
Strong Equivalence of Logic Programs under the Infinite-Valued

Semantics

Christos Nomikos
Department of Computer Science, University of Ioannina

P.O. Box 1186, 45110 Ioannina, Greece

Panos Rondogiannis
Department of Informatics & Telecommunications, University of Athens

Panepistimiopolis, 157 84 Athens, Greece

William W. Wadge
Department of Computer Science, University of Victoria

PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6

Abstract

We consider the notion of strong equivalence [4] of normal propositional logic programs
under the infinite-valued semantics [7] (which is a purely model-theoretic semantics that
is compatible with the well-founded one). We demonstrate that two such programs are
strongly equivalent under the infinite-valued semantics if and only if they are logically
equivalent in the infinite-valued logic of [7]. In particular, we show that strong equivalence
of normal propositional logic programs is decidable, and more specifically coNP-complete.
Our results have a direct implication for the well-founded semantics since, as we demon-
strate, if two programs are strongly equivalent under the infinite-valued semantics, then
they are also strongly equivalent under the well-founded semantics.
Keywords: Formal Semantics, Negation in Logic Programming, Strong Equivalence.

1 Introduction

The notion of strong equivalence of logic programs was introduced in [4]. Strong equivalence
is a very intuitive notion, which appears to have direct consequences in the area of program
transformations. Two logic programs P1 and P2 are termed strongly equivalent under a given
semantics if for all logic programs P , P1 ∪ P has the same meaning as P2 ∪ P under this
given semantics. Obviously, when two logic programs are strongly equivalent, we can replace
one for the other inside a bigger program without any change in the observable behavior of
this program. In [4] it is demonstrated that two programs are strongly equivalent under the
answer set semantics if and only if they are equivalent in the logic of here-and-there (HT). The
significance of HT in the theory of logic programming was initially uncovered by the results of
D. Pearce in [6] and strengthened by the results regarding strong equivalence in [4].

The answer set semantics is one of the two main streams of research with respect to nega-
tion in logic programming. The other stream is what is usually termed the “canonical model
semantics”, which seeks among the models of the program a unique “intended model”. Re-
cently, two of the authors obtained a purely model-theoretic canonical model semantics for

1

logic programs with negation, termed the infinite-valued semantics [7]. This new semantics is
compatible with the well-founded one [8], but it has the advantage of being purely logical: the
meaning of a program is the unique minimum infinite-valued model with respect to an ordering
relation that is independent from the syntax of the program. This new approach appears to be
a useful tool in semantic investigations of logic programming. For example, the infinite-valued
semantics has recently motivated a novel, purely game-theoretic approach to the semantics of
negation in logic programming [2].

In this paper we consider the notion of strong equivalence of normal propositional logic pro-
grams under the infinite-valued semantics and we derive a simple and logical characterization:
two programs are strongly equivalent under the infinite-valued semantics if and only if they are
logically equivalent in the infinite-valued logic of [7]. Moreover, although the underlying logic is
based on a truth domain with an infinite number of truth values, we demonstrate that strong
equivalence of normal propositional logic programs is decidable; more specifically, we prove
that it is a coNP-complete problem. Finally, our results about strong equivalence under the
infinite-valued semantics, directly provide a sufficient condition for strong equivalence under
the well-founded semantics. A preliminary version of this article has appeared as a poster
short-paper in [5]. In particular, the present article extends the previous one by providing de-
tailed motivation and background, as well as proofs for all the results. Moreover, it extends the
previous paper by Proposition 2.3 showing that for definite Horn programs strong equivalence
coincides with classical logical equivalence.

The rest of the paper is organized as follows: Section 2 motivates the notion of strong
equivalence and introduces its applicability beyond the answer set semantics. Section 3 intro-
duces the infinite-valued semantics and its underlying infinite-valued logic. Section 4 demon-
strates that under the infinite-valued semantics, strong equivalence of normal propositional
logic programs coincides with logical equivalence. Section 5 examines the complexity of strong
equivalence under the infinite-valued semantics. Finally, section 6 concludes the paper with
relevant discussion.

2 Strong Equivalence of Logic Programs

In this paper we consider normal propositional logic programs built using propositional variables
from a fixed set Q. Formally:

Definition 2.1 A normal propositional logic program is a finite set of normal program clauses
of the form:

p ← q1, . . . , qn,∼r1, . . . ,∼rm

where the qi’s, the ri’s and p are propositional variables from Q. A program is called definite
if in every clause of the above form, m = 0.

The notion of strong equivalence was initially defined and used under the answer set seman-
tics. However, it can be directly generalized to apply to other semantics:

Definition 2.2 Two logic programs P1 and P2 are termed strongly equivalent under a given
semantics if for every logic program P , P1 ∪ P and P2 ∪ P have the same meaning under this
given semantics.

2

Consider applying the above definition to definite logic programs using the standard mini-
mum model semantics of logic programming. The following proposition gives an easy charac-
terization for this case:

Proposition 2.3 Two definite propositional logic programs P1, P2 are strongly equivalent un-
der the minimum model semantics if and only if P1 is logically equivalent to P2.

Proof. (⇐) Assume that P1 and P2 are logically equivalent. Then, P1 ∪ P and P2 ∪ P are
also logically equivalent, i.e., they have the same sets of models, which implies that P1∪P and
P2 ∪ P have the same minimum model (which exists by the model intersection theorem).

(⇒) Assume on the other hand that P1 and P2 are strongly equivalent under the minimum
model semantics, but not logically equivalent. Then, without loss of generality, we may assume
that P1 has a model M that is not a model of P2. We construct a program P as follows:
for each propositional symbol p in P1 such that M(p) = True, P contains the clause p ←.
Then, M is the minimum model of P1 ∪ P , since any proper subset of M would not satisfy
some clauses in P . But then, M is also the minimum model of P2 ∪ P since P1 and P2 are
strongly equivalent. Therefore, M is a model of P2 ∪P , which implies that M is a model of P2

(contradiction).

The above proposition provides an easy characterization of strong equivalence of negation-
free logic programs under the minimum model semantics. However, things are much more
complicated when one extends logic programming with negation-as-failure. The problems can
be illustrated by a simple example. Consider the two programs {p ←∼ r} and {r ←∼ p}.
These programs are not strongly equivalent under any of the well-known semantics for negation.
Moreover, notice that the two programs are logically equivalent when viewed as formulas of
classical logic. In other words, it seems that one can not use classical logic (at least in any
obvious way) in order to conclude that the above two programs are not strongly equivalent.
These observations were originally presented in [4] for the case of the answer set semantics
(where it was also demonstrated that strong equivalence in this case can be decided by checking
for logical equivalence in the logic of here-and-there).

In the rest of this paper we examine strong equivalence under the infinite-valued semantics
of [7]. The main theorem we obtain is very similar in nature to Proposition 2.3: two normal
propositional logic programs are strongly equivalent under the infinite-valued semantics if and
only if they are equivalent in infinite-valued logic. The similarity of these two results appears
to suggest that the infinite-valued approach is of a fundamental importance in the study of the
semantics of negation in logic programming.

3 The Infinite-Valued Semantics

In this section we introduce the basic concepts from [7] that we will need in this paper. The
basic idea behind the infinite-valued semantics is that, in order to have a purely model theoretic
semantics for negation-as-failure, one should use a richer logical framework than classical logic
or even 3-valued logic. Informally, we consider an extended truth domain and use these extra
values to distinguish between ordinary negation and negation-as-failure. Consider for example
the program:

p ←
r ← ∼p
s ← ∼q

3

Under the negation-as-failure approach both p and s receive the value True. We would argue,
however, that in some sense p is “truer” than s. Namely, p is true because there is a clause which
says so, whereas s is true only because we are never obliged to make q true. In a sense, s is true
only by default. Our truth domain adds a “default” truth value T1 just below the “absolute”
truth value T0, and a weaker false value F1 just above (“not as false as”) the absolute false
value F0. We can then understand negation-as-failure as combining ordinary negation with a
weakening. Thus, ∼F0 = T1 and ∼T0 = F1. Since negation can effectively be iterated, our
domain requires a whole sequence . . . ,T3,T2, T1 of weaker and weaker truth values below T0

but above a neutral value 0 and a mirror image sequence F1, F2,F3, . . . above F0 and below
0.1 In [7] it is shown that, over this extended domain, every logic program with negation has
a unique minimum model, under an appropriate ordering (see Definition 3.5 and Theorem 3.6
below); for the above program, this model is {(p,T0), (q, F0), (s,T1), (r,F1)}. Moreover, if in
this model we collapse all the Tk and Fk to True and False respectively, we get the 3-valued
well-founded model [8] of the program.

The infinite-valued semantics is therefore based on a truth domain with the ordering:

F0 < F1 < F2 · · · < 0 < · · · < T2 < T1 < T0

Intuitively, F0 and T0 are the classical False and True values and 0 is the undefined value. The
intuition behind the new values is that they express different levels of truth and falsity. In the
following we denote by V the set consisting of the above truth values. Interpretations are now
defined as follows:

Definition 3.1 An infinite-valued interpretation I is a function from the set Q of propositional
symbols to the set V of truth values; I is extended to apply to literals, as follows:

I(∼q) =





Tn+1 if I(q) = Fn

Fn+1 if I(q) = Tn

0 if I(q) = 0

for all q ∈ Q.

Satisfiability of a clause can now be defined:

Definition 3.2 Let P be a program and let I be an infinite-valued interpretation. Then, I
satisfies a clause p ← `1, . . . , `n of P if I(p) ≥ min{I(`1), . . . , I(`n)}. Moreover, I is a model
of P if I satisfies all clauses of P .

Given an interpretation of a program, we adopt a specific notation for the set of atoms of the
program that are assigned a specific truth value:

Definition 3.3 Let P be a program, let I be an infinite-valued interpretation and let v ∈ V .
Then, we define I ‖ v = {p ∈ Q | I(p) = v}.

The following relations on infinite-valued interpretations will be needed:
1In fact, in [7] a Tα and a Fα are introduced for all countable ordinals α; since in this paper we deal with

finite propositional programs, we will not need this generality here.

4

Definition 3.4 Let I and J be infinite-valued interpretations and n ∈ N. We write I =n J , if
for all k ≤ n, I ‖ Tk = J ‖ Tk and I ‖ Fk = J ‖ Fk. We write I <n J , if for all k < n, I =k J
and either I ‖ Tn ⊂ J ‖ Tn and I ‖ Fn ⊇ J ‖ Fn, or I ‖ Tn ⊆ J ‖ Tn and I ‖ Fn ⊃ J ‖ Fn.
We write I vn J if I =n J or I <n J .

Definition 3.5 Let I and J be infinite-valued interpretations. We write I <∞ J , if there
exists n ∈ N (that depends on I and J) such that I <n J . We write I v∞ J if either I = J or
I <∞ J .

It is easy to prove (see [7]) that the relation v∞ on the set of infinite-valued interpretations
is a partial order, while for every n ∈ N, the relation vn is a preorder. Moreover, the following
theorem holds [7]:

Theorem 3.6 Every normal propositional logic program P has a unique minimum infinite-
valued model MP under v∞.

The above theorem establishes a syntax-independent characterization of the semantics of
logic programs with negation. Moreover, the following theorem of [7] demonstrates that the
infinite-valued model is compatible with the well-founded one:

Theorem 3.7 Let P be a normal propositional logic program and let NP be the 3-valued in-
terpretation that results from the minimum infinite-valued model MP of P by collapsing all the
Ti values to True and all the Fi values to False. Then, NP is the well-founded model of P .

The above theorem actually suggests that the infinite-valued model is a refinement of the
well-founded one.

4 Strong Equivalence under the Infinite-Valued Semantics

In this section we demonstrate that strong equivalence under the infinite-valued semantics
corresponds to logical equivalence in infinite-valued logic. We start with a simple lemma which
shows how we can essentially encode truth values in V by program variables:

Lemma 4.1 For every n ∈ N, there exists a program P using only the propositional symbols
rF0 , . . . , rFn , rT0 , . . . , rTn , r0, such that MP (rFi) = Fi, MP (rTi) = Ti and MP (r0) = 0, where
MP is the minimum infinite-valued model of P .

Proof. Take P to be the program:

r0 ← ∼r0

rFn ← ∼rTn−1

rTn ← ∼rFn−1

. . .
rF1 ← ∼rT0

rT1 ← ∼rF0

rT0 ←
It is then easy to see that the minimum infinite-valued model of the above program (see [7] for
how this model can be constructed) satisfies the conditions specified by the lemma.

5

Theorem 4.2 Two normal propositional logic programs P1, P2 are strongly equivalent under
the infinite-valued semantics if and only if they are logically equivalent in infinite-valued logic.

Proof. (⇐) Assume that P1 and P2 are logically equivalent in infinite-valued logic. Then,
every infinite-valued model that satisfies one of them also satisfies the other. This immediately
implies that for all programs P , P1 ∪ P and P2 ∪ P are logically equivalent in infinite-valued
logic, i.e., they have the same sets of infinite-valued models. Thus, P1∪P and P2∪P also have
the same minimum infinite-valued model (which exists by Theorem 3.6). Therefore, P1 and P2

are strongly equivalent under the infinite-valued semantics.

(⇒) Assume that P1 and P2 are strongly equivalent under the infinite-valued semantics,
but not logically equivalent in infinite-valued logic. Then, without loss of generality, we may
assume that P1 has a model M which is not a model of P2; moreover, we may assume that
M(q) = F0, for every q ∈ Q that does not appear in P1 ∪ P2. We show how a program P can
be constructed, such that P1 ∪ P and P2 ∪ P do not have the same minimum infinite-valued
model. First, P contains the rules that encode all the truth values assigned by M to the
propositional symbols that appear in P1, as demonstrated by Lemma 4.1. In other words, P
contains clauses regarding the propositional symbols rF0 , . . . , rFn , rT0 , . . . , rTn , r0 (disjoint from
the propositional symbols that appear in P1 ∪ P2), where n is the largest subscript of a truth
value assigned by M to propositional symbols of P1. Moreover, for every propositional symbol
p in P1, P contains the clause p ← rM(p). Let N be an interpretation identical to M the only
difference being that N additionally assigns to each propositional symbol rv the appropriate
value, i.e., N(rv) = v.

We claim that N is the minimum infinite-valued model of P1∪P . Obviously, N is a model of
P1 ∪P since it is a model of both P1 and P . Now, assume there exists N∗ such that N∗ <∞ N
and N∗ is a model of P1 ∪ P . Then, there exists k ∈ N such that N∗ <k N . This means
that there exists a propositional symbol p that appears in P1 such that either N∗(p) = Fk and
N(p) > Fk or N(p) = Tk and N∗(p) < Tk. But then, in both cases, N∗(p) < N(p) = M(p),
which implies that N∗ does not satisfy the clause p ← rM(p) that exists in P . In other words,
N∗ is not a model of P and consequently not a model of P1 ∪P (contradiction). Therefore, N
is the minimum infinite-valued model of P1∪P and since P1 and P2 are strongly equivalent, N
is also the minimum infinite-valued model of P2 ∪ P . But then, N is also a model of P2 which
also implies that M is a model of P2 (contradiction).

The above theorem leads to a sufficient condition for strong equivalence under the well-founded
semantics:

Corollary 4.3 If two normal propositional logic programs P1 and P2 are logically equivalent
in infinite-valued logic then they are strongly equivalent under the well-founded semantics.

Proof. It follows immediately by combining Theorems 4.2 and 3.7.

It should be noted here that the study of strong equivalence under the well-founded semantics,
is much more limited than that for the answer set semantics. The only other relevant work we
are aware of, is the one reported in [1].

Example 4.4 Consider the programs:

p ← ∼q p ← ∼r
q ← r and q ← r
r ← q r ← q

6

Notice now that given a model M of the first program, we must have M(q) = M(r), and
similarly for any model of the second program (due to the second and third clauses of the
programs). This immediately leads to the fact that the two programs are logically equivalent
and therefore strongly equivalent under the infinite-valued semantics. By Corollary 4.3, the
two programs are strongly equivalent under the well-founded semantics.

5 Complexity of Strong Equivalence

In this section we examine the complexity of deciding whether two given propositional normal
logic programs are strongly equivalent under the infinite-valued semantics. Since the underlying
logic has an infinite number of truth values, it is not an obvious fact that the above problem
is decidable. In order to obtain the decidability result, we prove that if two programs are not
logically equivalent in the infinite-valued logic, then there exists an interpretation using truth
values with small indices that witnesses this fact. A more careful inspection shows that the
problem is actually in coNP. We also prove that the problem is coNP-hard, using a reduction
form 3SAT to its complementary problem. The above coNP-completeness result means that if
two programs are not strongly equivalent, then there exists a short (with respect to the size of
the programs) certificate, which can be efficiently checked. However, it is unlikely that we can
effectively construct this certificate for a given pair of programs in polynomial time. Moreover,
it is unlikely that a similar certificate exists if two programs are logically equivalent.

Theorem 5.1 The problem of whether two normal propositional logic programs are strongly
equivalent under the infinite-valued semantics is in coNP.

Proof. Let P1, P2 be two programs that are not strongly equivalent and let S be the set
of propositional symbols that appear in P1 ∪ P2. By Theorem 4.2, without loss of gener-
ality, there exists an interpretation I that is a model of P1, but not a model of P2. We
will first prove that there exists an interpretation J , such that for every p ∈ S, J(p) ∈
{0, F0, T0,F1, T1, . . . ,F2·|S|, T2·|S|}, which is also a model of P1, but not a model of P2.

Let L be the set of all literals constructed from propositional symbols in S. We define the
function r : N→ N as follows:

r(n) = |{k : k < n and ∃` ∈ L such that I(`) = Tk or I(`) = Fk}|

Notice that r is a non-decreasing function satisfying the property r(n) ≤ |L| = 2 · |S| for every
n ∈ N. Moreover, if there exists some ` ∈ L such that I(`) ∈ {Ti, Fi}, then r(i + 1) = r(i) + 1.

Define the following mapping between truth values:

h(v) =





Tr(n) if v = Tn

Fr(n) if v = Fn

0 if v = 0

It is easy to see that h is an increasing function (i.e., if v1 ≤ v2 then h(v1) ≤ h(v2)).
Furthermore, the restriction of h to the set V ∗ = {v ∈ V | ∃` ∈ L such that I(`) = v}, which
contains the truth values assigned to literals in L by I, is a strictly increasing function (i.e., if
v1 < v2 then h(v1) < h(v2)).

7

Let J(p) = h(I(p)). Since r(n) ≤ 2·|S|, it holds that J(p) ∈ {0,F0, T0, F1,T1, . . . , F2·|S|,T2·|S|},
for every p ∈ S. We will next show that J satisfies a clause C ∈ (P1 ∪ P2), if and only if I
satisfies C.

Consider first a negative literal ∼p. If I(p) = Ti then J(p) = Tr(i) and J(∼p) = Fr(i)+1 =
Fr(i+1) = h(Fi+1) = h(I(∼p)). Similarly, if I(p) = Fi then J(∼p) = h(Ti+1) = h(I(∼p)) and
if I(p) = 0 then J(∼p) = 0 = h(I(∼p)). Therefore, J(`) = h(I(`)), for every ` ∈ L.

Now consider a clause C = p ← `1, `2, . . . , `n in P1 ∪ P2. If I satisfies C then I(p) ≥ I(`i),
for some i, 1 ≤ i ≤ n. This implies that J(p) = h(I(p)) ≥ h(I(`i)) = J(`i), for some i,
1 ≤ i ≤ n (using the fact that h is increasing). Therefore, J also satisfies C.

Conversely, if I does not satisfy C then I(p) < I(`i), for every i, 1 ≤ i ≤ n. This implies
that J(p) = h(I(p)) < h(I(`i)) = J(`i), for every i, 1 ≤ i ≤ n, (using the fact that the
restriction of h to V ∗ is strictly increasing). Consequently, J does not satisfy C.

Therefore, J satisfies exactly the same clauses of P1 ∪ P2 as I, which implies that J is a
model of P1, but not a model of P2. Moreover, every truth value used by J can be represented
using O(log |S|) symbols; thus, J can be represented by a string of length polynomial to the
total size of P1 and P2. Finally, if the string representing J is given, we can verify in polynomial
time that it is actually a model of P1, but not a model of P2.

Consequently, every pair of programs that are not strongly equivalent (that is, every ‘no’-
instance of the problem) possesses a polynomial certificate, which can be verified in polynomial
time. Thus, deciding whether two programs are strongly equivalent is in coNP.

Example 5.2 Consider the programs {q ← q,∼ q, q ←∼ q} and {q ← q, q ←∼ q}. In
order to demonstrate that they are strongly equivalent it suffices to demonstrate that they are
equivalent for all interpretations I such that I(q) ∈ {F0, F1, F2, 0, T2, T1, T0}. By inspection,
it follows easily that the two programs are indeed strongly equivalent.

Theorem 5.3 The problem of whether two normal propositional logic programs are strongly
equivalent under the infinite-valued semantics is coNP-complete.

Proof. By Theorem 5.1 the problem is in coNP. In order to prove that it is coNP-hard, it
suffices to prove that its complementary problem is NP-hard. We will prove this fact using a
polynomial-time reduction from 3SAT.

Let φ be an instance of 3SAT. That is, φ =
∧n

i=1 ci, where ci = `i,1∨`i,2∨`i,3 and `i,j is either
a variable or the negation of a variable. Let v1, v2, . . . , vm be all the variables that appear in φ
(we may assume that these variables are elements of Q) and let p, q be two other variables from
Q. We construct the following sets of rules: A = {p ← q,∼ q}; B = {B1, B2, . . . , Bm}, where
Bk is p ← vk,∼vk; and C = {C1, C2, . . . , Cn}, where Ci is p ← `i,1, `i,2, `i,3. Let P1 = A∪B∪C
and P2 = B ∪ C. Obviously this construction can be performed in polynomial time. We will
prove that φ is satisfiable iff P1 and P2 are not strongly equivalent.

Assume that φ is satisfiable. That is, there exists a 2-valued truth assignment s such that
s(φ) = True. Consider the infinite-valued interpretation I defined as follows:

I(vk) = T0 iff s(vk) = False

I(vk) = F0 iff s(vk) = True

I(q) = 0

8

I(p) = F1

I(r) = F0 for all other r ∈ Q

Since one of vk, ∼vk has value F0 or F1, I satisfies every clause Bk in B. Moreover, since
s satisfies φ, every clause ci in φ contains a literal `i,j with s(`i,j) = True, which implies that
I(`i,j) is either F0 or F1. Consequently, I satisfies every clause Ci in C. On the other hand I
does not satisfy the clause in A. Therefore, I is a model of P2, but not a model of P1 and by
Theorem 4.2, P1 and P2 are not strongly equivalent.

Conversely, assume that P1 and P2 are not strongly equivalent. By Theorem 4.2, since
P2 ⊂ P1, there exists an infinite-valued interpretation I that is a model of P2 but not a model
of P1, i.e., it satisfies the clauses in B∪C but not the clause in A. I has the following properties:

1. I(p) < 0, since I does not satisfy the clause in A.

2. I(vk) 6= 0 for all k, since I satisfies Bk and property 1 holds.

Consider the 2-valued truth assignment s with s(vk) = True iff I(vk) < 0. We claim that s
satisfies φ. To prove this claim, consider any clause ci in φ. Since I satisfies Ci and I(p) <
0, there exists j such that I(`i,j) < 0. Thus s(`i,j) = True, which implies s(ci) = True.
Consequently, s(φ) = True, which proves that φ is satisfiable.

6 Discussion

The work presented in this paper is the first to examine the problem of strong equivalence under
the infinite-valued semantics for negation. Our results demonstrate that strong equivalence
under this semantics coincides with logical equivalence in the corresponding infinite-valued
logic. On the negative side, we have demonstrated that the problem of testing two programs
for strong equivalence, is coNP-complete. This implies that one can not expect in general to
devise efficient algorithms that can check for strong equivalence. Actually, for more extended
languages (eg., first-order logic programs), testing for any sensible form of program equivalence,
becomes undecidable. What is then the benefit of studying such notions that may have an
unmanageable complexity? Strong equivalence (as-well-as other related notions) are very useful
in that they offer us a framework under which one can define and verify various program
transformation techniques. Notice that, in designing program transformation techniques, there
is no need to decide about the strong equivalence of two arbitrary programs, which might be
intractable. Instead, one seeks for transformation schemes which can be performed efficiently
and preserve strong equivalence. This is very similar to a situation that also arises in logic:
although deciding the satisfiability, validity or equivalence of arbitrary propositional formulas
is intractable, we can efficiently construct satisfiable or valid formulas or transform a given
formula to an equivalent one using well-known properties of boolean connectives. In conclusion,
defining transformations that preserve strong equivalence is very important since they can then
be used in order to preprocess and optimize a program before actual execution. Defining such
transformations is a worthy program that needs further investigation (which is beyond the
scope of this paper).

Closing, we believe that the infinite-valued semantics is a promising approach for further
semantic investigations in the theory of logic programming. Our belief is based (for example)
on the recent, purely game-theoretic approach to the semantics of negation in logic program-
ming [2], which was motivated and proved correct based on the infinite-valued approach. A

9

natural question for future work would be to consider the notion of strong equivalence for
generalized disjunctive logic programs under the infinite-valued semantics (or for even more
extended classes of programs). We are currently investigating such issues.

References

[1] P. Cabalar, S. P. Odintsov and D. Pearce. Logical Foundations of Well-Founded Seman-
tics. In Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning, pages 25-35, 2006.

[2] Ch. Galanaki, P. Rondogiannis and W.W. Wadge. An Infinite-Game Semantics for Well-
Founded Negation in Logic Programming. Annals of Pure and Applied Logic, 151(2–3):70–
88, 2008.

[3] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
Proceedings of the Fifth Logic Programming Symposium, pages 1070–1080. MIT Press,
1988.

[4] V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

[5] Ch. Nomikos, P. Rondogiannis, and W. W. Wadge. A Sufficient Condition for Strong
Equivalence Under the Well-Founded Semantics. In Proceedings of the 21st International
Conference on Logic Programming, pages 414–415, 2005.

[6] D. Pearce. A new Logical Characterization of Stable Models and Answer Sets. In L. Pereira
J. Dix and T. Przymusinski, editors, Non-Monotonic Extensions of Logic Programming,
pages 57–70. Springer-Verlag, 1997.

[7] P. Rondogiannis and W.W. Wadge. Minimum Model Semantics for Logic Programs with
Negation-as-Failure. ACM Transactions on Computational Logic, 6(2): 441-467, 2005.

[8] A. van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General
Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

10

