Parameterized Approximation of Dominating
Set Problems

Rodney G. Downey!, Michael R. Fellows?, Catherine McCartin3, and Frances
Rosamond?

! Victoria University, Wellington, New Zealand,
Rod.Downey@mcs.vuw.ac.nz
2 The University of Newcastle, Callaghan, Australia,
{michael.fellows,frances.rosamond}@ewcastle.edu.au
3 Massey University, Palmerston North, New Zealand,
C.M.McCartin@massey.ac.nz

Abstract. A problem open for many years is whether there is an FPT
algorithm that given a graph G and parameter k, either: (1) determines
that G has no k-DOMINATING SET, or (2) produces a dominating set
of size at most g(k), where g(k) is some fixed function of k. Such an
outcome is termed an FPT approximation algorithm. We describe some
results that begin to provide some answers. We show that there is no
such FPT algorithm for g(k) of the form k + ¢ (where ¢ is a fixed con-
stant, termed an additive FPT approzimation), unless F'PT = W[2]. We
answer the analogous problem completely for the related INDEPENDENT
DOMINATING SET (IDS) problem, showing that IDS does not admit an
FPT approximation algorithm, for any g(k), unless FPT = W2].

1 Introduction

Most of the work in the area of parameterized complexity and algorithmics
to date has focused on exact algorithms for decision problems. However, the
theory of parameterized complexity, which derives from the contrast between
timecost functions of the form f(k)n¢ (fized-parameter tractability, FPT,) and
those of the form n9¥) where n is the overall input size, and k is a relevant
secondary parameter of the situation, can clearly be deployed in a variety of
ways in analyzing computational complexity. In particular, the ideas of such
multivariate complexity analysis can be applied to counting problems [7,11],
online problems [11, 6], in analyzing approximation complexity (PTASs versus
EPTASs) [9] and in exploring k-speedups of local search heuristics [10].

We report here on some concrete results concerning a formulation of ap-
proximation complexity that arises specifically and naturally in the context of
parameterized problems and the central notion of fixed-parameter tractability.
Consider the following parameterized computational problem specification.

DOMINATING SET g(k)-APPROXIMATION
Input: A graph G and a positive integer k.



Parameter: k
Output: Either: (1) A determination that G does not admit a dominating
set of size at most k, or (2) a dominating set for G of size at most g(k).

Can this problem be solved in FPT time?

The subject of parameterized complexity is by now so well known that we
assume some basic familiarity with the main ideas, such as presented in [5,7,
13]. The concrete question above concerning parameterized approximation of the
DOMINATING SET problem has been open for many years, and is still unresolved.
What is well-known is that determining whether a graph G has a dominating set
of size k (the exact formulation of the problem) is complete for the parameterized
complexity class W/[2].

The problem specification defined above that asks for an FPT g(k)-approximation
for a parametrically intractable problem (i.e., DOMINATING SET) is clearly just
one example of a general kind of approximation issue that one can pose for any
parametrically intractable optimization problem.

At the present time, for concrete problems, very little is known about the
subject of FPT approximability for W-hard problems. The general subject of the
interactions of parameterized complexity and approximation is well-surveyed in
[9]. See also the recent papers [3,2]. Magdelena Griiber and Martin Grohe have
recently shown that the W{l]-hard problem of determining whether a directed
graph has k vertex disjoint directed cycles has an FPT approximation [8].

Here we report on two concrete results concerning the parameterized approx-
imability of graph domination problems. We show that:

(1) The DOMINATING SET problem has no g(k)-FPT approximation algorithm
for g(k) = k + ¢ (for any constant ¢) unless FPT = W|[2].

(2) The INDEPENDENT DOMINATING SET problem has no g(k)-FPT approxima-
tion algorithm, for any g(k), unless FPT = W|2].

2 No additive parameterized approximation for
Dominating Set

In this section we consider the question of whether the DOMINATING SET prob-
lem has an additve FPT approximation algorithm, meaning a g(k)-FPT approx-
imation where g(k) = k + ¢ for a constant c.

Theorem 1. ADD-APPROX k-DOMINATING SET is W [2]-hard.

Proof: We transform from k-DOMINATING SET.
Let G = (V, E) be a graph and let k be the parameter. We produce G’ = (V', E")
such that G’ has a c-additive approximate solution for dk-DOMINATING SET,
that is, G’ contains a dominating set of size at most dk + ¢ if and only if G
contains a dominating set of size at most k.

Consider the graph G’ that simply consists of ¢+ 1 copies of G. If G has a k-
dominating set, then clearly G’ has a dominating set of size at most k' = (c+1)k.



If G’ has a dominating set that approximates k’ within the additive constant c,
that is, if G’ has a dominating set of size at most &’ + ¢, then one of the ¢ + 1
copies witnesses the fact that G has a k-dominating set. (]

3 A completely inapproximable parameterized
domination problem

In this section we show that k-INDEPENDENT DOMINATING SET is completely
inapproximable. The problem is formally defined:

g(k)-APPROXIMATE INDEPENDENT DOMINATING SET

Input: G = (V, E)

Parameter: £

Output: ‘NO’ asserting that no independent dominating set V! C V of size < k
for G exists, or an independent dominating set V' C V for G of size at most

g(k).

Theorem 2. There is no FPT algorithm for k- APPROXIMATE INDEPENDENT
DOMINATING SET for any computable function g(k) unless W[2] = FPT.

Proof: The proof is a reduction from the W2]-complete DOMINATING SET
problem, parameterized by the solution size. Let G = (V| E) be a graph for
which we wish to determine if it has a dominating set of size at most k. We use
[t] to denote the set {1,...,t}. We construct a graph G’ as follows. The vertex
set of G’ consists of the following sets.

S={s[ri]: 1<r<k, ic[g(k)+1]} The sentinel vertices.
C=A{cr,u]: 1<r <k, ueV} The choice vertices.
T ={tu,i]: weV, ieg(k)+1]} The test vertices.

The edge set E' of G’ consists of the following sets of edges.

{s[r,i]c[r,u] : 1<r <k, iegk)+1], ueV}
E'(2) = {c[r,ulc[r,u]: 1 <r <k, u,u €V}
{c[r,ult[v,i]: 1 <r <k, ueV, ve Nglu|, i € [g(k)+1]}

Central to the construction are k& groups of choice vertices, each forming a
clique, by the edges of E’(2). Corresponding to each of these k cliques is a set
of g(k) + 1 sentinel vertices, and the edges of E’(1) connect each sentinel to all
of the vertices in its corresponding choice clique. The sentinel vertices form an
independent set in G’, as do the test vertices. The edges of E’(3) connect the
choice vertices to the test vertices in the natural way, reflecting the structure of

G.
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Fig. 1. An example of the reduction.

An example of the construction is shown in Figure 1.

We argue the correctness of the reduction. Establishing the following two
claims is sufficient.

Claim 1. If G has a k-dominating set then G’ has an independent dominating
set of size k.

Proof of Claim 1. Let vy, ...,v;r be a dominating set in G of size k. It is easy
to check that the corresponding vertices of G’, one in each of the choice vertex
cliques of G, forms an independent k-dominating set in G’.

Claim 2. If G’ has an independent dominating set of size at most g(k), then
G has a dominating set of size at most k.

Proof of Claim 2. Suppose G’ has a dominating set D’ of size at most g(k).
There must be at least one vertex c[i,u;] € D’ in each of the k choice vertex
cliques, 1 < i < k, for the reason that otherwise the sentinels could not be
dominated. Since D’ is an independent set, we can conclude that there is exactly
one vertex of D’ in each of the k choice cliques. Let D be set of at most k vertices
of G that these choice vertices of D’ indicate, D = {u; : 1 <7 < k}. (Note that
while there are k choice cliques, a vertex could be thus indicated more than once,
so we only know that |D| < k.) We argue that D is a dominating set in G. By
the construction of G’, this follows from the fact that for all v € V, there is at
least one test vertex t[v, ] corresponding to v in G’ that does not belong to D',
and must be dominated by a vertex in C. The definition of the set of edges E’(3)
of G’ allows us to conclude that D is a dominating set in G. O



4 Summary and Open Problems

We have described two results exploring the parameterized approximability of
DOMINATING SET and INDEPENDENT DOMINATING SET. So far as we are aware,
our result on IDS is the first result showing that a natural parameterized prob-
lem does not admit any parameterized approximation unless the W-Hierarchy
collapses. Many questions in this new area of investigation remain open.

(1) We have shown that there is no additive parameterized approzimation for
DoMINATING SET. Can this be amplified somehow to show that DS does not
admit a multiplicative parameterized approximation, unless the W-Hierarchy
collapses?

(2) There are many variants of the DOMINATING SET problem. What can be
shown about the parameterized approximability or inapproximability of these
problems?

(3) As a technical issue, might the PCP Theorem (or some parameterized
analog) prove useful in exploring questions concerning parameterized approx-
imability?

(4) If one attempts to adapt our reduction for IDS to DS, great differences
between the two problems quickly become apparent. It is conceivable that DS
does admit an FPT parameterized approximation. Can this perhaps be shown
for restricted classes of graphs? For example, it has recently been shown that DS
remains W[2]-complete for graphs of diameter 2 [12], so the question remains
interesting for this seemingly quite restricted class.
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