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Fast Arithmetics Using Chinese Remaindering

George Davida∗, Bruce Litow†and Guangwu Xu‡

Abstract

In this paper, some issues concerning the Chinese remaindering

representation are discussed. Some new converting methods, including

an efficient probabilistic algorithm based on a recent result of von zur

Gathen and Shparlinski [5], are described. An efficient refinement of

the NC1 division algorithm of Chiu, Davida and Litow [2] is given,

where the number of moduli is reduced by a factor of logn.

Keywords: Parallel algorithm; Chinese remaindering representation.

1 Introduction

For the fundamental arithmetic operations, it is often desirable to represent

an integer as a vector of smaller integers. This can be done by selecting a set

of pairwise coprime positive integers m1,m2, . . . ,mr, and mapping an inte-

ger x to the vector of residues (|x|m1 , |x|m2 , · · · , |x|mr
), where |x|mi

denotes

x (mod mi). This approach is called the Chinese remaindering represen-

tation (CRR), as the Chinese remainder theorem (CRT) guarantees such

mapping is meaningful. Using CRR, large calculations can be split as a

series of smaller calculations that can be performed independently and in

parallel. So, this approach has a significant role to play in applications such

as cryptography and high precision scientific computation.
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It is well known that three basic arithmetic operations, addition, sub-

traction, and multiplication, can be performed in O(log n) time using nO(1)

processors. These operations can also be done in the manner of log-space

uniform. However, the parallel complexity of integer division is a subtle

problem and has attracted a lot of attention. The first O(log n) time nO(1)

sized circuit for integer division was exhibited by Beame, Cook and Hoover

[1]. Recently, the log-depth, polynomial size, logspace-uniform circuit fam-

ily for integer division (i.e., integer division is in logspace-uniform NC1) was

described by Chiu, Davida and Litow [2]. This settled a longstanding open

problem and provided an optimal computation efficiency theoretically.

In this paper, we discuss some issues concerning the Chinese remainder-

ing representation. The organization of the paper is as follows. Section 2

describes the Chinese remaindering system. Two methods for converting a

vector to the corresponding integer are presented in this section. Section 3

focuses on the integer division using CRR. Under the framework of NC1, an

efficient refinement of the division algorithm of Chiu, Davida and Litow [2]

is proposed.

2 Chinese Remainder Representation

LetM = {m1,m2, . . . ,mr} be a set of pairwise coprime integers and M =
r
∏

i=1

mi. For a set of integers x1, x2, . . . , xr with 0 ≤ xi < mi, the Chinese

Remainder Theorem says that the system of congruence



















x ≡ x1 (mod m1)

x ≡ x2 (mod m2)

· · ·

x ≡ xr (mod mr)

has a unique solution 0 ≤ x < M . In fact, using the extended Euclidean

algorithm, one finds integers u1, u2, · · · , ur such that

r
∑

i=1

ui
M

mi

= 1,

2



and it is easy to verify that

x =
r

∑

i=1

xiui
M

mi

(mod M) (1)

gives the desired solution. It is remarked that one can also choose ui =

(
M

mi

)−1 (mod mi); and such choice of ui will be used in the rest of our

discussion.

The above system is called a Chinese remaindering representation (CRR)

based on the setM, and is denoted by CRR(M).

Now we present a method of finding ui’s which can be seen as an alter-

native to the Garner algorithm described in [7] (pages 290,293).

For each j > 1, mj is coprime tom1 · · ·mj−1. Therefore, by the extended

Euclidean algorithm, there exist integers αj, βj such that

αjmj + βjm1 · · ·mj−1 = 1. (2)

With these r − 1 pairs of (αi, βi), the coefficients ui can be computed as

follows:

u1 ← α2α3 · · ·αr (mod m1)

u2 ← β2α3 · · ·αr (mod m2)

u3 ← β3α4 · · ·αr (mod m3)

. . .

ur ← βr (mod mr)

The correctness of the above algorithm is based on the following identity:

(α2 · · ·αr)m2m3 · · ·mr + (β2α3 · · ·αr)m1m3 · · ·mr +

(β3α4 · · ·αr)m1m2m4 · · ·mr + · · · + βrm1m2 · · ·mr−1 = 1.

This identity can be verified using the standard mathematical induction:

for i > 2, suppose that

(α2 · · ·αi−1)m2m3 · · ·mi−1 + (β2α3 · · ·αi−1)m1m3 · · ·mi−1 +

(β3α4 · · ·αi−1)m1m2m4 · · ·mi−1 + · · ·+ βi−1m1m2 · · ·mi−2 = 1.
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Multiply both sides of the above by αimi, and apply the equation (1) for

j = i, one gets

(α2 · · ·αi)m2m3 · · ·mi + (β2α3 · · ·αi)m1m3 · · ·mi +

(β3α4 · · ·αi)m1m2m4 · · ·mi + · · · + βim1m2 · · ·mi−1 = 1.

It is remarked that in this process, we call the extended Euclidean algo-

rithm r − 1 times. For the method described in [7],
r(r − 1)

2
instances of

extended Euclidean algorithm need to be invoked, for pairs (mi,mj) with

i < j.

Next we present a probabilistic converting method for CRT. For positive

integers N1, N2, let a1, a2, · · · , ar be in {1, 2, · · · , N1}. Pick 2r uniformly

distributed random integers s1, s2, · · · , sr and t1, t2, · · · , tr in {1, 2, · · · , N2}

and consider the linear forms

S =

r
∑

i=1

aisi, T =

r
∑

i=1

aiti.

It has been proved by Cooperman, Feisel, von zur Gathen and Havasin in

[3] that with high probability

gcd(a1, a2, · · · , ar) = gcd(S, T ). (3)

This was improved recently by von zur Gathen and Shparlinski [5] and they

gave the following strong result: with probability at least
6

π2
+ o(1),

gcd(a1, a2, · · · , ar) = gcd(S, T ),

provided that
N2

r + lnN1
is large enough.

This result can be used to produce a very efficient probabilistic algorithm

for Chinese remaindering. Let us take ai =
M
mi

. We can find x such that



















x ≡ x1 (mod m1)

x ≡ x2 (mod m2)

· · ·

x ≡ xr (mod mr)

by the following steps:
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1. Choose random linear forms S, T until

gcd(S, T ) = 1.

(The expected number for getting the desired pair of S, T is less than

2.)

2. Use extended Euclidean algorithm to get integers u, v such that

uS + vT =

r
∑

i=1

(usi + vti)
M

mi

= 1.

3. The solution x is

x =

r
∑

i=1

xi(usi + vti)
M

mi

(mod M).

Remark. It can be seen that in this routine, if the extended Euclidean

algorithm is used to compute all gcds, then the expected number of rounds

to get u, v in step 2 is less than 2. In step 3, usi + vti can be replaced by

(usi + vti) (mod mi).

3 An Improved NC1 Division Algorithm

In this section, we discuss the division algorithm of Chiu, Davida and Litow

[2]. A careful analysis enables us to reduce the number of prime moduli by

a factor of log n.

Let α be a real number. A rational number α′ is said to be an n−bit

under approximation to α if

0 ≤ α− α′ ≤
1

2n
.

The next result improves the lemma 3.2 of [2]:

Lemma 1 Let 1
2 ≤ α < 1 and β = 1 − α. If

t1

A1
,
t2

A2
, . . . ,

tn+1

An+1
are (n +

3)−bit underapproximations to β, then

1 +
t1

A1
+

t1t2

A1A2
+ · · ·+

n+1
∏

i=1

ti

Ai

is an n−bit underapproximation to
1

α
.
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Proof. Let

η = min
1≤i≤n+1

{
ti

Ai

}.

Note that 0 ≤ β ≤
1

2
and 0 ≤ β − η ≤

1

2n+3
, we see that

1

α
− (1 +

t1

A1
+

t1t2

A1A2
+ · · ·+

n+1
∏

i=1

ti

Ai

) ≤
1

α
− (1 + η + η2 + · · ·+ ηn+1)

=
1

1− β
−

1− ηn+2

1− η

=
( 1

1− β
−

1

1− η

)

+
ηn+2

1− η

=
β − η

(1− β)(1− η)
+

ηn+2

1− η

≤
1

2n+3

1
2 ·

1
2

+
1

2n+2

1
2

=
1

2n
.

In [2], the log-depth, polynomial size, logspace-uniform circuit family

for integer division was constructed by Chiu, Davida and Litow. In other

words, integer division is proved to be in logspace-uniform NC1. This solves

a longstanding open problem.

Notice that the original construction of the NC1 circuit family for integer

division needs 3n2 (actually 2n2 + 5n) primes numbers. The main purpose

of this section is to refine the Chiu-Davida-Litow construction to achieve

more efficiency. To be more specific, we shall show that
n2

log n
+ 3n primes

will be sufficient.

Theorem 1 The number of prime moduli of the Chiu-Davida-Litow NC1

integer division algorithm can be reduced to
n2

log n
+ 3n.

Proof. The proof follows the similar line as in [2].

The goal is: given x, y < 2n, compute the CRR of

⌊

x

y

⌋

.
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Let N =

⌊

n2

log n

⌋

+ 3n.

Suppose that x, y are represented in a CRR system with base {m1,m2, . . . ,mn}

where mi is the (i+ 2)th prime (m1 > 3). This base is extended to

{m1,m2, . . . ,mn,mn+1, . . . ,mN}.

A product D of the initial part of the base and some power of 2 will be

constructed so that
1

2
≤

y

D
< 1.

According to [2], if y = 2, set D = 2. If y > 2, then take j < n to be the

number such that

m1m2 · · ·mj ≤ y < m1m2 · · ·mjmj+1.

Let k be the smallest positive integer such that y < 2km1m2 · · ·mj (therefore
y

2km1m2 · · ·mj

≥
1

2
), and set

D = 2km1m2 · · ·mj.

Let r =
⌊ n

log n

⌋

. If n ≥ 26, then
n− log n− (log n)2

log n
> 3. The fact that

mn+1 > 2n gives

(mn+1)
r > (2n)

⌊

n

log n

⌋

≥
(

2log n+1
)

n

logn
−1

= 2n+
n−log n−(log n)2

log n

> 2n+3 (4)

Since n+ (n+ 1)r ≤ N , we can form the following products:

A1 = mn+1mn+2 · · ·mn+r

A2 = mn+r+1mn+r+2 · · ·mn+2r

· · ·

An+1 = mn+nr+1mn+nr+2 · · ·mn+(n+1)r.
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We note that Ai > 2n+3 for i = 1, 2, . . . , n+ 1, by (4).

Next, choose

ti =
⌊(D − y)Ai

D

⌋

, for i = 1, 2, . . . , n+ 1.

Similar to [2],
ti

Ai

can be computed in NC1. It is also routine to check that

ti

Ai

is an (n+ 3)−bit underapproximation to β =
D − y

D
.

Finally, by the lemma 1, we get an n−bit underapproximation to
1

α

where α =
y

D
:

γ = 1 +
t1

A1
+

t1t2

A1A2
+ · · · +

t1t2 · · · tn+1

A1A2 · · ·An+1
.

Again, similar to [2], we have

⌊x

y

⌋

=
⌊

x
γ

D

⌋

or
⌊x

y

⌋

=
⌊

x
γ

D

⌋

+ 1.

And all the computations are done in NC1.

Remark. The Chebyshev bounds for primes can be used to get an inequality

which is a bit sharper than the inequality (4), but there is no significant

reduction on the number of prime moduli.
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