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Abstract

The Chernoff-Hoeffding bounds are fundamental probabilistic tools. An elementary
approach is presented to obtain a Chernoff-type upper-tail bound for the number
of prime factors of a random integer in {1, 2, . . . , n}. The method illustrates tail
bounds in negatively-correlated settings.
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1 Introduction

Large-deviation bounds such as the Chernoff-Hoeffding bounds are of much
use in randomized algorithms and probabilistic analysis. Hence, it is valuable
to understand how such bounds can be extended to situations where the con-
ditions of these bounds as presented in their standard versions, do not hold:
the most important such condition is independence. Here, we show one such
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extension, to the classical problem of the distribution of the number of prime
factors of integers.

For any positive integer N , let ν(N) denote the number of prime factors of N ,
ignoring multiplicities. Let ln x denote the natural logarithm of x, as usual.
It is known that the average value of ν(i), for i ∈ [n] = {1, 2, . . . , n}, is
µn

.
= ln ln n+O(1)±O(ln−2 n), for sufficiently large n. See also the discussion

in Alon & Spencer [1]. We are interested in seeing if there is a “significant”
fraction of integers i ∈ [n] for which ν(i) deviates “largely” from µn.

Formally, Hardy & Ramanujan [4] showed that for any function ω(n) with
limn→∞ w(n) = ∞,

|{i ∈ [n] : ν(i) ≥ ln ln n + ω(n)
√

ln ln n}|
n

= o(1), (1)

where the “o(1)” term goes to zero as n increases. Their proof was fairly
complicated. Turán [9] gave a very elegant and short proof of this result;
his proof is as follows. Let E[Z] and V ar[Z] denote the expected value and
variance of random variable Z, respectively. Define Pn to be the set of primes
in [n]. For a randomly picked x ∈ [n], define, for every prime p ∈ Pn, Xp to
be 1 if p divides x, and 0 otherwise. Clearly,

ν(x) =
∑

p∈Pn

Xp.

Hence,

µn = E[ν(x)] =
∑

p∈Pn

E[Xp] =
∑

p∈Pn

bn/pc
n

and thus,

µn ∼ µ′n
.
=
∑

p∈Pn

1

p
= ln ln n + 0.261 . . .±O(ln−2 n),

where the last equality follows from Mertens’ theorem (see, for instance, Rosser
& Schoenfeld [7]). By Chebyshev’s inequality,

Pr(|ν(x)− µ(n)| ≥ λ) ≤ V ar[ν(x)]

λ2

and by obtaining good upper bounds on the variances V ar[Xp] and the co-
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variances Cov[Xp, Xq], Turán obtains his result that

Pr(|ν(x)− µn| ≥ λ) ≤ O

(
ln ln n

λ2

)
, (2)

which, in particular, implies (1). Erdős & Kac [3] show that as n → ∞, the
tail of ν(x) (and of any function from a fairly broad class of functions of x)
approaches that of the corresponding normal distribution, i.e., that if ω is real
and if Kn = |{i ∈ [n] : ν(i) ≤ ln ln n + ω

√
2 ln ln n}|, then

lim
n→∞

Kn

n
= π−1/2

w∫
−∞

e−u2

du. (3)

We strengthen the “upper-tail” part of (2) by showing that for any n and any
parameter δ > 0,

Pr(ν(x) ≥ µn(1 + δ)) ≤
(

eδ

(1 + δ)1+δ

)µ′
n

.

In contrast with (3), we get a bound for every n; thus, for instance, we get a
concrete bound for deviations that are of an order of magnitude more than the
standard deviation. We point out that strong upper- and lower-tail bounds are
known using non-probabilistic methods [6]. The goal of this note is to show
that a simple probabilistic approach suffices to derive exponential upper-tail
bounds here. We also hope that the method and result may be of pedagogic
use in showing the strength of probabilistic methods, and in the study of tail
bounds for (negatively) correlated random variables.

2 Large Deviation Bounds

We first quickly review some salient features of the work of Schmidt, Siegel &
Srinivasan [8].

2.1 Chernoff-Hoeffding type bounds in non-independent scenarios

The basic idea used in the Chernoff–Hoeffding (henceforth CH) bounds is as
follows [2,5]. Given n random variables (henceforth “r.v.”s) X1, X2, . . . , Xn,
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we want to upper bound the upper tail probability Pr(X ≥ a), where X
.
=∑n

i=1 Xi, µ
.
= E[X], a = µ(1 + δ) and δ > 0. For any fixed t > 0,

Pr(X ≥ a) = Pr(etX ≥ eat) ≤ E[etX ]

eat
;

by computing an upper bound u(t) on E[etX ] and minimizing u(t)
eat over t > 0,

we can upper bound Pr(X ≥ a). Suppose Xi ∈ {0, 1} for each i, a commonly
occuring case. In this case, a commonly used such bound is

Pr(X ≥ µ(1 + δ)) ≤ F (µ, δ)
.
=

(
eδ

(1 + δ)1+δ

)µ

(4)

(see, for example, [1]).

One basic idea of [8] when Xi ∈ {0, 1} is as follows. Suppose we define, for
z = (z1, z2, . . . , zn) ∈ <n, a family of functions Sj(z), j = 0, 1, . . . , n, where
S0(z) ≡ 1, and for 1 ≤ j ≤ n,

Sj(z)
.
=

∑
1≤i1<i2···<ij≤n

zi1zi2 · · · zij .

Then, for any t > 0, there exist non-negative reals a0, a1, . . . , an such that
etX ≡ ∑n

i=0 aiSi(X1, X2, . . . , Xn). So, we may consider functions of the form

n∑
i=0

yiSi(X1, X2, . . . , Xn)

where y0, y1, . . . , yn ≥ 0, instead of restricting ourselves to those of the form
etX , for some t > 0. For any y = (y0, y1, . . . , yn) ∈ <n+1

+ , define fy(X1, X2, . . . , Xn)
.
=∑n

i=0 yiSi(X1, X2, . . . , Xn). Then, it is easy to see that

Pr(X ≥ a) = Pr

(
fy(X1, . . . , Xn) ≥

a∑
i=0

yi

(
a

i

))
≤ E[fy(X1, . . . , Xn)]∑a

i=0 yi

(
a
i

) .

So, the goal now is to minimize this upper bound over (y0, y1, . . . yn) ∈ <n+1
+ .

Assuming that the Xi’s are independent, it is shown in [8] that the optimum for
the upper tail occurs roughly when: yi = 1 if i = dµδe, and yi = 0 otherwise.
We can summarize this discussion by

Theorem 2.1 ([8]) Let bits X1, X2, . . . Xn be random with X =
∑

i Xi, and

4



let µ = E[X], k = dµδe. Then for any δ > 0,

Pr(X ≥ µ(1 + δ)) ≤ E[Sk(X1, X2, . . . , Xn)](
µ(1+δ)

k

) .

If the Xi’s are independent, then this is at most(
eδ

(1 + δ)1+δ

)µ

.

2.2 Tail Bounds for ν(x)

Returning to our original scenario, let n be our given integer. For a randomly
picked x ∈ [n], let Xp be 1 if p divides x, and 0 otherwise. As stated earlier,

ν(x) =
∑

p∈Pn

Xp.

Let {X̂p | p ∈ Pn} be a set of independent binary random variables with
Pr(Xp = 1) = 1/p. For any r and any set of primes pi1 , pi2 , . . . , pir , note that

E[
r∏

j=1

Xpij
] = Pr(

r∧
j=1

(pij |x))

=
dn/

∏r
j=1 pije
n

≤ 1∏r
j=1 pij

(5)

= E[
r∏

j=1

X̂pij
].

Thus we get

Theorem 2.2 For any n ≥ 2 and for any δ > 0,

Pr(ν(x) ≥ µn(1 + δ)) ≤
(

eδ

(1 + δ)1+δ

)µ′
n

,

just by invoking Theorem 2.1.
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3 Variants

Why does our approach not work directly for the lower tail of ν(x) also? The
reason is that a direct negative-correlation result analogous to (5) does not
appear to hold. It would be interesting to see if good lower-tail bounds also
can be obtained by a short proof; as in [3,9], it may be possible to make quan-
titative use of the fact that the {Xp} are all “almost independent”. It is known
that counting the prime divisors including multiplicity changes the functions a
little [6], and it would be worth considering short (probabilistic) proofs for the
tail behavior of this function also. More generally, can we concretely exploit the
“near-independence” properties of additive number-theoretic functions [3]?

Acknowledgments. I thank Noga Alon, Eric Bach, Carl Pomerance, Chris-
tian Scheideler and Joel Spencer for valuable discussions & suggestions.
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