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Abstract

Recently, Aceto, Fokkink & Iiidfsdbttir proposed an algo-
rithm to turn any sound and ground-complete axiomatisa-
tion of any preorder listed in the linear time — branching
time spectrum at least as coarse as the ready simulation
preorder, into a sound and ground-complete axiomatisa-
tion of the corresponding equivalence—its kernel. More-
over, if the former axiomatisation is-complete, so is the
latter. Subsequently, de Frutos Escrig, Gregorio Hgdez

& Palomino generalised this result, so that the algorithm
is applicable to any preorder at least as coarse as the
ready simulation preorder, provided it is initials presary.

The current paper shows that the same algorithm applies
equally well to weak semantics: the proviso of initials pre-
serving can be replaced by other conditions, such as weak
initials preserving and satisfying the secondaw. This
makes it applicable to all 87 preorders surveyed in “the
linear time — branching time spectrum II” that are at least
as coarse as the ready simulation preorder. We also extend
the scope of the algorithm to infinite processes, by adding
recursion constants. As an application of both extensions,
we provide a ground-complete axiomatisation of the CSP
failures equivalence for BCCS processes with divergence.

1. Introduction

The lack of consensus on what constitutes an appropriate
notion of observable behaviour for reactive systems has led
to a large number of proposals for behavioural equivalences

edu

alence, where the equivalence is the kernel of the corre-
sponding preorder, meaning that two processes are consid-
ered equivalent if, and only if, each is a refinement of the
other with respect to the preorder.

For equational reasoning about processes expressed in
some process algebra, an axiomatisation of the semantics
under consideration (both for the preorder and the equiv-
alence) is required. This axiomatisation shouldsbend
and preferably alsground-completgefor the process alge-
bra modulo the semantics at hand, meaning that all equiva-
lent closed terms can be equated. Ideally, such an axiomati-
sation is alsas-completemeaning that whenever all closed
instances of an equation can be derived from it, then so can
the equation itself. [3, 6, 14] offer positive and negatiee r
sults on the existence aof-complete, sound and ground-
complete finite axiomatisations for several concrete be-
havioural equivalences and preorders in the spectrum from
[13], over BCCSP. This process algebra contains only the
basic operators from CCS and CSP, but is sufficiently pow-
erful to express all finite synchronisation trees.

Such positive and negative axiomatisability results were
always proved separately for a preorder and the corre-
sponding equivalence. Aceto, Fokkink & Ingolfsdottif [1
showed that for BCCSP such double effort can be avoided,
by presenting an algorithm to turn a sound and ground-
complete axiomatisation of any preorder in the linear time
— branching time spectrum at least as coarse as the ready
simulation preorder, into a sound and ground-complete ax-
iomatisation of the corresponding equivalefddoreover,
if the former axiomatisation is-complete, so is the latter.

and preorders for concurrent processes. These have beenl'he requirement that the preorder is at least as coarse as

surveyed in thdinear time-branching time spectrynfor
concrete semantics [13], and for weak semantics that take
into account the internal action [11]. Typically, a given
semantical notion induces both a preorder and an equiv-

*This work is partially supported by the Dutch Bsik projectIBRS.

ready simulation is essential; in [5] it was shown that for
impossible futures semantics (which does not satisfy this

LAnother way to avoid the double effort is by deriving axioisations
of preorders from those of the corresponding equivalerithis line of
research is explored in [7].



requirement), there is a finite axiomatisation for the pre-
order, but not for the equivalence.

A serious drawback of the work reported in [1] is that
their algorithm requires several properties to hold for the
preorders to which it is applied, which have to be checked
for each preorder separately. Especially their variabfe ca
cellation property is usually rather hard to prove, see [2].
Subsequently, de Frutos Escrig, Gregorio Rodriguez &
Palomino [8, 9] improved upon this result, so that the algo-
rithm is applicable not only to those preorders specifically
mentioned in “the linear time — branching time spectrum”

ClosedBCCS terms, ranged over by, ¢, r, represent fi-
nite process behaviours, whedeloes not exhibit any be-
haviour,p + ¢ offers a choice between the behaviour of
andq, andap executes action to transform intg. This in-
tuition is captured by the transition rules below. They give
rise toA,-labelled transitions between closed BCCS terms.

@
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We assume a countably infinite 3ébf variablesw, x, y, z
denote elements of’. Open BCCS terms, denoted by

butto any preorder at least as coarse as the ready simulation, ,, may contain variables frof. A (closed) substi-

preorder, provided it ifnitials preserving meaning that a
preorder relationy C ¢) implies inclusion of initial action
sets ((p) C I(q)). This condition is needed to guarantee
soundness of the generated axiomatisation.

The current paper stems from an effort to apply the algo-
rithm to weak semantics, which take into account internal
activity 7. The results in [8, 9] do not suffice in this setting,

because weak semantics tend to violate the initials preserv
ing condition. So a new round of generalisation is needed.

To this end, we show that in the setting of BCCS (BCCSP
extended withr), the algorithm originally proposed in [1]
applies equally well to weak semantics; the proviso of ini-

tials preserving can be replaced by other conditions. We

give three sufficient conditions on the preorderand its
corresponding equivalence: either (1)p = 7p for all
closed termg; or (2)p = 7p for all p with I(p) # 0, and
p C g with I(p) # 0 impliesI(q) #0;or(3)rp=71p+p
for all closed term®, andC is weakinitials preserving.

This makes the algorithm applicable to all 87 preorders
surveyed in “the linear time — branching time spectrum II”
[11] that are coarser than the (strong) ready simulation pre

tution, typically denoted by, maps variables i/ to
(closed) terms. For open term@&ndu, and a preorde
(or equivalence=) on closed terms, we defineC w (or
t = u)if o(t) C o(u) (resp.o(t) = o(u)) for all closed
substitutions. A preordelC is called gprecongruencéor
BCCS) ifp C g andp’ C ¢’ implies thatp + p' C ¢ + ¢’
andap C aq for o € A,. Thekernelof a preordeC is
cCnCch

An axiomatisationis a collection of equations ~ u
or of inequationg < w. The (in)equations in an axioma-
tisation ' are referred to aaxioms If F is an equational
axiomatisation, we writdv - t ~ wu if the equationt ~ u
is derivable from the axioms i using the rules of equa-
tional logic (reflexivity, symmetry, transitivity, subgition,
and closure under BCCS contexts). For the derivation of an
inequationt < u from an inequational axiomatisatia,
denoted byF F t < u, the rule for symmetry is omitted.
We will also allow equations ~ w in inequational axioma-
tisations, as an abbreviation& v andu < t.

An axiomatisation” is soundmodulo a precongruence
C (or congruences) if for all termst, u, fromE -t 5 u

order. That is, each of these preorders satisfies either the (or £ - ¢ ~ v) it follows thatt T w (or t = w). E is

original initials preserving condition from [8, 9], or oné o
our three new conditions.
Moreover, we extend the scope of the algorithmirto

finite processes, by adding recursion constants to BCCS.
As an application of both extensions, we provide a ground-
complete axiomatisation of the CSP failures equivalence,

also known as must-testing equivalence, for BCCS pro-
cesses with divergence.

2. Preliminaries

BCCS is a basic process algebra for expressing finite pro-

cess behaviour. Its signature consists of the congtathie
binary operator+ _, and unary prefix operators anda._,
whereq is taken from a nonempty seit of visible actions
called thealphabet We assume ¢ A, T being thehidden
action and writeA, for AU {7}, ranged over by, .

teo=0]at|t+t]|x

ground-completdor C (or =) if for all closed termsp, ¢,
pEgqg(orp=gq)implieskEFp=<q(orEF p=q). And
E is w-completef for all termst, uw with E + o(t) < o(u)
(or E + o(t) = o(u)) for all closed substitutions, we
haveE +t g u (or E Ft = u).

Bisimilarity is the largest equivalence relatien such
thatp < ¢ andp = p’ implies3¢’ : ¢ = ¢ andp’ < ¢. It
is completely axiomatised by the following axioms:

T+y~y+o (A1)

(@+y)+zmat(yt+z) (A2

rt+rrx (A3)

x4+ 0~z (A4)
Summatiord_, ., i denotes; +- - -+t,,, where sum-

mation over the empty set denotesinary choice +_and
summation bind weaker tham_. For each closed BCCS
term p there exists a finite sefta;p; | ¢ € I} of closed
terms such thap < >, ; a;p; and hence Al-4 p =~
Ziel a;p;. Thea;p; are called thsummandsf p.



We writep = q if there is a (possibly empty) sequence
of r-transitionsp — --- 5 ¢; furthermorep = denotes
that there is a terng with p = ¢, and likewisep =
denotes that there are a terms with p = ¢ = r.

Definition 1 (Initial actions) For any closed termp, the
setI(p) of strongly initial actionsis I(p) = {a € A, |
p =1}, whereas the sef, (p) of weakly initial actionsis
Z.(p) ={a € A, | p=>).

A preorderC is (strong) initials preservingf p C ¢
impliesI(p) C I(q) for all p andg; it is weak initials pre-
servingif p C ¢ impliesZ,(p) C Z.(q). With Z(p) we
denoteZ-(p) N A, the weakly initialvisible actions ofp.

3. The algorithm for producing equational ax-
iomatisations

In Aceto, Fokkink & Ingolfsdottir [1] an algorithm is pre-

In [1] the correctness of this algorithm was shown for all
precongruences listed in the linear time — branching time
spectrum of [13] that are included between trace inclusion
and the ready simulation preorder. The proof contained a
few arguments that had to be checked for each of these pre-
orders separately. Subsequently, in de Frutos Escrig, Gre-
gorio & Palomino [8] the following more general result was
obtained:

Theorem 1 Let C be an initials preserving precongruence
that contains the ready simulation preordeys, and letfF

be a sound and ground-complete axiomatisatidn.dfhen
A(E) is a sound and ground-complete axiomatisation of
the kernel ofC. Moreover, if £ is w-complete, then so is
A(E).

As all preorders in the linear time — branching time spec-
trum of [13] between trace inclusion and ready simulation

sented which takes as input a sound and ground-complete 4ye injtials preserving, the above theorem strengthens the

inequational axiomatisatiohl for BCCS modulo a precon-
gruence in the linear time — branching time spectrum that

contains the ready simulation preorder, and generates as

output an equational axiomatisatiot{ E') which is sound
and ground-complete for BCCS modulo the corresponding
congruence. Moreover, if the original axiomatisatibris
w-complete, so is the resulting axiomatisation. The axioma-
tisation.A(F) generated by the algorithm frofi contains

the axioms A1-4 as well as the axioms:

(RS2): a(Bz + 2) + Bz + By + 2) = afa + Py + z)

for o, 3 € A, that are valid in ready simulation seman-
tics, together with the following equations, for each inequ
tional axiomt < w in E:

Q) t + u =~ u; and

(2) a(t+z) + a(u+ x) = alu + z) (for eacha € A,
and some variable that does not occur it u).

Instead of explicitly adding the axioms R®ne can equiv-
alently add the axioms

(RS): Br < Bx + By forg € A,

to E prior to invoking steps (1) and (2) above. Moreover,
as observed in [8], the conversion frainto A(E) can be
factored into two steps:

e Given an ine(yational axiomatisatiohl, its BCCS-
context closurer is

EW{a(t+z) < a(u+z) | a € ANt X u € EYU{RS}
wherez is a variable not occurring ifv.

e NoWA(E) = {t+tu~u|t<uc E}U(AL-4).

result of [1].

4. Correctness proof of the algorithm

Below we recreate the proof of Theorem 1. Lemma 1 and
Proposition 1 constitute the completeness argument, and
are taken directly from [8]. However, the proofs below are
significantly simpler—in the case of Lemma 1 employing
ideas from the completeness proof in [1]. The essence of
Lemma 2 and its proof come from [8] as well; this is the
soundness argument. Our rewording of Lemma 2 allows it
to be reused in Sections 5 and 7.

Lemma 1 Let F be an inequational axiomatisation. Then
foranyt < u € E and any context|-] we haveA(E) +
C(t) + C(u) =~ C(u).

Proof: By structural induction on the contegf:].

In case of the trivial contex@[-] = - we have to show
A(E) F t + u = u, which follows immediately from step
(1) in the construction ofA(E).

For a contexty( - + v) we have to showA(E) + a(t +
v) + a(u + v) ~ a(u + v), which follows from step (2)
in the construction ofA(E), substituting the term for the
variablez.

Now let the result be obtained for a conté@Xt] and let
C[-] be of the formD]-] + v, wherev is an arbitrary term,
possibly0. We have to show thatl(E) - D(t) + v +
D(u) + v = D(u) + v. This follows immediately from the
induction hypothesis.

Finally, let the result be obtained for a contgf?[-] and
letC[-] be of the formn(3D][-] 4+ v). We have to obtain

A(E) F a(8D(t) +v) + a(fD(u) +v) = a(6D(u) + v).



By the induction hypothesis we hav&(F) + 8D(t) +
8D(u) = D(u), so it suffices to obtain

AE)F a(BD(t) +v) + a(BD(t) + BD(u) + v)
~ a(pfD(t) + fD(u) + v).

This is an instance of the axiom RS O

Proposition 1 Let £ be an inequational axiomatisation.
ThenwheneveFE F ¢t < uwe also haved(E) - t+u ~ u.

Proof: If £ + t < u then there is a chain of terms
to,...,tn, for n > 0 with tg = ¢ andt¢,, = u such that
for 0 < i < n the inequationt; < t; 41 is provable from
E by one application of an axiom. We now prove the claim
by induction onn. The casen = 0 is an instance of axiom
A3, and the case = 1 is an immediate consequence of
Lemma 1, by applying substitution.

Now for the general case, lebet; for someld < i < n.
By induction we haved(E) + t + v ~ v and A(E) +
v 4+ u ~ u. Applying once again A3 this yieldgl(E)
tturt+vt+u=v+u~u.

~
~

Lemma 2 LetLC be a precongruence containing;s and
= be its kernel. Lep, ¢ be closed terms with C ¢ and
I(p) € I(q). Thenp+q=gq.

Proof: Asp C ¢ andC is a precongruence for choice, we
havep + ¢ C g+ q C gq. Toshow thayy C p + ¢, letp &
Dicr a;p; f'indq = > ie s Big;- Itis well known [13] that

p < gimpliesi(p) = I(g) as well app Crs ¢ and hence

p C ¢. Writing p|s for Zai:ﬁaipi, the collection of3-
summands op, and likewisey|s = Zﬁj:ﬁ_ﬁjqj, we have
P ger(p Plsandg < 350 ) als- Using thatl (p) ©
1(q), and thatC is a precongruence for the choice operator
+, it suffices to show that|s T p|g + ¢|s forall 5 € A;.

results generalise smoothly to BCCS by treatirjgst like
any visible action fromA. Preorders or equivalences that
do so are calledtrong The main purpose of the present
paper is to apply the same ideasweakpreorders: those
that in some way abstract from internal activity, by tregtin
7 differently from visible actions.

When reading Theorem 1 in the context of weak pro-
cess semantics, it helps to remember thag is thestrong
ready simulation preorder, and “initials preserving” rsfe
to preservation of thetronglyinitial actions. Theorem 1
directly applies to the rooted variants of thesimulation
surveyed in [11], for these preorders are coarser than the
strong ready simulation preorder and strong initials pre-
serving. However, most weak semantics are not strong ini-
tials preserving (for instance, typicaltlyr < « is sound),
and consequently Theorem 1 fails to apply to them.

The precondition of being initials preserving is in fact
nowhere used in the completeness proofin [8], or its recre-
ation in Section 4. Hence, this condition applies to the
soundness claim only. Therefore, in order to apply the algo-
rithm to weak semantics, all we need is to find another way
of guaranteeing the soundness of the generated axioms.

Given that we deal with preorders containing the ready
simulation preorder, the axiom RSwill always be sound.
Moreover, the axioms generated by step (2) in the construc-
tion of A(E) are guaranteed to be sound by Lemma 2,
for we havea(t + =) C a(u + x) and I(a(t + x))
I(a(u + z)) = {a}. One way to guarantee soundness of
the remaining axioms, is to check this for each of them ex-

plicitly:

Theorem 2 Let C be a precongruence that contains the
ready simulation preordergg, and letE be a sound and
ground-complete axiomatisation &f, such that for each

This is an immediate consequence of the axiom RS, which axiomt < u in E the lawt + v ~ u is sound as well. Then

is sound forC ps and hence foE. O

Proof of Theorem 1: As C is a precongruence contained in
the ready simulation preorder, all inequations in the BCCS-
context closurel of £ are sound w.r.tC. Considering

A(E) is a sound and ground-complete axiomatisation of
the kernel of=. Moreover, if £ is w-complete, then so is
A(E). O

Note that for the axioms stemming from < « with

that the soundness of an (in)equation is tantamount to the I(o(t)) C I(o(u)) for any closed substitutiom, no check
soundness of its closed substitution instances, the sound-is needed, by Lemma 2. Next we present three other condi-

ness ofA(E) now follows from Lemma 2.
Ground-completeness and-completeness follow di-
rectly from Proposition 1: If = v, thatist C » andu C ¢,
we havel -t < wandE + u < t by the completeness of
E. So Proposition 1 yields\(E) Ft =~ t + u =~ u. O

5. Applying the algorithm to weak semantics
The results of [1, 8] were obtained for the language BCCSP,

containing the basic operators of CCS and CSP. This lan-

tions that guarantee soundness4f).

Theorem 3 Let C be a precongruence that contains the
strong ready simulation preordergg, such thapp = 7p,
with = the kernel ofZ, for all processes. Let E be a sound
and ground-complete axiomatisation©f Then A(E) is

a sound and ground-complete axiomatisatior=oMore-
over, if E' is w-complete, then so igl(E).

Proof: It suffices to show that = ¢ impliesp+ ¢ = ¢. So

guage is obtained from BCCS as presented above by omit- assumey C q. Letp’ := mp andq’ := 7¢. By assumption

ting the unary operatar. Naturally, as shown above, these

we havep = p’ andgq = ¢/, and therefor@’ C ¢'. As



I1(p") = I(¢') = {7}, Lemma 2 yield®’ + ¢’ = ¢/, which
impliesp + ¢ = q. 0

Theorem 4 Let C be a precongruence that contains the
strong ready simulation preorderggs, such thatp = 7p,
with = the kernel ofZ, for all processep with I(p) # 0,

and such that C g implies that ifI(p) # 0 thenI(q) # 0.

Let E be a sound and ground-complete axiomatisation of
C. ThenA(E) is a sound and ground-complete axiomati-
sation of=. Moreover, ifE isw-complete, then so id(E).

Proof: Again it suffices to show that = ¢ impliesp+q¢ =

q. Soassume C q. If I(p) = 0 then trivially I(p) C I(q)
and the result follows from Lemma 2. Otherwise, we have
p = mp andq = 7q and the result follows as in the previous
proof. O

Let T2 be the second-law of CCS [15]:

T XTI + .

Theorem 5 Let C be a weak initials preserving precon-
gruence that contains the strong ready simulation preorder
Crs and satisfies T2, and lgf be a sound and ground-
complete axiomatisation éf. Then A(E) is a sound and
ground-complete axiomatisation of the kernemfMore-
over, if £ isw-complete, then so igl(E).

Proof: A straightforward induction on the length of a
pathp = p’, using the soundness of T2, yields that if
p=p 5’ thenp = p + ap”’, where= is the kernel

of C. Hence for any closed termthere is a closed term
p’ such thatp = p’ andZ.(p) = I(p’). Using this, the
soundness claim follows from Lemma 2, reasoning as in
the proof of Theorem 3. O

Note thatZ, (p) = Z(p) U {7 | p =} (see Definition 1).
Thus, the precondition of Theorem 5 is thaf- ¢ implies
thatZ(p) C Z(q) and that ifp = theng .

So far, Theorem 2 applies to the widest selection of pre-

and RS constitute a sound and ground-complete axioma-
tisation of strong ready simulation equivalence, checking
the soundness of these axioms is naturally done by check-
ing that the kernel ofZ contains strong ready simulation
equivalence. As we shall illustrate in the next sectiors thi

is a meaningful improvement over the precondition of The-
orem 2 thatC contains the strong ready simulation pre-
order. The price to be paid for this improvement is that also
the soundness of the axioms generated by step (2) of the
algorithm has to be checked separately. This is because the
proof of Lemma 2 uses that contains the strong ready
simulation preorder.

In [11] 155 weak preorders are reviewed. Most of them
fail to be congruences for the choice operator of BCCS.
Axiomatisations are typically proposed for tbengruence
closuresof these preorders: the coarsest congruence con-
tained in them. All preorderg in [11] and their con-
gruence closures satisfy the property thap it ¢ then
Z(p) C I(q)- 2

Of the 155 preorders surveyed in [11], 87 contain the
strong ready simulation preorder. We can partition this col
lection into four classes.

6 preorders are variants of trace inclusion and the sim-
ulation preorder. They are precongruences for BCCS and
satisfy the axiomr ~ 2. Consequently, they fall in the
scope of Theorem 3.

16 preorders are variants of completed trace inclusion
or the completed simulation preorder. Each of their con-
gruence closures has the property that = ¢ implies that
if I(p) # 0 thenI(q) # (. Moreover, the kernels of
C have the property that = 7p for all processe with
I(p) # (. Consequently, these congruence closures fall in
the scope of Theorem 4.

22 are variants of the-simulation or they-ready sim-
ulation. Their congruence closures are strong initials pre
serving, and hence fall under the scope of Theorem 1.

The congruence closurégs of the remaining 43 pre-

orders, butit comes with the need to check the soundness of oders satisfy the property that— ¢ implies that ifp —
some of the generated axioms separately. We can go eveninen, 7, and henceZ, (p) C I_T(q)- These precongru-

further in this direction by observing that also the predend
tion of containing the ready simulation preorder is not used
anywhere in the completeness proof:

Theorem 6 Let C be any precongruence, and |Et be
a ground-complete axiomatisation of Then A(E) is a
ground-complete axiomatisation of the kerneafMore-
over, if £ isw-complete, then so igl(F). O

Note that this theorem makes no statement on the sound-
ness of A(F). Hence an application of this theorem to
achieve a sound and ground-complete axiomatisation in-
volves checking the soundness of all axioms generated by
both step (1) and step (2) of the algorithm explicitly, aslwel
as the soundness of the axioms Al1-4 and-R&s Al1-4

ences therefore fall in the scope of Theorem 5.

Thus, the algorithm of [1] applies to all congruence clo-
sures of preorders in [11] coarser than the ready simulation
preorder.

2In fact, most preorders in [11] are actually pairs of preesdas for
every semantics mayand amustpreorder are proposed. Inspired by [10],
there are two differences between the may and the must gmso@ne is
a different treatment adivergence-this has no effect when restricting at-
tention to BCCS processes. The other is that the preordersrianted in
opposite directions. This entire paper, as well as [1, 8, been written
from the perspective of the may preorders. When dealing mitist pre-
ordersC we have that ifp C ¢ thenZ(p) O Z(q). Moreover, none of
these preorders contaifsgs—at best their inverses have this property.
Consequently, for preorders oriented in the must directlmmalgorithm is
to be applied in the reverse direction, where an inequdtaxiam¢ < u
gives rise to equational axioms likex ¢t + .



6. Applications As RS is an instance of the last axiom above, that last
axioms follows from the second, and the third from A3,

In De Nicola & Hennessy [10] three testing preorders are this axiomatisation can be simplified to A1-4 together with

defined, and for each of them a sound and ground-complete
axiomatisation over BCCS is provided. In fact the axioma-
tisations apply to all of CCS, enriched with a special con-
stant(2, and the semantics of processes involves, besides

A,-labelled transitions, aonvergencqa.redicate. Hovyeyer, The must preorder. On BCCS, the must preorder of [10]

the completeness proofs remain valid when restricting at- coincides with the failures preorder of CSP [4]. Its inverse
tention to the sublanguageABCCS, and there the conver- contains the ready simulation preorder and is weak initials
gence predicate plays no role (for all processes are con- preserving. Hence we can apply Theorem 5 to obtain a

TR X
ar + oy ~ a(r +y)

vergent). Theeombined may- and must-testing preordker
axiomatised by the laws A1-4 together with the axioms

ar + ay =~ a(rte + 1Y) (N1)
x4y <zt y) (N2)

az + 7(ay + 2) = T(az + ay + 2) (N3)
T KT (N4)

wherea ranges over... Themust preordethas the addi-
tional axiom

TEH+TY T (E1)
and themay preordethas the additional axiom
T T+ TY (F1).

Note that T2 follows from N2 and N4. We will now ap-
ply the algorithm to obtain sound and ground-complete ax-
iomatisations of the three associated testing equivatence
Beforehand, we mention a trivial simplification in ap-
plying the algorithm: if the inequational axiomatisation
features an equation ~ w, formally speaking this is an
abbreviation for the two axioms < v andu < ¢. Thus,
step (1) of the algorithm generates the equattons: ~ u
andu + t =~ t. Together, these are equivalent to the orig-
inal equationt ~ w. Moreover, in the presence of= u
the two axioms generated by step (2) of the algorithm are
redundant. Thus, we can simplify the algorithm by leaving
equations untouched.

The may preorder. The may preorder of [10] coincides
with weak trace inclusion, which is coarser than the ready
simulation preorder. As remarked in [10], it is not hard to
see that the axiomatisation above can be simplified to A1-4
together with

TR T
az + ay = a(z + y)
rxT+y

Applying Theorem 3 yields a sound and ground-complete
axiomatisation of may-testing equivalence, which coiesid
with weak trace equivalence. It consists of A1-4 -R&hd

TR T
az + ay = a(z + y)
r+r+y~rr—+y
alz+z2)+alz+ty+z)=alz+y+2)

sound and ground-complete axiomatisation of must-testing
equivalence. First we note that N4 is a simple consequence
of E1 and thus can be omitted. Now Theorem 5 yields the

axioms Al1-4, RS and

azr + ay =~ otz + 1Y) (N1)
r+Ty~x+Ty+7(r+y) (N2;)
a(z+Ty+2) = alz+Ty+2) + al(t(z+y)+z) (N2)
ar +1(ay + 2) = 7(ax + ay + z) (N3)
T+ TY R TT+TY + 2 (ELy)
alte+ty+z)=a(te+1y+2)+alzr+2) (Elp)

This axiomatisation can be simplified to A1—4 together
with

ar + ay =~ af(tr + 1Y) (N1)
r+T1y =Ty +7( +Y) (N2%)
ax 4+ 7(ay + 2) = T(ax + ay + 2) (N3)

Namely, EL implies T2 which allows us to reformulate
N2; as NZ. The latter axiom implies T2 (by taking= x)
and hence also N2and EJ,. It remains to derive N2 E2,
and RS.. In all three cases, by N1 it suffices to derive the
instance wherex = 7. Substitutingry for y in N2* and
applyingrTy ~ Ty (which follows from N1) and T2 gives
T(z + T7y) =~ = + Ty. Now it is straightforward to derive
N27, EZ} and RS..

This axiomatisation has been mentioned in [12], just
like the axiomatisation of weak trace equivalence men-
tioned above. However, we have not found an actual proof
of its ground-completeness (or the ground-completeness of
any other axiomatisation of must-testing equivalence over
BCCS) in the literature.

~
~

The combined may and must preorder. The combined
may- and must-testing preorder is the intersection of the
may- and the must-testing preorders. It is known that on
BCCS the combined preorder has the same kernel as the
must preorder, so that we can reuse the axiomatisation
above. Nevertheless, obtaining a sound and complete ax-
iomatisation of this kernel by means of the algorithm pro-
vides a useful illustration of some of the issues that play
a rble in this process. On BCCS, the combined preorder
is contained in weak trace equivalence, and hence contains



neither the strong ready simulation preorder, nor its isger
Therefore, Theorems 2-5 are not applicable to it. However,
its kernel does contain strong ready simulation equivaenc
and with help of Theorem 6 we can obtain a sound and
ground-complete axiomatisation of it. The algorithm ygeld
the axioms A1-4, RS and

ar + oy ~ a(te + 1Y) (N1)
r+ry~zr+T1y+7(x+Y) (N2;)
alz+Ty+2z) = alz+7y+2) + al(t(z+y)+2z) (N2y)
az + 7(ay + 2) = 7(az + ay + 2) (N3)
TR T+ T (N4,)
alte+z) = alte+z2)+ a(z+ 2) (N43)

The soundness of these axioms follows from the fact that
they are derivable both from the axioms for the may pre-
order and from the axioms for the must preorder.

As expected, the axiomatisation above is easily seen to
be equivalent to the axiomatisation of must-testing equiva
lence.

7. A generalisation to infinite processes

The results in [1, 8] were obtained for finite processes only:

processes that can be expressed in BCCSP. Hereby we ex-

tend these results to infinite processes that can be expgresse
by adding constants to BCCS. This is an easy way of deal-
ing with recursion—an alternative to introducing recunsio
as a syntactic construct and requiring congruence proper-
ties for it. An infinite process can be defined by introduc-
ing one or more constants' together with axioms like

C =~ abC'; in this example represents a process that per-
forms an infinite alternating sequencencdindb actions.

In order to obtain completeness of the axiomatisations
A(E), any extension of BCCS with constants will do.
Lemma 1, Proposition 1 and Theorem 6 remain valid in
this setting. The only place where structural induction is
used is in the proof of Lemma 1, and there constants do not
bother us, as they cannot occur on a path from the root of a
context, seen as a parse tree, to the hole.

In order to obtain soundness, we furthermore assume
that for any constant’ in the language there is a closed
termy ., a;p; in our extension of BCCS with constants—
so [ is finite—such that” < Ziel a;p;. It then follows
that any closed term is bisimulation equivalent to a closed
term of the formziel a;p;. With this assumption, all our
results generalise to BCCS augmented with constants.

The proof of Lemma 2 goes through unaltered. The only
proof that needs to be adapted is the one of Theorem 5.

Lemma 3 Let = be a congruence containingthat satis-
fies T2. lfp = p’ = p” thenp = p + ap”.

Proof: By induction on the length of the path=- p'.

In the base casp = p' < >, aip;, and by definition

of & there must be ah € I with a; = o andp; < p”. It
follows thatp < p + ap” and hence = p + ap”.

Now assume = p’ =% p”. By inductionp’ = p’+ap”.
T2 yieldsp = p + ap”. O

Proof of Theorem 5: Supposep C ¢. We have to show
thatp + ¢ = ¢, where= is the kernel ofC. By the as-
sumption abovep < 3. ; a;p; for a finite index set/
and closed terma;p; in our extension of BCCS with con-
stants. We havéw,; | i€ I} = I(p) € Z.(p) C Z-(q), SO
for everyi e I there is a termy; such thaty == ¢,. Let
q' = q+ > ;e igi- Applying Lemma 3 once for every
i € I we obtaing = ¢’. Now I(p) C I(q), so Lemma 2
yieldsp + ¢’ = ¢/, which impliesp + ¢ = q. O

8. Applications (continued)

Adding divergence. In [10] a special constanf? de-
noting divergenceis considered, and the three ground-
complete axiomatisations of the preorders mentioned in
Section 6 extend to the presence of divergence by means
of the extra axiom

Q<. (Q)
Although(2 is defined in terms of a convergence predicate,
in all three testing preorders it is equivalent to a process
engaging in an infiniter-loop only. We could therefore
equivalently think of2 as the process generated by adding
the transition rule? = Q to BCCS. This way we obtain
Q < 70, thereby fulfilling the soundness requirement of
Section 7. Note thak- (2) = Z.(Q) = {7}.

Invoking Theorem 3 we obtain a ground-complete ax-
iomatisation for may-testing equivalence by adding the ex-
tra axioms

Q+z~z
a4+ 2)+alz+ 2) = alz + 2)

to the ones mentioned in Section 6. The second one is deriv-
able from the first andx 4+ ay = a(z + y). Using A4, the
first one is equivalent t@ ~ 0.

As the must preordeE satisfies2? T a0 for some
a # 7, itis not weak initials preserving (in either direction)
and we may not apply Theorem 5, as we did in Section 6.
In order to obtain a sound and ground-complete axioma-
tisation of must-testing equivalence, we therefore retsort
Theorem 2. Applying the algorithm to the ground-complete
axiomatisation of the must preorder yields the extra axioms

(1)
(£22)

Theorem 2 requires us to explicitly check the soundness of
N2;, El; andQ;. We may not use the soundness of;N2

Q= Q+z
a(Q+2)=a(Q+2)+alz + 2)



and EJ obtained in Section 6, as it could have been inval-
idated by the addition df to the language. The soundness
of N2; follows from Lemma 2, applying the remark right
after Theorem 2. The soundness of; Edllows because it

is derivable from T2, which is derivable from N2 and N4.

our Theorems 3, 4 and 5. Yet, we have not been able to
apply the simplified algorithm to weak preorders, due to
the fact that we would need an asymmetric precongruence
N, whereas symmetry is used crucially in the proofs in [8].
The same applies to the generalisations of the constrained

The soundness db; follows because it is derivable from
Q, T2 and E1, as shown in [10].

E2 and T2 yield) ~ Q+ 7Q ~ 7Q. With N1 the axiom
Q, follows from its instance where = 7, which follows
from E2 andr2 = Q. Hence a sound and ground-complete
axiomatisation of must-testing equivalence, also known as
the failures equivalence of CSP, consists of (N1), (N2
(N3) and<?; .

Applying the algorithm to the combined may and must
preorder again yields the extra axiofds and(2-, and us-
ing Theorem 6 we cannot assume soundness without estab-
lishing this separately. In the presencelbthe kernels of
the must preorder and the combined preorder do not coin-
cide, and this time?; turns out not to be sound. This is
an example where we cannot apply the algorithm to obtain
a sound and ground-compete axiomatisation. We conjec-
ture that such an axiomatisation exists nonetheless, yamel
consisting of N1, N2, N3 and

Q+12~Q+2
Q+arx~Q+a(Q+2x)

(D1)
(D3)

In [10] the axioms D1 and D3 have been derived from
N1-4, thereby establishing their soundness.

9. Concluding remark

In [8], de Frutos Escrig, Gregorio Rodriguez & Palomino
also present a simplification of the algorithm of [1] for a
large class of applications. The simplification consists in
skipping step (2) in favour of aonstrained similarity ax-
iom

(NS2):N(z,y) = ax + alz +y) ® a(z + y) forac A,

Here N (z,y) is a congruence relation on processes such
that N (p, q) is implied by I(p) = I(q). The constrained
similarity axiom is a conditional equation, but it can in sev
eral cases be recast in equational terms. In the special case
where N (p, ¢) holds iff I(p) = I(g), NSz is equivalent
to RS-. They show that the simplified algorithm applies to
preorderg_ satisfying
(NS): N(z,y) =z =<z+y
and such thap = ¢ implies N(p, q). In caseN(p,q) <
I(p) = I(q) we have that NS is equivalent to RS.

In applying this algorithm te-free preorders in the lin-
ear time — branching time spectrum, they use three different
constraintsV, whose ranges of application match those of

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

similarity approach investigated in [9].
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