On the Cubicity of Bipartite Graphs

L. Sunil Chandran* ${ }^{*}$ Anita Das ${ }^{\dagger}$, Naveen Sivadasan ${ }^{\ddagger}$ *
*, \dagger Computer Science and Automation department, Indian Institute of Science Bangalore- 560012, India.
\{sunil, anita\}@csa.iisc.ernet.in
\ddagger Advanced Technology Center, Tata Consultancy Services
1, Software Units Layout, Madhapur
Hyderabad - 500081, India
s.naveen@atc.tcs.com

Abstract

A unit cube in k-dimension (or a k-cube) is defined as the cartesian product $R_{1} \times R_{2} \times \cdots \times R_{k}$, where each R_{i} is a closed interval on the real line of the form $\left[a_{i}, a_{i}+1\right]$. The cubicity of G, denoted as $\operatorname{cub}(G)$, is the minimum k such that G is the intersection graph of a collection of k-cubes. Many NP-complete graph problems can be solved efficiently or have good approximation ratios in graphs of low cubicity. In most of these cases the first step is to get a low dimensional cube representation of the given graph.

It is known that for a graph $G, \operatorname{cub}(G) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$. Recently it has been shown that for a graph $G, \operatorname{cub}(G) \leq 4(\Delta+1) \ln n$, where n and Δ are the number of vertices and maximum degree of G, respectively. In this paper, we show that for a bipartite graph $G=(A \cup B, E)$ with $|A|=n_{1},|B|=$ $n_{2}, n_{1} \leq n_{2}$, and $\Delta^{\prime}=\min \left\{\Delta_{A}, \Delta_{B}\right\}$, where $\Delta_{A}=\max _{a \in A} d(a)$ and $\Delta_{B}=\max _{b \in B} d(b)$, d(a) and $d(b)$ being the degree of a and b in G respectively, $\operatorname{cub}(G) \leq 2\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$. We also give an efficient randomized algorithm to construct the cube representation of G in $3\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$ dimensions. The reader may note that in general Δ^{\prime} can be much smaller than Δ.

Keywords: Cubicity, algorithms, intersection graphs.

1 Introduction

Let \mathcal{F} be a family of non-empty sets. An undirected graph G is an intersection graph for \mathcal{F} if there exists a one-one correspondence between the vertices of G and the sets in \mathcal{F} such that two vertices in G are adjacent if and only if the corresponding sets have non-empty intersection. If \mathcal{F} is a family of intervals on real line, then G is called an interval graph. If \mathcal{F} is a family of intervals on real line such that all the intervals are of equal length, then G is called a unit interval graph.

A unit cube in k-dimensional space or a k-cube is defined as the cartesian product $R_{1} \times R_{2} \times$ $\cdots \times R_{k}$, where each R_{i} is a closed interval on the real line of the form $\left[a_{i}, a_{i}+1\right]$. A k-cube representation of a graph is a mapping of the vertices of G to k-cubes such that two vertices in G

[^0]are adjacent if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G is the minimum k such that G has a k-cube representation. Note that a k-cube representation of G using cubes with unit side length is equivalent to a k-cube representation where the cubes have side length c for some fixed positive number c. The graphs of cubicity 1 are exactly the class of unit interval graphs.

The concept of cubicity was introduced by F. S. Roberts 9 in 1969. This concept generalizes the concept of unit interval graphs. If we require that each vertex of G correspond to a k-dimensional axis-parallel box $R_{1} \times R_{2} \times \cdots \times R_{k}$, where each $R_{i}, 1 \leq i \leq k$, is a closed interval of the form $\left[a_{i}, b_{i}\right]$ on the real line, then the minimum dimension required to represent G is called its boxicity denoted as $b o x(G)$. Clearly $\operatorname{box}(G) \leq \operatorname{cub}(G)$, for a graph G. It has been shown that deciding whether the cubicity of a given graph is at least three is NP-complete [11]. Computing the boxicity of a graph was shown to be NP-hard by Cozzens in [5]. This was later strengthened by Yannakakis [11], and finally by Kratochvil [6] who showed that deciding whether boxicity of a graph is at most two itself is NP-complete.

Thus, it is interesting to design efficient algorithms to represent small cubicity graphs in low dimension. There have been many attempts to bound the cubicity of graph classes with special structure. The cube and box representations of special classes of graphs like hypercubes and complete multipartite graphs were investigated in [1, 2, 3, 7, 8, ,9, 10].

1.1 Our results

Recently Chandran et al. [4] have shown that for a graph $G, \operatorname{cub}(G) \leq 4(\Delta+1) \ln n$, where n and Δ are the number of vertices and maximum degree of G, respectively. In this paper, we present an efficient randomized algorithm to construct a cube representation of bipartite graphs in low dimension. In particular, we show that for a bipartite graph $G=(A \cup B, E), \operatorname{cub}(G) \leq 2\left(\Delta^{\prime}+\right.$ 2) $\left\lceil\ln n_{2}\right\rceil$, where $|A|=n_{1},|B|=n_{2}, n_{1} \leq n_{2}$, and $\Delta^{\prime}=\min \left\{\Delta_{A}, \Delta_{B}\right\}$, where $\Delta_{A}=\max _{a \in A} d(a)$ and $\Delta_{B}=\max _{b \in B} d(b), d(a)$ and $d(b)$ being the degree of a and b in G, respectively. The algorithm presented in this paper is not very different from that of 4 but this has the advantage that it gives a better result in the case of bipartite graphs. Note that, Δ^{\prime} can be much smaller than Δ in general, where Δ is the maximum degree of G. In particular, when $|A| \ll|B|$, then the bound for cubicity given in this paper can be much better than that given in [4]. Also, the complexity of our algorithm is comparable with the complexity of the algorithm proposed in [4].

2 Preliminaries

Let $G=(A \cup B, E)$ be a simple, finite bipartite graph. Let $|A|=n_{1},|B|=n_{2}$, and $n_{1} \leq n_{2}$. Let $N(v)=\{w \in V(G) \mid v w \in E(G)\}$ be the set of neighbors of v. Degree of a vertex v, denoted as $d(v)$, is defined as the number of edges incident on v. That is, $d(v)=|N(v)|$. Suppose Δ_{A} denote the maximum degree in A and Δ_{B} denote the maximum degree in B. That is, $\Delta_{A}=\max _{a \in A} d(a)$ and $\Delta_{B}=\max _{b \in B} d(b)$.

For a graph G, let G^{\prime} be a graph such that $V\left(G^{\prime}\right)=V(G)$. Then, G^{\prime} is a super graph of G if $E(G) \subseteq E\left(G^{\prime}\right)$. We define the intersection of two graphs as follows: if G_{1} and G_{2} are two graphs such that $V\left(G_{1}\right)=V\left(G_{2}\right)$, then the intersection of G_{1} and G_{2} denoted as $G=G_{1} \cap G_{2}$ is a graph with $V(G)=V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cap E\left(G_{2}\right)$.

Let $I_{1}, I_{2}, \ldots, I_{k}$ be k unit interval graphs such that $G=I_{1} \cap I_{2} \cap \cdots \cap I_{k}$, then $I_{1}, I_{2}, \ldots, I_{k}$ is called an unit interval graph representation of G. The following equivalence is well known.

Theorem 2.1 (9). The minimum k such that there exists a unit interval graph representation of G using k unit interval graphs $I_{1}, I_{2}, \ldots, I_{k}$ is the same as $\operatorname{cub}(G)$.

3 Construction

Let $G=(A \cup B, E)$ be a bipartite graph. In this section we describe an algorithm to efficiently compute a cube representation of G in $2\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$ dimensions, where $\Delta^{\prime}=\min \left\{\Delta_{A}, \Delta_{B}\right\}$.

Definition 3.1. Let π be a permutation of the set $\{1,2, \ldots, n\}$ and $X \subseteq\{1,2, \ldots, n\}$. The projection of π onto X denoted as π_{X} is defined as follows. Let $X=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ be such that $\pi\left(u_{1}\right)<\pi\left(u_{2}\right)<\ldots<\pi\left(u_{r}\right)$. Then $\pi_{X}\left(u_{1}\right)=1, \pi_{X}\left(u_{2}\right)=2, \ldots, \pi_{X}\left(u_{r}\right)=r$.

Definition 3.2. A graph $G=(V, E)$ is a unit interval graph if and only if there exists a function $f: V \longrightarrow R$ and a constant c such that $(u, v) \in E(G)$ if and only if $|f(u)-f(v)| \leq c$.

Remark: Note that the above definition is consistent with the definition of the unit interval graphs given at the beginning of the introduction.

Let $G=(A \cup B, E)$ be a bipartite graph. Given a permutation of the vertices of A, we construct a unit interval graph $U(\pi, A, B, G)$ as follows. Let $f: A \cup B \longrightarrow R$ be such that if $v \in A$, then $f(v)=\pi(v)$ and if $v \in B$, then $f(v)=n+\min _{x \in N(v)} \pi(x)$. Two vertices $u, v \in A \cup B$ are made adjacent if and only if $|f(u)-f(v)| \leq n$, where $n=|A|+|B|=n_{1}+n_{2}$.

Claim 1: Let $G^{\prime}=U(\pi, A, B, G)$. Then G^{\prime} is a supergraph of G.
Proof. Suppose $(a, b) \in E(G)$. Without loss of generality suppose $a \in A$ and $b \in B$. Let $s=$ $\min _{x \in N(b)} \pi(x)$. So, $f(b)=n+s$. As $f(a)=\pi(a)$ and $a \in N(b), \pi(a) \geq s$. Therefore we have, $|f(b)-f(a)|=n+s-\pi(a) \leq n$. Thus $(a, b) \in E\left(G^{\prime}\right)$. Hence G^{\prime} is a supergraph of G.

Remark: Note that if we reverse the roles of A and B in the above construction, i.e., if we start with a permutation of the vertices of B rather than that of A, then the resulting unit interval graph will be denoted as $U(\pi, B, A, G)$. Clearly, $U(\pi, B, A, G)$ will also be a super graph of G.

RANDUNIT

Input: A bipartite graph $G=(A \cup B, E)$.
Output: A unit interval graph G^{\prime} which is a supergraph of G.
begin
if $\left(\Delta_{B} \leq \Delta_{A}\right)$ then
Step 1. Generate a permutation π of $\left\{1,2, \ldots, n_{1}\right\}$ (the vertices of A)
uniformly at random.
Step 2. Return $G^{\prime}=U(\pi, A, B, G)$.
else
Step 1. Generate a permutation π of $\left\{1,2, \ldots, n_{2}\right\}$ (the vertices of B)
uniformly at random.

Step 2. Return $G^{\prime}=U(\pi, B, A, G)$.
end

Lemma 3.1. Let $a \in A$ and $b \in B$ be such that $e=(a, b) \notin E(G)$. Let G^{\prime} be the output of RANDUNIT(G). Then

$$
\operatorname{Pr}\left[e \in E\left(G^{\prime}\right)\right] \leq \frac{\Delta^{\prime}}{\Delta^{\prime}+1}
$$

Proof. Case I: $\Delta_{B} \leq \Delta_{A}$.
Let π be a permutation of the vertices in A. Let $G^{\prime}=U(\pi, A, B, G)$. Suppose two vertices $a \in A$ and $b \in B$ are non-adjacent in G. Let $t=\min _{x \in N(b)} \pi(x)$.

Claim: The vertices a and b will be adjacent in G^{\prime} if and only if $\pi(a)>t$.
If a and b are adjacent in G^{\prime}, then we have $|f(b)-f(a)|=|(n+t)-\pi(a)| \leq n$, i.e., $\pi(a)>t$. Hence a is adjacent to b in G^{\prime}.

So, $\operatorname{Pr}\left[e \in E\left(G^{\prime}\right)\right]=\operatorname{Pr}[\pi(a)>t]=1-\operatorname{Pr}[\pi(a)<t]$. (Note that $\pi(a) \neq t$, since $a \notin N(b)$.) Let $X=\{a\} \cup N(b)$ and π_{X} be the projection of π on X. Total number of permutations of X is $(d(b)+1)$!. Now, it can be easily seen that $\pi(a)<t$ if and only if $\pi_{X}(a)=1$. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left[(a, b) \in E\left(G^{\prime}\right)\right] & =1-\frac{d(b)!}{(d(b)+1)!} \\
& =\frac{d(b)}{d(b)+1} \\
& \leq \frac{\Delta^{\prime}}{\Delta^{\prime}+1}
\end{aligned}
$$

Hence the lemma.
Case II: $\Delta_{A} \leq \Delta_{B}$.
Let π be the permutation of the vertices in B. Let $G^{\prime}=U(\pi, B, A, G)$. Proof is similar to case I.

Lemma 3.2. Given a bipartite graph $G=(A \cup B, E)$, there exists a super graph G^{*} of G with $\operatorname{cub}\left(G^{*}\right) \leq 2\left(\Delta^{\prime}+1\right) \ln n_{2}$, such that if $u \in A, v \in B$ and $(u, v) \notin E(G)$, then $(u, v) \notin E\left(G^{*}\right)$.
Proof. Let $U_{1}, U_{2}, \ldots, U_{t}$ be the unit interval graphs generated by t invocations of RANDUNIT (G). Clearly U_{i}, for each $i, 1 \leq i \leq t$, is a super graph of G by Claim 1. Let $G^{*}=U_{1} \cap U_{2} \cap \cdots \cap U_{t}$. Now let $u \in A, v \in B$ and $(u, v) \notin E(G)$. Then,

$$
\begin{aligned}
\operatorname{Pr}\left[(u, v) \in G^{*}\right]=\operatorname{Pr}\left[\bigwedge_{1 \leq i \leq t}(u, v) \in E\left(U_{i}\right)\right] \leq\left(\frac{\Delta^{\prime}}{\Delta^{\prime}+1}\right)^{t} & \text { (Applying Lemma 3.1). Now, } \\
\operatorname{Pr}\left[\bigvee_{u \in A, b \in B,(u, v) \notin E(G)}(u, v) \in E\left(G^{*}\right)\right] & <n_{1} n_{2}\left(\frac{\Delta^{\prime}}{\Delta^{\prime}+1}\right)^{t} \\
& \leq n_{2}^{2}\left(1-\frac{1}{\Delta^{\prime}+1}\right)^{t} \\
& \leq n_{2}^{2} e^{-\frac{t}{\Delta^{\prime}+1}}
\end{aligned}
$$

If $t=2\left(\Delta^{\prime}+1\right) \ln n_{2}$ the above probability is <1. Thus we infer that there exists a super graph G^{*} of G such that if $u \in A, v \in B$ and $(u, v) \notin E(G),(u, v) \notin E\left(G^{*}\right)$ also. From the definition of G^{*} we have $\operatorname{cub}\left(G^{*}\right) \leq 2\left(\Delta^{\prime}+1\right) \ln n_{2}$. Hence the Lemma.

Remark: If we had chosen $t=3\left(\Delta^{\prime}+1\right) \ln n_{2}$ in the above proof, we can substantially reduce the failure probability. More precisely we can get

$$
\operatorname{Pr}\left(G^{*} \text { does not satisfy the desired property }\right) \leq \frac{1}{n_{2}}
$$

Now we will construct two special graphs H_{1} and H_{2} such that H_{i} is a super graph of G for $i=1,2$.

Definition 3.3. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$. For $1 \leq i \leq\left\lceil\ln n_{1}\right\rceil$ define the function $f_{i}: A \cup B \rightarrow R$ as follows:

$$
\begin{aligned}
\text { For vertices from } A, f_{i}\left(v_{j}\right) & =0 \text { if the ith bit of } j \text { is } 0 \\
f_{i}\left(v_{j}\right) & =2 \text { if the ith bit of } j \text { is } 1 \\
\text { For vertices in } u \in B, f_{i}(u) & =1
\end{aligned}
$$

Let I_{i} be the unit interval graph defined on the vertex set $A \cup B$ such that two vertices u and v are adjacent if and only if $\left|f_{i}(u)-f_{i}(v)\right| \leq 1$.

Now define $H_{1}=\bigcap_{i=1}^{\left\lceil\ln n_{1}\right\rceil} I_{i}$. Thus we have $\operatorname{cub}\left(H_{1}\right) \leq\left\lceil\ln n_{1}\right\rceil$.
Definition 3.4. Let $B=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$. For $1 \leq i \leq\left\lceil\ln n_{2}\right\rceil$ define the function $g_{i}: A \cup B \rightarrow R$ as follows:

$$
\begin{aligned}
& \text { For vertices from } B, g_{i}\left(u_{j}\right)=0 \text { if the ith bit of } j \text { is } 0 \\
& g_{i}\left(u_{j}\right)
\end{aligned}=2 \text { if the } i \text { th bit of } j \text { is } 1 .
$$

Let J_{i} be the unit interval graph defined on the vertex set $A \cup B$ such that two vertices u and v are adjacent if and only if $\left|g_{i}(u)-g_{i}(v)\right| \leq 1$.

Now define $H_{2}=\bigcap_{i=1}^{\left\lceil\ln n_{2}\right\rceil} J_{i}$. Thus $\operatorname{cub}\left(H_{2}\right) \leq\left\lceil\ln n_{2}\right\rceil$.
Lemma 3.3. H_{1} is a super graph of G such that if $u, v \in A$, then $(u, v) \notin E\left(H_{1}\right)$.
Proof. It is easy to check that I_{i} is a super graph of G for each i. Thus H_{1} is clearly a super graph of G. For $u, v \in A$, let $u=v_{j}$ and $v=v_{k}$ where $k \neq j$. Then clearly there exists a t, $1 \leq t \leq\left\lceil\ln n_{1}\right\rceil$ such that j and k differs in the t th bit position. Now it is easy to verify that u and v will not be adjacent in I_{t}. It follows that for any pair (u, v) where $u, v \in A$ there exists I_{t} such that $(u, v) \notin E\left(I_{t}\right)$. Then clearly $(u, v) \notin E\left(H_{1}\right)$ also. Hence the Lemma.

Lemma 3.4. H_{2} is a super graph of G such that if $u, v \in B$, then $(u, v) \notin E\left(H_{2}\right)$.
Proof. The proof is similar to that of the Lemma 3.3.

Theorem 3.5. Given a bipartite graph $G=(A \cup B, E), \operatorname{cub}(G) \leq 2\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$.
Proof. By Lemma 3.2, there exists a super graph G^{*} of G such that if $u \in A, v \in B$ and $(u, v) \notin$ $E(G)$, then $(u, v) \notin E\left(G^{*}\right)$. Also let H_{1} and H_{2} be the super graphs of G, from definitions 3.3 and 3.4 respectively. Now we claim that $G=G^{*} \cap H_{1} \cap H_{2}$. Cleary $G^{*} \cap H_{1} \cap H_{2}$ is a super graph of G, because each of them is a super graph of G. Now to see that $G^{*} \cap H_{1} \cap H_{2}=G$ we only need to prove that if $(u, v) \notin G$, then (u, v) is not an edge of at least one of these three graphs. Now, if $u \in A$ and $v \in B,(u, v) \notin E\left(G^{*}\right)$ by Lemma 3.2. If $u, v \in A$, then $(u, v) \notin E\left(H_{1}\right)$ by Lemma 3.3 and if $u, v \in B$, then $(u, v) \notin E\left(H_{2}\right)$ by Lemma 3.4.

Now, $\operatorname{cub}(G)=\operatorname{cub}\left(G^{*} \cap H_{1} \cap H_{2}\right) \leq \operatorname{cub}\left(G^{*}\right)+\operatorname{cub}\left(H_{1}\right)+\operatorname{cub}\left(H_{2}\right)$. By Lemma $3.2 \operatorname{cub}\left(G^{*}\right) \leq$ $2\left(\Delta^{\prime}+1\right) \ln n_{2}$. Also by the definition of H_{1} and H_{2} we have $\operatorname{cub}\left(H_{1}\right) \leq\left\lceil\ln n_{1}\right\rceil$ and $\operatorname{cub}\left(H_{2}\right) \leq$ $\left\lceil\ln n_{2}\right\rceil$. Thus we have,

$$
\begin{aligned}
\operatorname{cub}(G) & \leq 2\left(\Delta^{\prime}+1\right) \ln n_{2}+\left\lceil\ln n_{1}\right\rceil+\left\lceil\ln n_{2}\right\rceil \\
& \leq 2\left(\Delta^{\prime}+1\right) \ln n_{2}+2\left\lceil\ln n_{2}\right\rceil \quad \text { as } n_{1} \leq n_{2} \\
& =2\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil
\end{aligned}
$$

Hence the theorem.
Remark: In view of the Remark after Lemma 3.2, we can infer that if $t \geq 3\left(\Delta^{\prime}+1\right) \ln n_{2}$, $G=G^{*} \cap H_{1} \cap H_{2}$ with high probability. But then the cube representation output by the algorithm will be in $3\left(\Delta^{\prime}+1\right) \ln n_{2}+\left\lceil\ln n_{2}\right\rceil+\left\lceil\ln n_{1}\right\rceil \leq 3\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$ dimensions. The following Theorem gives the time complexity of our randomized algorithm to construct such a cube representation.

Theorem 3.6. Let $G=(A \cup B, E)$ be a bipartite graph with $n=n_{1}+n_{2}$ vertices, m edges and let $\Delta^{\prime}=\min \left\{\Delta_{A}, \Delta_{B}\right\}$. Then, with high probability, the cube representation of G in $3\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$ dimensions can be generated in $O\left(\Delta^{\prime}(m+n) \ln n_{2}\right)$ time.

Proof. We assume that a random permutation π on n_{1} vertices can be computed in $O\left(n_{1}\right)$ time. Recall that we assign n intervals to n vertices as follows. If $v \in A$, then we assign the interval $[\pi(v), n+\pi(v)]$ to v. If $v \in B$, then let $t=\min _{x \in N(v)} \pi(x)$. Now, the interval $[t+n, t+2 n]$ is given to the vertex v. Since number of edges in the graph $m=\frac{1}{2} \sum_{u \in A \cup B} d(u)$, one invocation of RANDUNIT (G) needs $O(m+n)$ time. Since we need to invoke the algorithm RANDUNIT (G) $O\left(\Delta^{\prime} \ln n_{2}\right)$ times, the overall algorithm that generates the cube representation in $3\left(\Delta^{\prime}+2\right)\left\lceil\ln n_{2}\right\rceil$ dimensions runs in $O\left(\Delta^{\prime}(m+n) \ln n_{2}\right)$ time

References

[1] S. Bellantoni, Irith Ben-Arroyo Hartman, T. M. Przytycka, and S. Whitesides. Grid intersection graphs and boxicity Discrete Mathematics, 114(1-3):41-49, 1993.
[2] L. S. Chandran, C. Mannino, and G. Oriolo. On the cubicity of certain graphs. Inform. Process. Lett., 94(3):113-118, 2005.
[3] L. Sunil Chandran and Naveen Sivadasan. The cubicity of hypercube graphs. Discrete Mathematics, 308(23):5795-5800, 2008.
[4] L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Representing graphs as the intersection of axis-parallel cubes. Manuscript, available at http://arxiv.org/abs/cs/0607092.
[5] M. B. Cozzens. Higher and multidimensional analogues of interval graphs. PhD thesis, Rutgers University, New Brunswick, NJ, 1981.
[6] J. Kratochvíl. A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math., 52(3):233-252, 1994.
[7] H. Maehara. Sphericity exceeds cubicity for almost all complete bipartite graphs. J. Combin. Theory Ser. B, 40(2):231-235, 1986.
[8] T. S. Michael and T. Quint. Sphericity, cubicity, and edge clique covers of graphs. Discrete Appl. Math., 154(8):1309-1313, 2006.
[9] F. S. Roberts. On the boxicity and cubicity of a graph. In Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), pages 301-310. Academic Press, New York, 1969.
[10] W. T. Trotter. A chanracterization of Roberts' inequality fro boxicity. In Discrete Mathematics 28:303-313, 1979.
[11] M. Yannakakis. The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods, 3(3):351-358, 1982.

[^0]: *This research was funded by the DST grant SR/S3/EECE/62/2006

