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The hierarchical hypercube network, which was proposed as an alternative to the
hypercube, is suitable for building a large-scale multiprocessor system. A bipartite graph
G = (V , E) is bipancyclic if it contains cycles of all even lengths ranging from 4 to |V |. In
this paper, we show that the hierarchical hypercube network is bipancyclic.
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1. Introduction

In recent decades, many interconnection network topol-
ogies have been proposed in the literature (see [1,3,6])
for the purpose of connecting hundreds or thousands of
processors together. Among them, the hypercube network
possesses many attractive properties such as regularity,
symmetry, logarithmic diameter, strong connectivity, recur-
sive construction, partition ability, and relatively low link
complexity [6].

The hierarchical hypercube network [8–10], which was
proposed as an alternative to the hypercube network, is
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feasible to be implemented with thousands of or more
processors, while retaining a good performance. It has a
two-level structure; the hypercube networks are taken as
basic modules and connected to form a larger hypercube
network, where each basic module is regarded as one pro-
cessor of the larger hypercube network. It bears the ad-
vantages of a hierarchical structure; thus, it has a smaller
diameter, degree, link density and fanout than a compa-
rable hypercube network. It also inherits some favorable
properties, e.g., regularity, symmetry and logarithmic di-
ameter, from the hypercube network [10].

Linear arrays and rings are two fundamental networks
that are suitable for parallel and distributed computation.
Many simple and efficient algorithms with low communi-
cation costs were designed on linear arrays and rings for
solving a variety of algebraic and graph problems (see [6]).
The hierarchical hypercube is known to be bipartite [10].
In this paper, we show that the hierarchical hypercube
is bipancyclic. A bipartite graph G = (V , E) is bipancyclic
if it contains cycles of all even lengths ranging from 4
to |V |. Consequently, previous algorithms on linear arrays
and rings can be executed on the hierarchical hypercube
network as well. In the next section, the topology of the
hierarchical hypercube network is first reviewed.
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Fig. 1. Topology of a 6-HHC network.
2. Hierarchical hypercube networks

It is convenient to represent a network with a graph
G , where each vertex (edge) of G uniquely represents a
processor (link) of the network. By Q k we denote a k-di-
mensional hypercube network, where k � 1. The vertex set
of Q k is {xk−1xk−2 . . . x0: xi = 0 or 1 for all 0 � i � k − 1},
and the edge set of Q k is {(xk−1xk−2 . . . x0, xk−1 . . . xr+1

xr xr−1 . . . x0): 0 � r � k − 1}, where xr is the complement
of xr . There are 2k processors contained in Q k . Through-
out this paper, we use network and graph, processor and
vertex, link and edge, interchangeably.

Let n = 2m + m, where m � 1 is an integer. An n-di-
mensional hierarchical hypercube network (abbreviated to
n-HHC network) can be obtained by replacing each ver-
tex, say P , of Q 2m with Q m , where each vertex of Q m is
uniquely connected to an adjacent vertex of P . Each vertex
of an n-HHC network can be identified with a two-tuple
(S, P ), where S = sn−m−1sn−m−2 . . . s0 is a binary sequence
of length n − m telling which Q m the vertex is located in
and P = pm−1 pm−2 . . . p0 is a binary sequence of length m
giving the address of the vertex in the located Q m .

For a binary sequence X = x|X |−1x|X |−2 . . . x0, we let
X (l) = x|X |−1 . . . xl . . . x0 and dec(X ) be the decimal value
of X , where 0 � l � |X | − 1 and |X | denotes the length
of X . The following is a formal definition of an n-HHC net-
work, in terms of graph theory.

Definition 1. The vertex set of an n-HHC network is
{(S, P ): S = sn−m−1sn−m−2 . . . s0 and P = pm−1 pm−2 . . . p0

are two binary sequences of lengths n − m and m, re-
spectively}, where n = 2m + m and m � 1. The vertex
adjacency of an n-HHC network is defined as follows:
(S, P ) is adjacent to (1) (S, P (l)) for all 0 � l � m − 1 and
(2) (S(dec(P )), P ).
There are a total of 22m × 2m = 22m+m = 2n vertices in
an n-HHC network. Edges defined by (1) are referred to
as internal edges, and those defined by (2) are referred to
as external edges. Each internal edge is contained in Q m ,
and each external edge connects two Q m ’s. Fig. 1 shows
the topology of a 6-HHC network (i.e., m = 2), where ver-
tices (0000,01), (0000,11) are connected by an internal
edge and vertices (0000,01), (0010,01) are connected by
an external edge.

An n-HHC network is regular of degree m + 1, and it
has a diameter of 2m+1 (see [10]). Besides, it is vertex-
symmetric. For each vertex A of an n-HHC network, we use
A S and A P to denote its S part and P part, respectively,
i.e., A = (A S , A P ). The following is a formal definition of
Gray codes [4], which will be used in the next section.

Definition 2. An m-bit Gray code, denoted by Gm , de-
fines an ordering among all 2m m-bit binary sequences
(codewords). Let G1 = (0,1), and for m > 1, define Gm =
(0Gm−1,1Gr

m−1), where Gr
m−1 is the reverse of Gm−1 and

0Gm−1 (1Gr
m−1) stands for prefixing each codeword of

Gm−1 (Gr
m−1) with 0 (1).

For example, we have G2 = (00,01,11,10) and G3 =
(000,001,011,010,110,111,101,100). It is easy to see that
every two adjacent codewords, including the first and the
last, of Gm differ in exactly one bit position.

3. Cycle embedding

In this section, we embed cycles of all possible lengths
into an n-HHC network. Since an n-HHC network is
bipartite, only cycles of even lengths ranging from 4
to 22m+m , can be embedded. For any two binary sequences
X = x|X |−1x|X |−2 . . . x0 and Y = y|Y |−1 y|Y |−2 . . . y0 of equal
length (i.e., |X | = |Y |), we let dH (X, Y ) denote the Ham-
ming distance between X and Y , which is equal to the
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Fig. 2. The ((0000,00), (0000,01))-augmented path.

number of different bits between X and Y . Throughout
this section, we assume n = 2m + m, where m � 1 is an in-
teger. Each Q m contained in an n-HHC network is referred
to as an embedded hypercube network (or an embedded Q m).
The following lemma was shown in [2].

Lemma 1. (See [2].) Suppose that X and Y are two distinct
vertices of Q m and dH (X, Y ) = d. When m > 1, there are
X–Y paths (i.e., paths from X to Y ) in Q m whose lengths are
d + 2,d + 4, . . . , c, where c = 2m − 1 if d is odd and c = 2m − 2
if d is even.

Suppose that A and B are two distinct vertices in an
n-HHC network. An A–B path will contain internal edges
interleaved with external edges provided it traverses more
than one embedded Q m . For example,

A = (00000000,000) (e)→ (00000001,000)

∗→(00000001,010) (e)→ (00000101,010)

∗→(00000101,000) (e)→ (00000100,000)

∗→(00000100,010) (e)→ (00000000,010) = B

shows an A–B path in an 11-HHC network that traverses
four embedded Q m ’s, where (e)→ denotes an external
edge and ∗→ denotes a shortest path in an embedded Q 3.
For the ease of discussion, we consider each path in an
embedded Q m a shortest path.

The sequence of the external edges contained in a path
is referred to as an external edge sequence (abbreviated to
EES) with respect to the path. For the example above, the
EES can be represented as (((00000000,000), (00000001,

000)), ((00000001,010), (00000101,010)), ((00000101,

000), (00000100,000)), ((00000100,010), (00000000,

010))). Further, according to the definition of external
edges, the EES can be uniquely determined by the P parts
of the external edges. Thus, its representation can be sim-
plified to (000,010,000,010). An EES corresponds to a
path in an n-HHC network, while the shortest paths in
the embedded Q m ’s are ignored.

Suppose that (A, B) is an internal edge in an n-HHC
network, where A S = B S . Let us consider an A–B path
whose EES is (A P , B P , A P , B P ). The path contains four ex-
ternal edges and three internal edges alternately. Since
it can be uniquely determined, it is referred to as the
(A, B)-augmented path. It passes through four embedded
Q m ’s whose S parts are I0 = A S = B S , I1 = I(dec(A P ))

0 ,

I2 = I(dec(B P ))
1 and I3 = I(dec(A P ))

2 , respectively. Notice that
I0, I1, I2 and I3 only differ in the (dec(A P ) + 1)th bit and
the (dec(B P )) + 1)th bit from the right. These four em-
bedded Q m ’s are referred to as augmented Q m ’s. The three
internal edges contained in the (A, B)-augmented path are
referred to as augmented internal edges.

For example, Fig. 2 shows the ((0000,00), (0000,01))-
augmented path in a 6-HHC network, where each circle
represents a Q 2 and the associated four-bit sequence is its
S part. The S parts of the four Q 2’s differ in the two right-
most bits. The three internal edges ((0001,00), (0001,01)),
((0011,01), (0011,00)) and ((0010,00), (0010,01)) are aug-
mented internal edges.

A path (cycle) in a graph that contains every vertex
exactly once is called a Hamiltonian path (Hamiltonian cy-
cle). Let Gm−1[i] denote the ith codeword in Gm−1 and
Gm−1[i]0 (Gm−1[i]1) stand for appending Gm−1[i] with
0 (1), where 1 � i � 2m−1. The following lemma holds as a
consequence of Gray codes.

Lemma 2. An embedded Q m contains a Hamiltonian cycle as
follows:

(
I, Gm−1[1]0) → (

I, Gm−1[1]1) → (
I, Gm−1[2]1)

→ (
I, Gm−1[2]0) → ·· ·

→ (
I, Gm−1[2m−1 − 1]1)

→ (
I, Gm−1[2m−1]1) → (

I, Gm−1[2m−1]0)

→ (
I, Gm−1[1]0)

,

where I is the S part of the Q m and → denotes an internal edge.

The following theorem presents our main result.

Theorem 1. An n-HHC network contains cycles of all even
lengths ranging from 4 to 2n, where n = 2m + m for some in-
teger m > 2.

Proof. We use Cl to denote a cycle of length l in an n-HHC
network, where 4 � l � 2n . First of all, we construct 2m−1 +
1 cycles whose lengths are f (1), f (2), . . . , f (2m−1 + 1), re-
spectively, where f (i) = 4i−1 × 2m for all 1 � i � 2m−1 + 1.
These cycles are denoted by C f (1), C f (2), . . . , C f (2m−1+1) .

C f (1) is constructed in the Q m with S part 02m
accord-

ing to Lemma 2. C f (2) is obtained from C f (1) as follows.
First, the edge ((02m

, Gm−1[1]0), (02m
, Gm−1[1]1)) of C f (1)

is replaced with the ((02m
, Gm−1[1]0), (02m

, Gm−1[1]1))-
augmented path. Notice that the three augmented internal
edges have the form ((∗, Gm−1[1]0), (∗, Gm−1[1]1)) (we
use ∗ to denote the S part of a Q m if it can be ig-
nored). A Hamiltonian cycle is established in each aug-
mented Q m (exclusive of the Q m with S part 02m

) accord-
ing to Lemma 2, and then the three augmented internal
edges are removed.

In general, for 2 � i � 2m−1, C f (i+1) can be obtained
from C f (i) as follows. There are a total of 4i−1 Q m ’s tra-
versed by C f (i) and each of them has an edge
((∗, Gm−1[i]0), (∗, Gm−1[i]1)) included in C f (i) . First, each
edge ((∗, Gm−1[i]0), (∗, Gm−1[i]1)) is replaced with the
((∗, Gm−1[i]0), (∗, Gm−1[i]1))-augmented path (thus, passes
through 4i Q m ’s). Then, in each new augmented Q m ,
a Hamiltonian cycle is established according to Lemma 2
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Table 1
Number of Q m ’s traversed by C f (i) , length of C f (i) , and edges (A, B) in
C f (i) to be replaced with (A, B)-augmented paths

Number of
Q m ’s traversed

Length (A, B)

1 40 2m ((∗, Gm−1[1]0), (∗, Gm−1[1]1))

2 41 4 × 2m ((∗, Gm−1[2]0), (∗, Gm−1[2]1))

.

.

.

.

.

.

.

.

.

.

.

.

i 4i−1 4i−1 × 2m ((∗, Gm−1[i]0), (∗, Gm−1[i]1))

.

.

.

.

.

.

.

.

.

.

.

.

2m−1 42m−1
42m−1 × 2m ((∗, Gm−1[2m−1]0), (∗, Gm−1[2m−1]1))

and the three augmented internal edges are removed. Ta-
ble 1 shows the number of Q m ’s traversed by C f (i) , the
length of C f (i) , and the edges (A, B) in C f (i) to be replaced
with (A, B)-augmented paths for constructing C f (i+1) .

Cycles of other lengths can be obtained by the aid of
Lemma 1, as elaborated below. By Lemma 1, cycles of
lengths 4,6, . . . ,2m − 2 can be obtained in a Q m . Cycles
of lengths ranging from 2m + 2 to 4 × 2m can be ob-
tained, while constructing C f (2) from C f (1) . Recall that
the edge ((∗, Gm−1[1]0), (∗, Gm−1[1]1)) of C f (1) was re-
placed with the ((∗, Gm−1[1]0), (∗, Gm−1[1]1))-augmented
path (refer to Fig. 2 for the example of m = 2). By
Lemma 1, each augmented internal edge can be expanded
to paths of lengths 3,5, . . . ,2m − 1. Besides, paths of
lengths 3,5, . . . ,2m − 1 can be also obtained between
(∗, Gm−1[1]0) and (∗, Gm−1[1]1) in the Q m that em-
beds C f (1) . Consequently, the desired cycles can be ob-
tained. In a similar way, for all 2 � i � 2m−1, cycles of
lengths ranging from 4i−1 × 2m + 2 to 4i × 2m can be ob-
tained by the aid of Lemma 1, while constructing C f (i+1)

from C f (i) .
Finally, it should be noted that the Q m ’s traversed by

C f (i) are all distinct. Let b2m−1b2m−2 . . .b0 denote the S
part of a Q m , where bk ∈ {0,1} for all 0 � k � 2m − 1,
and Si be the set of the S parts of those Q m ’s traversed
by C f (i) . We have Si = {b2m−1b2m−2 . . .b0: bdec(Gm−1[r]1)

bdec(Gm−1[r]0) ∈ {00,01,11,10} for all 1 � r � i − 1 and
b j = 0 for all j ∈ {0,1, . . . ,2m − 1} − {dec(Gm−1[r]0),

dec(Gm−1[r]1)): 1 � r � i − 1}. It is easy to see that
|Si | = 4i−1. For example, S2 = (02m−200,02m−201,02m−211,

02m−210) and S3 = (02m−40000,02m−40001,02m−40011,

02m−40010,02m−40100,02m−40101,02m−40111,02m−40110,
02m−41100,02m−41101,02m−41111,02m−41110,02m−41000,

02m−41001,02m−41011,02m−41010). �
4. Discussion and conclusion

In this paper, we showed that an n-dimensional hierar-
chical hypercube network is bipancyclic, where n = 2m +m
for some integer m > 2. To say more concretely, we showed
that it contains cycles of all even lengths ranging from 4
to 2n . When m = 1, the hierarchical hypercube network is
simply a cycle of length 8. When m = 2, the hierarchical
hypercube network is composed of 16 Q 2’s, and it con-
tains cycles of even lengths ranging from 4 to 64, exclusive
of length 6.

Finally, some further research problems are suggested.
The Hamiltonian-laceability of the hierarchical hypercube
network is still open. More specifically, is the hierarchi-
cal hypercube network Hamiltonian-laceable or strongly
Hamiltonian-laceable (see [5,7])? Besides, fault-tolerant
embedding on the hierarchical hypercube network was not
studied before. For example, how many link faults can the
hierarchical hypercube network tolerate, while retaining a
fault-free Hamiltonian cycle.
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