} randomized rounding applied. If

1. α+ β = O((Nn)1/2−δ), where δ ∈ (0, 12 ]; and
2. there is a λ-approximation algorithm for {−α, 0, β}-MaxAgree, where λ = O(log n)

then for any arbitrarily small number ǫ > 0 there exists a polynomial time algorithm that approx-
imates S-MaxAgree within a factor of (λ+ ǫ) with probability at least 1

2 .

Proof. For any γ ∈ S, let X(γ) denote the random variable representing the new weight of a
former-γ-edge after rounding. Define random variable Y (γ) = X(γ)−γ; clearly E[Y (γ)] = 0. Note
it is assumed w.l.o.g. that |γ| ≤ 1, ∀ γ ∈ S.

Suppose there is a polynomial time algorithm A that approximates {−α, 0, β}-MaxAgree

within a factor of λ, we can then run A on GN , the output clustering C∗
2 corresponds to N2

n ways

to clusterG (not necessarily all distinct). Let C∗
1 be the most weighted among these N2

n clusterings
of G, in the rest of the proof we show that with high probability, C∗

1 is a (λ + ǫ)-approximation
of S-MaxAgree on G for any fixed ǫ.

Denote by E the bad event that C∗
2 does not imply a (λ + ǫ)-approximation on G, i.e. C∗

1

is not a (λ + ǫ)-approximation. Let C′ be an arbitrary clustering of GN that does not imply a
(λ + ǫ)-approximation on G. Denote by E(C′) the event that C′ becomes a λ-approximation on
GN after rounding. Since there are at most (Nn)Nn distinct clusterings of GN , by union bound
we have Pr {E} ≤ eNn lnNn · Pr {E(C′)}. (We note that the randomness of event E(C′) comes
from the randomized rounding and the randomness of event E comes from both the randomized
rounding and the internal randomness of A.)

Let the weight of an optimal clustering U of G be K, denote by UN the corresponding
duplication clustering in GN . That is, UN has the same number of clusters as U , and there is a
one-to-one mapping between the two sets of clusters such that a node vj is in a cluster of U if
and only if all its N duplicates, v1j , v2j , ..., vNj , are in the corresponding cluster of UN . We now
proceeds to prove that event E(C′) happens with negligible probability. Before delving into the
details, we first offer a high level discussion of the idea behind the proof.

Intuition Behind the Proof. Since U is an optimal clustering of G, by Lemma 1 it is easy to

see that UN is an optimal clustering of GN before randomized rounding and its weight is KN2

n .
C′ is an arbitrary but fixed clustering. Since it does not imply a (λ + ǫ)-approximation on G, it

must be the case that before rounding the weight of C′ on GN is less than KN2

(λ+ǫ)n . Since ǫ is a

fixed constant, this leaves a gap between KN2

(λ+ǫ)n and KN2

λn . By Lemma 2 the expectation of the

new weight of UN is KN2

n and that of C′ is at most KN2

(λ+ǫ)n . Therefore for the bad event E(C′)

to happen either C′ has to be really lucky in the rounding so that its new weight ends up hitting

as high as KN2

λn , or UN has to be really unlucky in the rounding so that its new weight ends up

touching as low as λKN2

(λ+ǫ)n , or mostly likely some sort of combination of the two. Whichever case
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happens, the common thing shared is that one has to rely on pure chance to close the gap. And
we show that by setting N = poly(n) sufficiently large, this happens with negligible probability. In
fact, the probability of E(C′) is so small that even (Nn)Nn times of it is still negligible.

We now resume the proof. For any γ ∈ S, and a clustering C of GN , denote by E(C, γ) the
set of former-γ-edges that are contributing in C before rounding. If E(C′) happens, then

∑

γ∈S

w′
γ(C

′) ≥
1

λ





∑

γ∈S

w′
γ(U

N )





∑

γ∈S

|E(C′, γ)| · |γ| <
KN2/n

λ+ ǫ
=

1

λ+ ǫ





∑

γ∈S

|E(UN , γ)| · |γ|





where the first inequality follows because C′ is a λ-approximation of GN , and
∑

γ∈S w′
γ(·) is the

total weight of a clustering after rounding; the second inequality follows from Lemma 1 and the

fact that each of the N2

n candidate solutions implied by C′ has weight less than K
λ+ǫ . Simple

manipulation of the two inequalities above yields

S1 −
S2

λ
>

ǫ

λ(λ + ǫ)





∑

γ∈S

|E(UN , γ)| · |γ|



 =
ǫKN2/n

λ(λ + ǫ)

where S1 =





∑

γ∈S

(

w′
γ(C

′)− |E(C′, γ)| · |γ|
)



 and S2 =
1

λ





∑

γ∈S

(w′
γ(U

N )− |E(UN , γ)| · |γ|)



.

Since λ = O(log (Nn)) = O(log n) and K ≥ 1, when n is sufficiently large, S1 −
S2

λ
≥

ǫN2

n2
. This

implies

Pr{E(C′)} ≤ Pr

{

S1 −
S2

λ
>

ǫN2

n2

}

Note the expectation of both S1 and S2 are 0, therefore so is the linear combination S1 − S2/λ;
in the following we argue that the probability for S1 − S2/λ to deviate from its mean by ǫN2/n2

is negligible when N is sufficiently large.
For any γ ∈ S, let z1(γ) = |E(C′, γ)−E(UN , γ)| be the number of former-γ-edges contributing

in C′ but not UN before rounding. Similarly, define z2(γ) = |E(UN ) − E(C′)| and z3(γ) =
|E(UN ) ∩ E(C′)|. We have

Pr

{

S1 −
S2

λ
>

ǫN2

n2

}

= Pr







∑

γ∈S





z1(γ)
∑

i=1

Y
(γ)
i +

1

λ

z2(γ)
∑

j=1

(−Y
(γ)
j ) +

λ− 1

λ

z3(γ)
∑

k=1

Y
(γ)
k



 >
ǫN2

n2







≤ Pr







∑

γ∈S





z1(γ)
∑

i=1

Y
(γ)
i +

z2(γ)
∑

j=1

(−Y
(γ)
j ) +

z3(γ)
∑

k=1

Y
(γ)
k



 >
ǫN2

n2







(λ > 1)

≤
∑

γ∈S

∑

h∈{1,2,3}



Pr







zh(γ)
∑

i=1

(−1)(h−1)Y
(γ)
i >

ǫN2

3n2|S|









 (union bound)

≤
∑

γ∈S

∑

h∈{1,2,3}

(

exp

(

−2zh(γ)

(

ǫN2

3n2|S| · zh(γ) · (α + β)

)2
))

(Hoeffding bound)

≤ 3|S| · exp

(

−c1 ·
N2/n

n8(α+ β)2

)

(|S| ≤ n2, zh(γ) ≤ N2n)
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where c1 is some constant. Since we allow α+β = O((Nn)(1/2−δ)) and want (Nn)Nn ·Pr(E(C′))
to be negaligible, it is now clear why we need N2/n duplicates of E and thus the N-fold roll
construction given in Definition 2. In contrast, had we adopted a naive construction with N
isolated duplicates of G, there will be only N duplicates of E; and it is readily verified that this
is insufficient to prove that (Nn)Nn · Pr(E(C′)) is negligible.

Now set N = n6/δ, we have

Pr {E} ≤ (Nn)Nn · Pr {E(C′)} ≤ 3n2 · exp
(

(6/δ + 1)n6/δ+1 lnn− c2 · n
(6/δ+2+2δ)

)

for some constant c2. Note this probability is bounded by 1
2 as the input size n is sufficiently

large. Therefore we have obtained a polynomial time algorithm that approximates S-MaxAgree
within a factor of λ+ ǫ with probability at least 1

2 .

We give a similar result for S-MinDisagree in Lemma 4, the proof follows essentially exactly
the same construction and analysis as Lemma 3 so we only give a high level discussion without
duplicating the proof.

Lemma 4 Given an S-MinDisagree instance G = (V,E), let GN = (V N , EN ) be the N -fold
roll of G with S-to-{−α, 0, β} randomized rounding. If

1. α+ β = O((Nn)1/2−δ), where δ ∈ (0, 12 ]; and
2. there is a λ-approximation algorithm for {−α, 0, β}-MinDisagree, where λ = O(log n)

then for any arbitrarily small number ǫ > 0 there exists a polynomial time algorithm that approx-
imates S-MinDisagree within a factor of (λ + ǫ) with probability at least 1

2 .

Proof. (Sketch) We define UN and C′ analogously as in that of Lemma 3. The weight of

UN before rounding is KN2

n , and the weight of C′ before rounding is greater than (λ+ǫ)KN2

n .

Again since ǫ is a fixed constant, there is a gap between (λ+ǫ)KN2

n and λKN2

n . For C′ to be
a λ-approximation after rounding, its new weight must necessarily be at most λ times of the

new weight of UN . Since the expectation of the new weight of UN is KN2

n and that of C′ is

greater than (λ+ǫ)KN2

n , again we need to rely on chance to close this gap of ǫKN2

n . By applying
a similar analysis as in Lemma 3 we can show that even (Nn)Nn times of this probability, which
upper bounds the probability of the bad event that a λ-approximation on GN does not imply a
(λ+ ǫ)-approximation on G, is negligible.

Lemma 3 and 4 leads to the following theorem.

Theorem 2 If S-MaxAgree (resp. S-MinDisagree) is NP-hard to approximate within a fac-
tor of λ (λ = O(log n)) for any specific choice of S, then for any choice of S ′, where maxγ∈S′ |γ| =
O(n1/2−δ) for some δ ∈ (0, 12 ], no polynomial time algorithm, possibly randomized, can approxi-
mate S ′-MaxAgree (resp. S ′-MinDisagree) within a factor of λ+ ǫ with probability at least 1

2
unless NP = RP.

Proof. This follows from Lemma 3 and 4 by setting α = −minS and β = maxS.

In particular, invoking the result by Charikar et al. in Theorem 1 leads to the following improved
inapproximability result.

Theorem 3 No polynomial time algorithm, possibly randomized, can approximate unweighted
version of MaxAgree in general graphs within a factor of 80/79− ǫ unless NP = RP.
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