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Abstract: A Boolean function is symmetric if it is invariant under all permutations of its arguments; it is

quasi-symmetric if it is symmetric with respect to the arguments on which it actually depends. We present a

test that accepts every quasi-symmetric function and, except with an error probability at most δ > 0, rejects

every function that differs from every quasi-symmetric function on at least a fraction ε > 0 of the inputs. For

a function of n arguments, the test probes the function at O
(

(n/ε) log(n/δ)
)

inputs. Our quasi-symmetry

test acquires information concerning the arguments on which the function actually depends. To do this, it

employs a generalization of the property testing paradigm that we call attribute estimation. Like property

testing, attribute estimation uses random sampling to obtain results that have only “one-sided” errors and

that are close to accurate with high probability.
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1. Introduction

Suppose that we are given a Boolean function f : {0, 1}n → {0, 1} of n arguments, and that we wish

to determine whether or not it is symmetric. (Such a function f is symmetric if it is invariant under all

n! permutations of its arguments: f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for all (x1, . . . , xn) ∈ {0, 1}n and all

bijections π : {1, . . . , n} → {1, . . . , n}. Equivalently, f is symmetric if it is constant on sets of settings of

its arguments that have equal Hamming weight: f(x) = f(y) if |x| = |y|, where the Hamming weight |x| of

x ∈ {0, 1}n is the number
∑

1≤i≤n xi of 1s among x1, . . . , xn.) We seek to do this by querying the value of

the function at various points (settings of its argument values), and we endeavor to minimize the number of

queries that we make.

It is not hard to see that in the worst case, we may need to make 2n − 2 queries. For if f is the “all

0s” constant function, we are bound to find that it is symmetric, but we dare not announce this conclusion

before querying all 2n − 2 points other than “all 0s” (0, . . . , 0) ∈ {0, 1}n and “all 1s” (1, . . . , 1) ∈ {0, 1}n.

(For if (x1, . . . , xn) is such a point not queried, then the function g that assumes the value 1 at and only at

the point (x1, . . . , xn) would be a non-symmetric function that assumes the same value as f at all queried

points.)

This situation may be summarized by saying that a “witness” for symmetry (a set of points at which the

values of a function ensure its symmetry) must contain 2n− 2 points. A witness for non-symmetry, however,

may consist of just two points, x and y, such that |x| = |y|, but for which f(x) 6= f(y). This suggests that

we may test for symmetry more efficiently if we are willing to allow a small probability of a “false positive”

(when we declare a function to be symmetric when in fact it is not).

This suggestion leads us to the paradigm of “property testing”. To introduce this notion to the current

context, we shall need some definitions. If f and g are Boolean functions of n arguments, the distance

∆(f, g) between them is the fraction of their truth-table entries on which they differ. This fraction may be

written as ∆(f, g) = |f ⊕ g|/2n, where f ⊕ g denotes the “exclusive-or” or “sum modulo 2” of f and g, and

the Hamming weight |f | of a Boolean function f is the number
∑

x∈{0,1}n f(x) of 1s in its truth-table. This

is a proper metric on the set Bn of Boolean functions of n arguments (that is, it is non-negative, vanishes

only when the functions are equal, is symmetric and satisfies the triangle inequality). Furthermore, if we

extend it by agreeing that functions of different numbers of arguments are at “infinite distance”, it remains

a metric, now defined on the set B =
⋃

n≥0 Bn of all Boolean functions. If F and G are sets of Boolean

functions, we define ∆(f,G) = ming∈G ∆(f, g) and ∆(F ,G) = minf∈F ∆(f,G). If ∆(f,G) ≥ ε, we shall say

that f is ε-far from G.

By a test for some property of Boolean functions (reified as a set G of Boolean functions), we shall mean

a randomized algorithm that takes a Boolean function f and two parameters ε > 0 and δ > 0, queries the

value of f at a finite sequence of points (where the number of queries, and choice of later points may depend

on the outcomes of earlier queries), and announces an answer yes or no, where (1) if f has the property in

question (that is, f ∈ G), then the algorithm answers yes, and (2) if f is ε-far from the set of functions with

the property in question (that is, ∆(f,G) ≥ ε), then the algorithm answers no unless an event of probability

at most δ has occurs. (Note that “probability” here refers to the randomization of the algorithm; the bound

δ applies uniformly to all f that are ε-far from G.)

Property testing, in the sense used here, was introduced by Rubinfeld and Sudan [R] and further

developed by Goldreich, Goldwasser and Ron [G3]. The definition has many variants and has been applied
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to properties of many types of objects. A central example involving Boolean functions is testing monotonicity

(see Goldreich, Goldwasser, Lehman and Ron (and, in the later version, Samorodnitsky) [G1, G2]).

In Section 2, we shall give a test for symmetry that makes at most O
(

(1/ε) log(1/δ)
)

queries. Although

the test is randomized, this bound on the number of queries is uniform (not merely a bound on expectation,

nor merely one that holds with high probability), and it is independent of the number of arguments. When

the algorithm returns no, it also provides a witness to the non-symmetry of f . (Of course, when yes is

returned, it may be a false positive, and in any case a witness to symmetry would be too large establish

within the stated number of queries.)

We shall say that a Boolean function f : {0, 1}n → {0, 1} of n arguments is quasi-symmetric if it is a

symmetric function of those of its arguments that it actually depends on. (We say that f depends on its i-th

argument if there are Boolean values x1, . . . , xi−1, xi+1, . . . , xn such that f(x1, . . . , xi−1, 0, xi+1, . . . , xn) 6=

f(x1, . . . , xi−1, 1, xi+1, . . . , xn).)

In Section 4, we shall give a test for quasi-symmetry that makes at most O
(

(n/ε) log(n/δ)
)

queries.

In this case, the number of queries depends on the number of n of arguments as well as on ε and δ. This

happens because the test begins by attempting to determine the set J (f) ⊆ {1, . . . , n} of arguments on

which the function f actually depends, and this set could be as large as the full set of n arguments.

Upon considering the subproblem of determining the set J (f) from the function f , we see that it

presents many of the same characteristics as testing for symmetry: a witness for the fact that f depends on

its i-th arguments can comprise just two points (as exemplified in the definition), but a witness for the fact

that f does not depend on some particular argument cannot be smaller than all 2n points. Thus, instead

of determining J (f) exactly, we shall introduce a notion of “estimating” such an attribute that is exactly

analogous to the notion of “testing” a property.

A function D : B → C defined on the set of all Boolean functions, and taking values in a partially ordered

set C, will be called an attribute of Boolean functions. An estimate for the attribute D is a randomized

algorithm that takes a Boolean function f and two parameters ε > 0 and δ > 0, queries the value of f

at a finite sequence of points (where the number of queries, and choice of later points may depend on the

outcomes of earlier queries), and announces an output D ∈ C, where (1) D(f) ≥ D, and (2) f is ε-far from

the set D−1(D) of functions for which D takes on the value D only if an event of probability at most δ

occurs. If we take C = {yes, no} with yes < no, then estimating such an attribute reduces to testing the

corresponding property D−1(yes).

In Section 3 we shall give an estimate for the set J (f) of arguments that f depends on (with

the codomain, the power set of {1, . . . , n}, ordered in the usual way by inclusion) that makes at most

O
(

(n/ε) log(n/δ)
)

queries. The algorithm will also provide a witness for the fact that the value it returns is

a lower bound for J (f). This estimate will be used in Section 4 as the basis for our quasi-symmetry test,

and the witness that it provides will be used to construct a witness for non-quasi-symmetry when that is

detected.

The problem of testing whether a Boolean function depend on a small subset of arguments has been

attacked by Parnas, Ron and Samordnitsky [P1, P2], and later by Fischer, Kindler, Ron, Safra and Samorod-

nitsky [F]. Their work, however, lies entirely within the framework of property testing: their algorithms test

whether the cardinality #J (f) is at most k (k a constant), without giving further information about the

set J (f) (and they do this with a number of queries that is independent of n). Our quasi-symmetry test,
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however, requires more information about J (f) than merely its cardinality, and this requirement led us to

our formulation of the notion of attribute estimation.

Despite its naturalness and its analogy to property testing, attribute estimation does not appear to have

been described in the previous literature. We hope, however, that it will find other applications, and indeed

that the notion of attribute estimation, both as used here and as extended to other domains such as graphs,

will prove a fruitful contribution to the theory of statistical algorithms.

2. Testing Symmetry

In this section, we shall present our symmetry test and analyze its performance. We shall begin by

describing what we shall call a “basic step” of the algorithm.

Symmetry Test—Basic Step: (0) Given Boolean function f : {0, 1}n → {0, 1} of n arguments, return yes

if 0 ≤ n ≤ 1. (1) Choose point x = (x1, . . . , xn) at random, with all 2n − 2 points other than (0, . . . , 0)

and (1, . . . , 1) being equally likely. (2) Choose point y = (y1, . . . , yn) at random, with all
(

n
|x|

)

− 1 points

other than x, but having the same Hamming weight as x, being equally likely. (Since n ≥ 2 and x 6∈

{(0, . . . , 0), (1, . . . , 1)}, there is at least one possible choice for y.) (3) Query f(x) and f(y). If f(x) = f(y),

then return yes, else return no.

Clearly, if f is symmetric, then this procedure returns yes. Let S denote the set of all symmetric Boolean

functions. We shall see that if f is not symmetric, then the procedure returns no with probability at least

∆(f,S). To see this, let A ⊆ {0, 1}n be a set of points of minimum cardinality such that complementing

the value of f at just those points in A yields a symmetric function. This minimum cardinality is #A =

∆(f,S) 2n. For any x ∈ {0, 1}n, let Bx ⊆ {0, 1}n denote the set of points y such that |y| = |x| but

f(y) 6= f(x). The probability that the basic step chooses x ∈ A is ∆(f,S) 2n/(2n − 2) ≥ ∆(f,S). Given

that x ∈ A, the probability that the basic step chooses y ∈ Bx is at least 1
2

(

n
|x|

)

/
(

(

n
|x|

)

− 1
)

≥ 1
2 (since if

#Bx were less than 1
2

(

n
|x|

)

, we could replace the points of A having Hamming weight |x| by those of Bx,

reducing the cardinality of A and contradicting the definition of A). The procedure returns no if x ∈ A

and y ∈ Bx, which occurs with probability at least 1
2∆(f,S), and also if y ∈ A and x ∈ By, which occurs

disjointly with a probability that is also at least 1
2∆(f,S) (since the joint distribution of x and y is invariant

under the exchange of x and y). This completes the proof that the basic step returns no with probability at

least ∆(f,S).

Now we present our complete symmetry test.

Symmetry Test: (0) Given Boolean function f : {0, 1}n → {0, 1} of n arguments, and real numbers 0 < ε < 1

and 0 < δ < 1, if 0 ≤ n ≤ 1, then return yes. (1) Otherwise compute

k =

⌈

1

ε
log

1

δ

⌉

.

(2) Perform the basic step until it returns no, or until it has returned yes k times. (3) If any performance

of the basic step returned no, then return no; if all k performances returned yes, then return yes.

Clearly, if f is symmetric, then this procedure returns yes. We shall see that if f is ε-far from the

symmetric functions, then the procedure returns no with probability at least 1 − δ. If f is ε-far from

the symmetric functions, then each performance of the basic step returns yes with probability at most

1 − ∆(f,S) ≤ 1 − ε. The symmetry test returns yes only if k performances of the basic step return yes,
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and this occurs with probability at most (1− ε)k ≤ e−εk ≤ δ (where we have used the inequality 1+ x ≤ ex

and the definition of k). This completes the proof that, if if f is ε-far from the symmetric functions, then

the procedure returns no with probability at least 1− δ.

We now have the following theorem.

Theorem 2.1: There is a test for symmetry that makes at most O
(

(1/ε) log(1/δ)
)

queries.

Proof: The number of queries made is at most

2k = O

(

1

ε
log

1

δ

)

.

⊓⊔

We conclude this section by observing that when the basic step returns no, the two points it has queried

witness the non-symmetry of the function, and when the complete symmetry test returns no, such a witness

is provided by the final performance of the basic step.

3. Estimating Dependence

In this section we shall present an estimate, as defined in the introduction, for the set J (f) of arguments

that f depends on. We begin by describing a constancy test analogous to the symmetry test presented in

the preceding section.

Constancy Test—Basic Step: (0) Given Boolean function f : {0, 1}n → {0, 1} of n arguments, return yes

if n = 0. (1) Choose point x = (x1, . . . , xn) at random, with all 2n points being equally likely. (2) Choose

point y = (y1, . . . , yn) at random, with all 2n − 1 points other than x being equally likely. (3) Query f(x)

and f(y). If f(x) = f(y), then return yes, else return no.

Clearly, if f is constant, then this procedure returns yes. Let C denote the set of all constant Boolean

functions. We shall see that if f is not constant, then the procedure returns no with probability at least

∆(f, C). To see this, let A ⊆ {0, 1}n be a set of points of minimum cardinality such that complementing the

value of f at just those points in A yields a constant function. This minimum cardinality is #A = ∆(f, C) 2n.

For any x ∈ {0, 1}n, let Bx ⊆ {0, 1}n denote the set of points y such that f(y) 6= f(x). The probability

that the basic step chooses x ∈ A is ∆(f, C). Given that x ∈ A, the probability that the basic step chooses

y ∈ Bx is at least 2n−1/(2n − 1) ≥ 1
2 (since if #Bx were less than 2n−1, we could replace the points of A

by those of Bx, reducing the cardinality of A and contradicting the definition of A). The procedure returns

no if x ∈ A and y ∈ Bx, which occurs with probability at least 1
2∆(f, C), and also if y ∈ A and x ∈ By,

which occurs disjointly with a probability that is at least 1
2∆(f, C) (since the joint distribution of x and y

is invariant under the exchange of x and y). This completes the proof that the basic step returns no with

probability at least ∆(f, C).

Now we present our complete constancy test.

Constancy Test: (0) Given Boolean function f : {0, 1}n → {0, 1} of n arguments, and real numbers 0 < ε < 1

and 0 < δ < 1, if n = 0, then return yes. (1) Otherwise compute

k =

⌈

1

ε
log

1

δ

⌉

.

(2) Perform the basic step until it returns no, or until it has returned yes k times. (3) If any performance

of the basic step returned no, then return no; if all k performances returned yes, then return yes.
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Clearly, if f is constant, then this procedure returns yes. We shall see that if f is ε-far from the constant

functions, then the procedure returns no with probability at least 1 − δ. If f is ε-far from the constant

functions, then each performance of the basic step returns yes with probability at most 1−∆(f, C) ≤ 1− ε.

The complete test returns yes only if k performances of the basic step return yes, and this occurs with

probability at most (1− ε)k ≤ e−εk ≤ δ (where we have used the inequality 1 + x ≤ ex and the definition of

k). This completes the proof that, if if f is ε-far from the constant functions, then the procedure returns no

with probability at least 1− δ.

We now have the following lemma.

Lemma 3.1: There is a test for constancy that makes at most O
(

(1/ε) log(1/δ)
)

queries.

Proof: The number of queries made is at most

2k = O

(

1

ε
log

1

δ

)

.

⊓⊔

We observe that when the basic step returns no, the two points it has queried witness the non-constancy

of the function, and when the complete constancy test returns no, such a witness is provided by the final

performance of the basic step.

The next component we shall need is a procedure that takes a pair of points that witness the non-

constancy of a function and returns a particular argument on which the function depends. We shall call this

operation a “dependency search”.

Dependency Search: (0) Given Boolean function f : {0, 1}n → {0, 1} of n arguments, and a pair of points

x, y ∈ {0, 1}n such that f(x) 6= f(y), set x′ := x and y′ := y. (1) If |x′ ⊕ y′| = 1, then return the unique

i ∈ {1, . . . , n} such that x′
i 6= y′i. (2) Otherwise, let z ∈ {0, 1}n be such that |x′ ⊕ z| and |y′ ⊕ z| are each at

most ⌈|x′ ⊕ y′|/2⌉ (so that z is about half-way between x′ and y′). (3) Query f(z). If f(x′) 6= f(z), then set

y′ := z, else set x′ := z. (4) Go back to step (1).

Lemma 3.2: There is a procedure for dependency search that makes O(log n) queries.

Proof: In the procedure given above, the quantity |x′ ⊕ y′| is initially at most n. The procedure reduces this

quantity by multiplying it by a factor at most 2/3 whenever it makes a query, and stops when this quantity

reaches 1. Thus it makes at most log3/2 n queries. ⊓⊔

We observe that the final values of x′ and y in this dependency search provide a witness that f actually

depends on the i-th argument.

We now present our complete dependency estimate.

Dependency Estimate: (0) Given a Boolean function f : {0, 1}n → {0, 1} of n arguments, and real numbers

0 < ε < 1 and 0 < δ < 1, let δ′ = δ/n and set J ′ := ∅. (1) Set xJ′ = {xj : j ∈ J ′} to random Boolean values,

with all 2#J′

assignments being equally likely, and let f ′ : {0, 1}n−#J′

→ {0, 1} be the Boolean function

obtained from f by substituting the values xJ′ for the arguments in J ′. (2) Perform a constancy test on the

function f ′ with parameters ε and δ′. (3) If this test returns yes, then return J ′. (4) Otherwise, perform a

dependency search on the witness returned by the constancy test, and adjoin the argument j returned by

the dependency search to J ′: J ′ := J ′ ∪ {j}. (5) Go back to step (1).

If J denotes the set returned by this procedure, it is clear that J ⊆ J (f). Indeed, this fact is witnessed

by the set of pairs of points x′, y′ that terminate the dependency searches that found the arguments in J .
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Let BJ be the set of Boolean functions that actually depend only on the arguments in J . We shall show

that that if f is ε-far from any function in BJ , then an event of probability at most δ has occurred. If f

is ε-far from any function in BJ , we have ∆
(

f,BJ

)

≥ ε. For each performance of the constancy test, we

have J ′ ⊆ J ; this implies ∆
(

f,BJ′

)

≥ ∆
(

f,BJ

)

, and thus we have ∆
(

f,BJ

)

≥ ε. One of these at most n

constancy tests must return yes, and each test returns yes with probability at most δ′ = δ/n. Thus the

probability that any of these tests returns yes is at most nδ′ = δ. Finally, the number of queries made is at

most

n

(

O

(

1

ε
log

1

δ′

)

+O(log n)

)

= n

(

O

(

1

ε
log

n

δ

)

+O(log n)

)

= O
(n

ε
log

n

δ

)

.

We now have the following theorem.

Theorem 3.3: There is an estimate for the dependency set that makes at most O
(

(n/ε) log(n/δ)
)

queries.

4. Testing Quasi-Symmetry

In this section, we present our quasi-symmetry test. Again we begin by describing a basic step.

Quasi-Symmetry Test—Basic Step: (0) Given a Boolean function f : {0, 1}n → {0, 1} of n arguments, a real

number 0 < ε < 1, and a set J of arguments, set I = {1, . . . , n} \ J . (1) Set xI = {xi : i ∈ I} to random

Boolean values, with all 2#I assignments being equally likely, and let f ′ : {0, 1}#J → {0, 1} be the Boolean

function obtained from f by substituting the values xI for the arguments in I. (2) Perform a symmetry test

on f ′, with parameters ε and 1/2, and return the value returned by this symmetry test as the value of the

basic step.

Suppose that the basic step is performed on a function f that actually depends on all the arguments

in J . If f is quasi-symmetric, then because f actually depends on all the arguments in J and f ′ depends

only on these arguments, f ′ is symmetric and the basic step will return yes. Let g ∈ BJ be a function that

minimizes ∆(f, g). This minimum distance is ∆(f, g) = ∆(f,BJ ). Now suppose further that ∆(f, g) ≤ ε.

Then we shall show that if f is 4ε-far from the set Q of quasi-symmetric functions, the basic step returns

no with probability at least 1/4. By the triangle inequality we have ∆(f, g) + ∆(g,Q) ≥ ∆(f,Q) ≥ 4ε,

and thus ∆(g,Q) ≥ 3ε. Let g′ be obtained from g by substituting the random values xI for the arguments

in I. Of course g′ is independent of these random values, since g does not depend on the arguments in

I. Furthermore, ∆(g′,S) ≥ ∆(g′,Q) ≥ ∆(g,Q) ≥ 3ε, since S ⊆ Q and g does not depend on any of its

arguments that are not arguments of g′. On the other hand, ∆(g′, f ′) is a random variable, since f ′ may

depend on the random values xI . The expected value of ∆(g′, f ′) is clearly ∆(g, f) = ∆(f, g) ≤ ε, so

with probability at least 1/2 we have ∆(f ′, g′) ≤ 2ε, by Markov’s inequality. When this happens, we have

∆(g′, f ′) +∆(f ′,S) ≥ ∆(g′,S) ≥ 3ε, again by the triangle inequality, and thus ∆(f ′,S) ≥ ε. This condition

ensures that the symmetry test returns no with probability at least 1/2. This completes the proof that when

f is 4ε-far from the set Q of quasi-symmetric functions, then the basic step returns no with probability at

least 1/4.

Quasi-Symmetry Test: (0) Given a Boolean function f : {0, 1}n → {0, 1} of n arguments, and real numbers

0 < ε < 1 and 0 < δ < 1, let ε′ = ε/4 and δ′ = δ/2, and compute

k =

⌈

log4/3
1

δ′

⌉

.
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(1) Perform a dependency estimate on f , with parameters ε′ and δ′, and let J be the value returned by

that procedure. (2) Perform the basic step with parameters f , ε′, and J , until it returns no, or until it

has returned yes k times. (3) If any performance of the basic step returned no, then return no; if all k

performances returned yes, then return yes.

Suppose first that f is quasi-symmetric. The function f actually depends on all the arguments in the

set J found in step (1). Thus each performance of the basic step returns yes, and so the quasi-symmetry test

returns yes after k such performances. Suppose on the other hand that f is ε-far from any quasi-symmetric

function. Then, except with probability at most δ′, ∆
(

f,BJ

)

≤ ε′ for the set J found by step (1). Thus

each performance of the basic step returns no with probability at least 1/4, and therefore returns yes with

probability at most 3/4. The probability that all k performances of the basic step return yes is thus at

most (3/4)k ≤ δ′. Thus if f is ε-far from the quasi-symmetric functions, the quasi-symmetry test returns no

unless an event of probability at most δ′ + δ′ = δ occurs.

Finally, the number of queries made is at most

O
( n

ε′
log

n

δ′

)

+O

(

1

ε′
log

1

δ′

)

= O

(

4n

ε
log

2n

δ

)

+O

(

4

ε
log

2

δ

)

= O
(n

ε
log

n

δ

)

.

We now have the following theorem.

Theorem 4.3: There is a test for quasi-symmetry that makes at most O
(

(n/ε) log(n/δ)
)

queries.

We observe that when the quasi-symmetry test returns no, a witness to the non-quasi-symmetry of f

can be obtained from the witnesses provided by the dependency estimate and the final performance of the

symmetry test.
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