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Abstract

Recently, Aceto, Fokkink & Ingólfsdóttir proposed an algo-
rithm to turn any sound and ground-complete axiomatisa-
tion of any preorder listed in the linear time – branching
time spectrum at least as coarse as the ready simulation
preorder, into a sound and ground-complete axiomatisa-
tion of the corresponding equivalence—its kernel. More-
over, if the former axiomatisation isω-complete, so is the
latter. Subsequently, de Frutos Escrig, Gregorio Rodrı́guez
& Palomino generalised this result, so that the algorithm
is applicable to any preorder at least as coarse as the
ready simulation preorder, provided it is initials preserving.
The current paper shows that the same algorithm applies
equally well to weak semantics: the proviso of initials pre-
serving can be replaced by other conditions, such as weak
initials preserving and satisfying the secondτ -law. This
makes it applicable to all 87 preorders surveyed in “the
linear time – branching time spectrum II” that are at least
as coarse as the ready simulation preorder. We also extend
the scope of the algorithm to infinite processes, by adding
recursion constants. As an application of both extensions,
we provide a ground-complete axiomatisation of the CSP
failures equivalence for BCCS processes with divergence.

1. Introduction

The lack of consensus on what constitutes an appropriate
notion of observable behaviour for reactive systems has led
to a large number of proposals for behavioural equivalences
and preorders for concurrent processes. These have been
surveyed in thelinear time-branching time spectrum, for
concrete semantics [13], and for weak semantics that take
into account the internal actionτ [11]. Typically, a given
semantical notion induces both a preorder and an equiv-
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alence, where the equivalence is the kernel of the corre-
sponding preorder, meaning that two processes are consid-
ered equivalent if, and only if, each is a refinement of the
other with respect to the preorder.

For equational reasoning about processes expressed in
some process algebra, an axiomatisation of the semantics
under consideration (both for the preorder and the equiv-
alence) is required. This axiomatisation should besound,
and preferably alsoground-complete, for the process alge-
bra modulo the semantics at hand, meaning that all equiva-
lent closed terms can be equated. Ideally, such an axiomati-
sation is alsoω-complete, meaning that whenever all closed
instances of an equation can be derived from it, then so can
the equation itself. [3, 6, 14] offer positive and negative re-
sults on the existence ofω-complete, sound and ground-
complete finite axiomatisations for several concrete be-
havioural equivalences and preorders in the spectrum from
[13], over BCCSP. This process algebra contains only the
basic operators from CCS and CSP, but is sufficiently pow-
erful to express all finite synchronisation trees.

Such positive and negative axiomatisability results were
always proved separately for a preorder and the corre-
sponding equivalence. Aceto, Fokkink & Ingólfsdóttir [1]
showed that for BCCSP such double effort can be avoided,
by presenting an algorithm to turn a sound and ground-
complete axiomatisation of any preorder in the linear time
– branching time spectrum at least as coarse as the ready
simulation preorder, into a sound and ground-complete ax-
iomatisation of the corresponding equivalence.1 Moreover,
if the former axiomatisation isω-complete, so is the latter.
The requirement that the preorder is at least as coarse as
ready simulation is essential; in [5] it was shown that for
impossible futures semantics (which does not satisfy this

1Another way to avoid the double effort is by deriving axiomatisations
of preorders from those of the corresponding equivalences.This line of
research is explored in [7].



requirement), there is a finite axiomatisation for the pre-
order, but not for the equivalence.

A serious drawback of the work reported in [1] is that
their algorithm requires several properties to hold for the
preorders to which it is applied, which have to be checked
for each preorder separately. Especially their variable can-
cellation property is usually rather hard to prove, see [2].
Subsequently, de Frutos Escrig, Gregorio Rodrı́guez &
Palomino [8, 9] improved upon this result, so that the algo-
rithm is applicable not only to those preorders specifically
mentioned in “the linear time – branching time spectrum”
but to any preorder at least as coarse as the ready simulation
preorder, provided it isinitials preserving, meaning that a
preorder relation (p ⊑ q) implies inclusion of initial action
sets (I(p) ⊆ I(q)). This condition is needed to guarantee
soundness of the generated axiomatisation.

The current paper stems from an effort to apply the algo-
rithm to weak semantics, which take into account internal
activity τ . The results in [8, 9] do not suffice in this setting,
because weak semantics tend to violate the initials preserv-
ing condition. So a new round of generalisation is needed.
To this end, we show that in the setting of BCCS (BCCSP
extended withτ ), the algorithm originally proposed in [1]
applies equally well to weak semantics; the proviso of ini-
tials preserving can be replaced by other conditions. We
give three sufficient conditions on the preorder⊑ and its
corresponding equivalence≡: either (1)p ≡ τp for all
closed termsp; or (2) p ≡ τp for all p with I(p) 6= ∅, and
p ⊑ q with I(p) 6= ∅ impliesI(q) 6= ∅; or (3)τp ≡ τp + p
for all closed termsp, and⊑ is weakinitials preserving.

This makes the algorithm applicable to all 87 preorders
surveyed in “the linear time – branching time spectrum II”
[11] that are coarser than the (strong) ready simulation pre-
order. That is, each of these preorders satisfies either the
original initials preserving condition from [8, 9], or one of
our three new conditions.

Moreover, we extend the scope of the algorithm toin-
finite processes, by adding recursion constants to BCCS.
As an application of both extensions, we provide a ground-
complete axiomatisation of the CSP failures equivalence,
also known as must-testing equivalence, for BCCS pro-
cesses with divergence.

2. Preliminaries

BCCS is a basic process algebra for expressing finite pro-
cess behaviour. Its signature consists of the constant0, the
binary operator+ , and unary prefix operatorsτ anda ,
wherea is taken from a nonempty setA of visible actions,
called thealphabet. We assumeτ /∈A, τ being thehidden
action, and writeAτ for A ∪ {τ}, ranged over byα, β.

t ::= 0 | αt | t + t | x

ClosedBCCS terms, ranged over byp, q, r, represent fi-
nite process behaviours, where0 does not exhibit any be-
haviour,p + q offers a choice between the behaviours ofp
andq, andαp executes actionα to transform intop. This in-
tuition is captured by the transition rules below. They give
rise toAτ -labelled transitions between closed BCCS terms.

αx
α
→ x

x
α
→ x′

x + y
α
→ x′

y
α
→ y′

x + y
α
→ y′

We assume a countably infinite setV of variables;w, x, y, z
denote elements ofV . Open BCCS terms, denoted by
t, u, v, may contain variables fromV . A (closed) substi-
tution, typically denoted byσ, maps variables inV to
(closed) terms. For open termst andu, and a preorder⊑
(or equivalence≡) on closed terms, we definet ⊑ u (or
t ≡ u) if σ(t) ⊑ σ(u) (resp.σ(t) ≡ σ(u)) for all closed
substitutionsσ. A preorder⊑ is called aprecongruence(for
BCCS) if p ⊑ q andp′ ⊑ q′ implies thatp + p′ ⊑ q + q′

andαp ⊑ αq for α ∈ Aτ . Thekernelof a preorder⊑ is
⊑ ∩ ⊑−1.

An axiomatisationis a collection of equationst ≈ u
or of inequationst 4 u. The (in)equations in an axioma-
tisationE are referred to asaxioms. If E is an equational
axiomatisation, we writeE ⊢ t ≈ u if the equationt ≈ u
is derivable from the axioms inE using the rules of equa-
tional logic (reflexivity, symmetry, transitivity, substitution,
and closure under BCCS contexts). For the derivation of an
inequationt 4 u from an inequational axiomatisationE,
denoted byE ⊢ t 4 u, the rule for symmetry is omitted.
We will also allow equationst ≈ u in inequational axioma-
tisations, as an abbreviation oft 4 u andu 4 t.

An axiomatisationE is soundmodulo a precongruence
⊑ (or congruence≡) if for all termst, u, from E ⊢ t 4 u
(or E ⊢ t ≈ u) it follows that t ⊑ u (or t ≡ u). E is
ground-completefor ⊑ (or ≡) if for all closed termsp, q,
p ⊑ q (or p ≡ q) impliesE ⊢ p 4 q (or E ⊢ p ≈ q). And
E is ω-completeif for all termst, u with E ⊢ σ(t) 4 σ(u)
(or E ⊢ σ(t) ≈ σ(u)) for all closed substitutionsσ, we
haveE ⊢ t 4 u (or E ⊢ t ≈ u).

Bisimilarity is the largest equivalence relation↔ such
thatp↔ q andp

α
→ p′ implies∃q′ : q

α
→ q′ andp′ ↔ q′. It

is completely axiomatised by the following axioms:

x + y ≈ y + x (A1)
(x + y) + z ≈ x + (y + z) (A2)

x + x ≈ x (A3)
x + 0 ≈ x (A4)

Summation
∑

i∈{1,...,n} ti denotest1+· · ·+tn, where sum-
mation over the empty set denotes0. Binary choice+ and
summation bind weaker thanα . For each closed BCCS
term p there exists a finite set{αipi | i ∈ I} of closed
terms such thatp ↔

∑
i∈I αipi and hence A1–4⊢ p ≈∑

i∈I αipi. Theαipi are called thesummandsof p.
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We writep ⇒ q if there is a (possibly empty) sequence
of τ -transitionsp

τ
→ · · ·

τ
→ q; furthermorep

α
→ denotes

that there is a termq with p
α
→ q, and likewisep ⇒

a
→

denotes that there are a termsq, r with p ⇒ q
α
→ r.

Definition 1 (Initial actions) For any closed termp, the
set I(p) of strongly initial actionsis I(p) = {α ∈ Aτ |
p

α
→}, whereas the setIτ (p) of weakly initial actionsis

Iτ (p) = {α ∈ Aτ | p ⇒
α
→}.

A preorder⊑ is (strong) initials preservingif p ⊑ q
impliesI(p) ⊆ I(q) for all p andq; it is weak initials pre-
serving if p ⊑ q implies Iτ (p) ⊆ Iτ (q). With I(p) we
denoteIτ (p) ∩ A, the weakly initialvisibleactions ofp.

3. The algorithm for producing equational ax-
iomatisations

In Aceto, Fokkink & Ingólfsdóttir [1] an algorithm is pre-
sented which takes as input a sound and ground-complete
inequational axiomatisationE for BCCS modulo a precon-
gruence in the linear time – branching time spectrum that
contains the ready simulation preorder, and generates as
output an equational axiomatisationA(E) which is sound
and ground-complete for BCCS modulo the corresponding
congruence. Moreover, if the original axiomatisationE is
ω-complete, so is the resulting axiomatisation. The axioma-
tisationA(E) generated by the algorithm fromE contains
the axioms A1–4 as well as the axioms:

(RS≡): α(βx + z) + α(βx + βy + z) ≈ α(βx + βy + z)

for α, β ∈ Aτ , that are valid in ready simulation seman-
tics, together with the following equations, for each inequa-
tional axiomt 4 u in E:

(1) t + u ≈ u; and

(2) α(t + x) + α(u + x) ≈ α(u + x) (for eachα ∈ Aτ ,
and some variablex that does not occur int + u).

Instead of explicitly adding the axioms RS≡ one can equiv-
alently add the axioms

(RS): βx 4 βx + βy for β ∈ Aτ

to E prior to invoking steps (1) and (2) above. Moreover,
as observed in [8], the conversion fromE to A(E) can be
factored into two steps:

• Given an inequational axiomatisationE, its BCCS-
context closureE is

E∪{α(t+x) 4 α(u+x) | α ∈ Aτ∧t 4 u ∈ E}∪{RS}

wherex is a variable not occurring inE.

• NowA(E) = {t + u ≈ u | t 4 u ∈ E} ∪ (A1–4).

In [1] the correctness of this algorithm was shown for all
precongruences listed in the linear time – branching time
spectrum of [13] that are included between trace inclusion
and the ready simulation preorder. The proof contained a
few arguments that had to be checked for each of these pre-
orders separately. Subsequently, in de Frutos Escrig, Gre-
gorio & Palomino [8] the following more general result was
obtained:

Theorem 1 Let ⊑ be an initials preserving precongruence
that contains the ready simulation preorder⊑RS, and letE
be a sound and ground-complete axiomatisation of⊑. Then
A(E) is a sound and ground-complete axiomatisation of
the kernel of⊑. Moreover, ifE is ω-complete, then so is
A(E).

As all preorders in the linear time – branching time spec-
trum of [13] between trace inclusion and ready simulation
are initials preserving, the above theorem strengthens the
result of [1].

4. Correctness proof of the algorithm

Below we recreate the proof of Theorem 1. Lemma 1 and
Proposition 1 constitute the completeness argument, and
are taken directly from [8]. However, the proofs below are
significantly simpler—in the case of Lemma 1 employing
ideas from the completeness proof in [1]. The essence of
Lemma 2 and its proof come from [8] as well; this is the
soundness argument. Our rewording of Lemma 2 allows it
to be reused in Sections 5 and 7.

Lemma 1 Let E be an inequational axiomatisation. Then
for any t 4 u ∈ E and any contextC[·] we haveA(E) ⊢
C(t) + C(u) ≈ C(u).

Proof: By structural induction on the contextC[·].
In case of the trivial contextC[·] = · we have to show

A(E) ⊢ t + u ≈ u, which follows immediately from step
(1) in the construction ofA(E).

For a contextα( · + v) we have to showA(E) ⊢ α(t +
v) + α(u + v) ≈ α(u + v), which follows from step (2)
in the construction ofA(E), substituting the termv for the
variablex.

Now let the result be obtained for a contextD[·] and let
C[·] be of the formD[·] + v, wherev is an arbitrary term,
possibly0. We have to show thatA(E) ⊢ D(t) + v +
D(u) + v ≈ D(u) + v. This follows immediately from the
induction hypothesis.

Finally, let the result be obtained for a contextβD[·] and
let C[·] be of the formα(βD[·] + v). We have to obtain

A(E) ⊢ α(βD(t)+ v)+ α(βD(u)+ v) ≈ α(βD(u)+ v).
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By the induction hypothesis we haveA(E) ⊢ βD(t) +
βD(u) ≈ βD(u), so it suffices to obtain

A(E) ⊢ α(βD(t) + v) + α(βD(t) + βD(u) + v)
≈ α(βD(t) + βD(u) + v).

This is an instance of the axiom RS≡. �

Proposition 1 Let E be an inequational axiomatisation.
Then wheneverE ⊢ t 4 u we also haveA(E) ⊢ t+u ≈ u.

Proof: If E ⊢ t 4 u then there is a chain of terms
t0, . . . , tn for n ≥ 0 with t0 = t and tn = u such that
for 0 ≤ i < n the inequationti 4 ti+1 is provable from
E by one application of an axiom. We now prove the claim
by induction onn. The casen = 0 is an instance of axiom
A3, and the casen = 1 is an immediate consequence of
Lemma 1, by applying substitution.

Now for the general case, letv beti for some0 < i < n.
By induction we haveA(E) ⊢ t + v ≈ v andA(E) ⊢
v + u ≈ u. Applying once again A3 this yieldsA(E) ⊢
t + u ≈ t + v + u ≈ v + u ≈ u. �

Lemma 2 Let⊑ be a precongruence containing⊑RS and
≡ be its kernel. Letp, q be closed terms withp ⊑ q and
I(p) ⊆ I(q). Thenp + q ≡ q.

Proof: As p ⊑ q and⊑ is a precongruence for choice, we
havep + q ⊑ q + q ⊑ q. To show thatq ⊑ p + q, let p ↔
∑

i∈I αipi andq ↔
∑

j∈J βjqj . It is well known [13] that
p ↔ q impliesI(p) = I(q) as well asp ⊑RS q and hence
p ⊑ q. Writing p|β for

∑
αi=βαipi, the collection ofβ-

summands ofp, and likewiseq|β =
∑

βj:=ββjqj , we have
p↔

∑
β∈I(p) p|β andq ↔

∑
β∈I(q) q|β . Using thatI(p) ⊆

I(q), and that⊑ is a precongruence for the choice operator
+, it suffices to show thatq|β ⊑ p|β + q|β for all β ∈ Aτ .
This is an immediate consequence of the axiom RS, which
is sound for⊑RS and hence for⊑. �

Proof of Theorem 1:As⊑ is a precongruence contained in
the ready simulation preorder, all inequations in the BCCS-
context closureE of E are sound w.r.t.⊑. Considering
that the soundness of an (in)equation is tantamount to the
soundness of its closed substitution instances, the sound-
ness ofA(E) now follows from Lemma 2.

Ground-completeness andω-completeness follow di-
rectly from Proposition 1: Ift ≡ u, that ist ⊑ u andu ⊑ t,
we haveE ⊢ t 4 u andE ⊢ u 4 t by the completeness of
E. So Proposition 1 yieldsA(E) ⊢ t ≈ t + u ≈ u. �

5. Applying the algorithm to weak semantics

The results of [1, 8] were obtained for the language BCCSP,
containing the basic operators of CCS and CSP. This lan-
guage is obtained from BCCS as presented above by omit-
ting the unary operatorτ . Naturally, as shown above, these

results generalise smoothly to BCCS by treatingτ just like
any visible action fromA. Preorders or equivalences that
do so are calledstrong. The main purpose of the present
paper is to apply the same ideas toweakpreorders: those
that in some way abstract from internal activity, by treating
τ differently from visible actions.

When reading Theorem 1 in the context of weak pro-
cess semantics, it helps to remember that⊑RS is thestrong
ready simulation preorder, and “initials preserving” refers
to preservation of thestrongly initial actions. Theorem 1
directly applies to the rooted variants of theη-simulation
surveyed in [11], for these preorders are coarser than the
strong ready simulation preorder and strong initials pre-
serving. However, most weak semantics are not strong ini-
tials preserving (for instance, typicallyτx 4 x is sound),
and consequently Theorem 1 fails to apply to them.

The precondition of being initials preserving is in fact
nowhere used in the completeness proof in [8], or its recre-
ation in Section 4. Hence, this condition applies to the
soundness claim only. Therefore, in order to apply the algo-
rithm to weak semantics, all we need is to find another way
of guaranteeing the soundness of the generated axioms.

Given that we deal with preorders containing the ready
simulation preorder, the axiom RS≡ will always be sound.
Moreover, the axioms generated by step (2) in the construc-
tion of A(E) are guaranteed to be sound by Lemma 2,
for we haveα(t + x) ⊑ α(u + x) and I(α(t + x)) =
I(α(u + x)) = {α}. One way to guarantee soundness of
the remaining axioms, is to check this for each of them ex-
plicitly:

Theorem 2 Let ⊑ be a precongruence that contains the
ready simulation preorder⊑RS, and letE be a sound and
ground-complete axiomatisation of⊑, such that for each
axiomt 4 u in E the lawt + u ≈ u is sound as well. Then
A(E) is a sound and ground-complete axiomatisation of
the kernel of⊑. Moreover, ifE is ω-complete, then so is
A(E). �

Note that for the axioms stemming fromt 4 u with
I(σ(t)) ⊆ I(σ(u)) for any closed substitutionσ, no check
is needed, by Lemma 2. Next we present three other condi-
tions that guarantee soundness ofA(E).

Theorem 3 Let ⊑ be a precongruence that contains the
strong ready simulation preorder⊑RS, such thatp ≡ τp,
with≡ the kernel of⊑, for all processesp. LetE be a sound
and ground-complete axiomatisation of⊑. ThenA(E) is
a sound and ground-complete axiomatisation of≡. More-
over, if E is ω-complete, then so isA(E).

Proof: It suffices to show thatp ⊑ q impliesp+ q ≡ q. So
assumep ⊑ q. Let p′ := τp andq′ := τq. By assumption
we havep ≡ p′ and q ≡ q′, and thereforep′ ⊑ q′. As
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I(p′) = I(q′) = {τ}, Lemma 2 yieldsp′ + q′ ≡ q′, which
impliesp + q ≡ q. �

Theorem 4 Let ⊑ be a precongruence that contains the
strong ready simulation preorder⊑RS, such thatp ≡ τp,
with ≡ the kernel of⊑, for all processesp with I(p) 6= ∅,
and such thatp ⊑ q implies that ifI(p) 6= ∅ thenI(q) 6= ∅.
Let E be a sound and ground-complete axiomatisation of
⊑. ThenA(E) is a sound and ground-complete axiomati-
sation of≡. Moreover, ifE isω-complete, then so isA(E).

Proof: Again it suffices to show thatp ⊑ q impliesp+q ≡
q. So assumep ⊑ q. If I(p) = ∅ then trivially I(p) ⊆ I(q)
and the result follows from Lemma 2. Otherwise, we have
p ≡ τp andq ≡ τq and the result follows as in the previous
proof. �

Let T2 be the secondτ -law of CCS [15]: τx ≈ τx + x.

Theorem 5 Let ⊑ be a weak initials preserving precon-
gruence that contains the strong ready simulation preorder
⊑RS and satisfies T2, and letE be a sound and ground-
complete axiomatisation of⊑. ThenA(E) is a sound and
ground-complete axiomatisation of the kernel of⊑. More-
over, if E is ω-complete, then so isA(E).

Proof: A straightforward induction on the length of a
path p ⇒ p′, using the soundness of T2, yields that if
p ⇒ p′

α
→ p′′ thenp ≡ p + αp′′, where≡ is the kernel

of ⊑. Hence for any closed termp there is a closed term
p′ such thatp ≡ p′ andIτ (p) = I(p′). Using this, the
soundness claim follows from Lemma 2, reasoning as in
the proof of Theorem 3. �

Note thatIτ (p) = I(p) ∪ {τ | p
τ
→} (see Definition 1).

Thus, the precondition of Theorem 5 is thatp ⊑ q implies
thatI(p) ⊆ I(q) and that ifp

τ
→ thenq

τ
→.

So far, Theorem 2 applies to the widest selection of pre-
orders, but it comes with the need to check the soundness of
some of the generated axioms separately. We can go even
further in this direction by observing that also the precondi-
tion of containing the ready simulation preorder is not used
anywhere in the completeness proof:

Theorem 6 Let ⊑ be any precongruence, and letE be
a ground-complete axiomatisation of⊑. ThenA(E) is a
ground-complete axiomatisation of the kernel of⊑. More-
over, if E is ω-complete, then so isA(E). �

Note that this theorem makes no statement on the sound-
ness ofA(E). Hence an application of this theorem to
achieve a sound and ground-complete axiomatisation in-
volves checking the soundness of all axioms generated by
both step (1) and step (2) of the algorithm explicitly, as well
as the soundness of the axioms A1–4 and RS≡. As A1–4

and RS≡ constitute a sound and ground-complete axioma-
tisation of strong ready simulation equivalence, checking
the soundness of these axioms is naturally done by check-
ing that the kernel of⊑ contains strong ready simulation
equivalence. As we shall illustrate in the next section, this
is a meaningful improvement over the precondition of The-
orem 2 that⊑ contains the strong ready simulation pre-
order. The price to be paid for this improvement is that also
the soundness of the axioms generated by step (2) of the
algorithm has to be checked separately. This is because the
proof of Lemma 2 uses that⊑ contains the strong ready
simulation preorder.

In [11] 155 weak preorders are reviewed. Most of them
fail to be congruences for the choice operator of BCCS.
Axiomatisations are typically proposed for thecongruence
closuresof these preorders: the coarsest congruence con-
tained in them. All preorders⊑ in [11] and their con-
gruence closures satisfy the property that ifp ⊑ q then
I(p) ⊆ I(q). 2

Of the 155 preorders surveyed in [11], 87 contain the
strong ready simulation preorder. We can partition this col-
lection into four classes.

6 preorders are variants of trace inclusion and the sim-
ulation preorder. They are precongruences for BCCS and
satisfy the axiomx ≈ τx. Consequently, they fall in the
scope of Theorem 3.

16 preorders are variants of completed trace inclusion
or the completed simulation preorder. Each of their con-
gruence closures⊑ has the property thatp ⊑ q implies that
if I(p) 6= ∅ then I(q) 6= ∅. Moreover, the kernels≡ of
⊑ have the property thatp ≡ τp for all processesp with
I(p) 6= ∅. Consequently, these congruence closures fall in
the scope of Theorem 4.

22 are variants of theη-simulation or theη-ready sim-
ulation. Their congruence closures are strong initials pre-
serving, and hence fall under the scope of Theorem 1.

The congruence closures⊑ of the remaining 43 pre-
orders satisfy the property thatp ⊑ q implies that ifp

τ
→

then q
τ
→, and henceIτ (p) ⊆ Iτ (q). These precongru-

ences therefore fall in the scope of Theorem 5.
Thus, the algorithm of [1] applies to all congruence clo-

sures of preorders in [11] coarser than the ready simulation
preorder.

2In fact, most preorders in [11] are actually pairs of preorders, as for
every semantics amayand amustpreorder are proposed. Inspired by [10],
there are two differences between the may and the must preorders. One is
a different treatment ofdivergence—this has no effect when restricting at-
tention to BCCS processes. The other is that the preorders are oriented in
opposite directions. This entire paper, as well as [1, 8], has been written
from the perspective of the may preorders. When dealing withmust pre-
orders⊑ we have that ifp ⊑ q thenI(p) ⊇ I(q). Moreover, none of
these preorders contains⊑RS —at best their inverses have this property.
Consequently, for preorders oriented in the must direction, the algorithm is
to be applied in the reverse direction, where an inequational axiom t 4 u

gives rise to equational axioms liket ≈ t + u.
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6. Applications

In De Nicola & Hennessy [10] three testing preorders are
defined, and for each of them a sound and ground-complete
axiomatisation over BCCS is provided. In fact the axioma-
tisations apply to all of CCS, enriched with a special con-
stantΩ, and the semantics of processes involves, besides
Aτ -labelled transitions, aconvergencepredicate. However,
the completeness proofs remain valid when restricting at-
tention to the sublanguage BCCS, and there the conver-
gence predicate plays no rôle (for all processes are con-
vergent). Thecombined may- and must-testing preorderis
axiomatised by the laws A1–4 together with the axioms

αx + αy ≈ α(τx + τy) (N1)
x + τy 4 τ(x + y) (N2)

αx + τ(αy + z) ≈ τ(αx + αy + z) (N3)
τx 4 x (N4)

whereα ranges overAτ . Themust preorderhas the addi-
tional axiom

τx + τy 4 x (E1)

and themay preorderhas the additional axiom

x 4 τx + τy (F1).

Note that T2 follows from N2 and N4. We will now ap-
ply the algorithm to obtain sound and ground-complete ax-
iomatisations of the three associated testing equivalences.

Beforehand, we mention a trivial simplification in ap-
plying the algorithm: if the inequational axiomatisation
features an equationt ≈ u, formally speaking this is an
abbreviation for the two axiomst 4 u andu 4 t. Thus,
step (1) of the algorithm generates the equationst + u ≈ u
andu + t ≈ t. Together, these are equivalent to the orig-
inal equationt ≈ u. Moreover, in the presence oft ≈ u
the two axioms generated by step (2) of the algorithm are
redundant. Thus, we can simplify the algorithm by leaving
equations untouched.

The may preorder. The may preorder of [10] coincides
with weak trace inclusion, which is coarser than the ready
simulation preorder. As remarked in [10], it is not hard to
see that the axiomatisation above can be simplified to A1–4
together with

τx ≈ x
αx + αy ≈ α(x + y)

x 4 x + y

Applying Theorem 3 yields a sound and ground-complete
axiomatisation of may-testing equivalence, which coincides
with weak trace equivalence. It consists of A1–4, RS≡ and

τx ≈ x
αx + αy ≈ α(x + y)
x + x + y ≈ x + y

α(x + z) + α(x + y + z) ≈ α(x + y + z)

As RS≡ is an instance of the last axiom above, that last
axioms follows from the second, and the third from A3,
this axiomatisation can be simplified to A1–4 together with

τx ≈ x
αx + αy ≈ α(x + y)

The must preorder. On BCCS, the must preorder of [10]
coincides with the failures preorder of CSP [4]. Its inverse
contains the ready simulation preorder and is weak initials
preserving. Hence we can apply Theorem 5 to obtain a
sound and ground-complete axiomatisation of must-testing
equivalence. First we note that N4 is a simple consequence
of E1 and thus can be omitted. Now Theorem 5 yields the
axioms A1–4, RS≡ and

αx + αy ≈ α(τx + τy) (N1)
x + τy ≈ x + τy + τ(x + y) (N21)

α(x+τy+z) ≈ α(x+τy+z) + α(τ(x+y)+z) (N22)
αx + τ(αy + z) ≈ τ(αx + αy + z) (N3)

τx + τy ≈ τx + τy + x (E11)
α(τx + τy + z) ≈ α(τx + τy + z) + α(x + z) (E12)

This axiomatisation can be simplified to A1–4 together
with

αx + αy ≈ α(τx + τy) (N1)
x + τy ≈ τy + τ(x + y) (N2∗)

αx + τ(αy + z) ≈ τ(αx + αy + z) (N3)

Namely, E11 implies T2 which allows us to reformulate
N21 as N2∗. The latter axiom implies T2 (by takingy = x)
and hence also N21 and E11. It remains to derive N22, E22

and RS≡. In all three cases, by N1 it suffices to derive the
instance whereα = τ . Substitutingτy for y in N2∗ and
applyingττy ≈ τy (which follows from N1) and T2 gives
τ(x + τy) ≈ x + τy. Now it is straightforward to derive
N2τ

2 , E2τ
2 and RSτ≡.

This axiomatisation has been mentioned in [12], just
like the axiomatisation of weak trace equivalence men-
tioned above. However, we have not found an actual proof
of its ground-completeness (or the ground-completeness of
any other axiomatisation of must-testing equivalence over
BCCS) in the literature.

The combined may and must preorder. The combined
may- and must-testing preorder is the intersection of the
may- and the must-testing preorders. It is known that on
BCCS the combined preorder has the same kernel as the
must preorder, so that we can reuse the axiomatisation
above. Nevertheless, obtaining a sound and complete ax-
iomatisation of this kernel by means of the algorithm pro-
vides a useful illustration of some of the issues that play
a rôle in this process. On BCCS, the combined preorder
is contained in weak trace equivalence, and hence contains

6



neither the strong ready simulation preorder, nor its inverse.
Therefore, Theorems 2–5 are not applicable to it. However,
its kernel does contain strong ready simulation equivalence,
and with help of Theorem 6 we can obtain a sound and
ground-complete axiomatisation of it. The algorithm yields
the axioms A1–4, RS≡ and

αx + αy ≈ α(τx + τy) (N1)
x + τy ≈ x + τy + τ(x + y) (N21)

α(x+τy+z) ≈ α(x+τy+z) + α(τ(x+y)+z) (N22)
αx + τ(αy + z) ≈ τ(αx + αy + z) (N3)

τx ≈ τx + x (N41)
α(τx + z) ≈ α(τx + z) + α(x + z) (N42)

The soundness of these axioms follows from the fact that
they are derivable both from the axioms for the may pre-
order and from the axioms for the must preorder.

As expected, the axiomatisation above is easily seen to
be equivalent to the axiomatisation of must-testing equiva-
lence.

7. A generalisation to infinite processes

The results in [1, 8] were obtained for finite processes only:
processes that can be expressed in BCCSP. Hereby we ex-
tend these results to infinite processes that can be expressed
by adding constants to BCCS. This is an easy way of deal-
ing with recursion—an alternative to introducing recursion
as a syntactic construct and requiring congruence proper-
ties for it. An infinite process can be defined by introduc-
ing one or more constantsC together with axioms like
C ≈ abC; in this example,C represents a process that per-
forms an infinite alternating sequence ofa andb actions.

In order to obtain completeness of the axiomatisations
A(E), any extension of BCCS with constants will do.
Lemma 1, Proposition 1 and Theorem 6 remain valid in
this setting. The only place where structural induction is
used is in the proof of Lemma 1, and there constants do not
bother us, as they cannot occur on a path from the root of a
context, seen as a parse tree, to the hole.

In order to obtain soundness, we furthermore assume
that for any constantC in the language there is a closed
term

∑
i∈I αipi in our extension of BCCS with constants—

so I is finite—such thatC ↔
∑

i∈I αipi. It then follows
that any closed term is bisimulation equivalent to a closed
term of the form

∑
i∈I αipi. With this assumption, all our

results generalise to BCCS augmented with constants.
The proof of Lemma 2 goes through unaltered. The only

proof that needs to be adapted is the one of Theorem 5.

Lemma 3 Let ≡ be a congruence containing↔ that satis-
fies T2. Ifp ⇒ p′

α
→ p′′ thenp ≡ p + αp′′.

Proof: By induction on the length of the pathp ⇒ p′.
In the base casep = p′ ↔

∑
i∈I αipi, and by definition

of↔ there must be ani ∈ I with αi = α andpi ↔ p′′. It
follows thatp↔ p + αp′′ and hencep ≡ p + αp′′.
Now assumep

τ
→ p′ ⇒

α
→ p′′. By induction,p′ ≡ p′+αp′′.

T2 yieldsp ≡ p + αp′′. �

Proof of Theorem 5: Supposep ⊑ q. We have to show
that p + q ≡ q, where≡ is the kernel of⊑. By the as-
sumption above,p ↔

∑
i∈I αipi for a finite index setI

and closed termsαipi in our extension of BCCS with con-
stants. We have{αi | i∈ I} = I(p) ⊆ Iτ (p) ⊆ Iτ (q), so
for everyi ∈ I there is a termqi such thatq ⇒

αi→ qi. Let
q′ := q +

∑
i∈I αiqi. Applying Lemma 3 once for every

i ∈ I we obtainq ≡ q′. Now I(p) ⊆ I(q), so Lemma 2
yieldsp + q′ ≡ q′, which impliesp + q ≡ q. �

8. Applications (continued)

Adding divergence. In [10] a special constantΩ de-
noting divergenceis considered, and the three ground-
complete axiomatisations of the preorders mentioned in
Section 6 extend to the presence of divergence by means
of the extra axiom

Ω 4 x. (Ω)

AlthoughΩ is defined in terms of a convergence predicate,
in all three testing preorders it is equivalent to a process
engaging in an infiniteτ -loop only. We could therefore
equivalently think ofΩ as the process generated by adding
the transition ruleΩ

τ
→ Ω to BCCS. This way we obtain

Ω ↔ τΩ, thereby fulfilling the soundness requirement of
Section 7. Note thatIτ (Ω) = Iτ (Ω) = {τ}.

Invoking Theorem 3 we obtain a ground-complete ax-
iomatisation for may-testing equivalence by adding the ex-
tra axioms

Ω + x ≈ x
α(Ω + z) + α(x + z) ≈ α(x + z)

to the ones mentioned in Section 6. The second one is deriv-
able from the first andαx+ αy ≈ α(x+ y). Using A4, the
first one is equivalent toΩ ≈ 0.

As the must preorder⊑ satisfiesΩ ⊑ a0 for some
a 6= τ , it is not weak initials preserving (in either direction)
and we may not apply Theorem 5, as we did in Section 6.
In order to obtain a sound and ground-complete axioma-
tisation of must-testing equivalence, we therefore resortto
Theorem 2. Applying the algorithm to the ground-complete
axiomatisation of the must preorder yields the extra axioms

Ω ≈ Ω + x (Ω1)
α(Ω + z) ≈ α(Ω + z) + α(x + z) (Ω2)

Theorem 2 requires us to explicitly check the soundness of
N21, E11 andΩ1. We may not use the soundness of N21
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and E11 obtained in Section 6, as it could have been inval-
idated by the addition ofΩ to the language. The soundness
of N21 follows from Lemma 2, applying the remark right
after Theorem 2. The soundness of E11 follows because it
is derivable from T2, which is derivable from N2 and N4.
The soundness ofΩ1 follows because it is derivable from
Ω, T2 and E1, as shown in [10].

E2 and T2 yieldΩ ≈ Ω+τΩ ≈ τΩ. With N1 the axiom
Ω2 follows from its instance whereα = τ , which follows
from E2 andτΩ = Ω. Hence a sound and ground-complete
axiomatisation of must-testing equivalence, also known as
the failures equivalence of CSP, consists of (N1), (N2∗),
(N3) andΩ1.

Applying the algorithm to the combined may and must
preorder again yields the extra axiomsΩ1 andΩ2, and us-
ing Theorem 6 we cannot assume soundness without estab-
lishing this separately. In the presence ofΩ the kernels of
the must preorder and the combined preorder do not coin-
cide, and this timeΩ1 turns out not to be sound. This is
an example where we cannot apply the algorithm to obtain
a sound and ground-compete axiomatisation. We conjec-
ture that such an axiomatisation exists nonetheless, namely
consisting of N1, N2∗, N3 and

Ω + τx ≈ Ω + x (D1)
Ω + αx ≈ Ω + α(Ω + x) (D3)

In [10] the axioms D1 and D3 have been derived from
N1–4, thereby establishing their soundness.

9. Concluding remark

In [8], de Frutos Escrig, Gregorio Rodrı́guez & Palomino
also present a simplification of the algorithm of [1] for a
large class of applications. The simplification consists in
skipping step (2) in favour of aconstrained similarity ax-
iom

(NS≡):N(x, y) ⇒ αx + α(x + y) ≈ α(x + y) for α∈Aτ

HereN(x, y) is a congruence relation on processes such
that N(p, q) is implied byI(p) = I(q). The constrained
similarity axiom is a conditional equation, but it can in sev-
eral cases be recast in equational terms. In the special case
whereN(p, q) holds iff I(p) = I(q), NS≡ is equivalent
to RS≡. They show that the simplified algorithm applies to
preorders⊑ satisfying

(NS): N(x, y) ⇒ x � x + y

and such thatp ⊑ q implies N(p, q). In caseN(p, q) ⇔
I(p) = I(q) we have that NS is equivalent to RS.

In applying this algorithm toτ -free preorders in the lin-
ear time – branching time spectrum, they use three different
constraintsN , whose ranges of application match those of

our Theorems 3, 4 and 5. Yet, we have not been able to
apply the simplified algorithm to weak preorders, due to
the fact that we would need an asymmetric precongruence
N , whereas symmetry is used crucially in the proofs in [8].
The same applies to the generalisations of the constrained
similarity approach investigated in [9].
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