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Fast Arithmetics Using Chinese Remaindering

George Davida? Bruce Litow'and Guangwu Xu?

Abstract

In this paper, some issues concerning the Chinese remaindering
representation are discussed. Some new converting methods, including
an efficient probabilistic algorithm based on a recent result of von zur
Gathen and Shparlinski [5], are described. An efficient refinement of
the NC! division algorithm of Chiu, Davida and Litow [2] is given,
where the number of moduli is reduced by a factor of logn.
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1 Introduction

For the fundamental arithmetic operations, it is often desirable to represent
an integer as a vector of smaller integers. This can be done by selecting a set
of pairwise coprime positive integers my, mo, ..., m,, and mapping an inte-
ger z to the vector of residues (|Z|m,, |Z|mys " » |Z|m,. ), where |z|,,, denotes
x (mod m;). This approach is called the Chinese remaindering represen-
tation (CRR), as the Chinese remainder theorem (CRT) guarantees such
mapping is meaningful. Using CRR, large calculations can be split as a
series of smaller calculations that can be performed independently and in
parallel. So, this approach has a significant role to play in applications such
as cryptography and high precision scientific computation.
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It is well known that three basic arithmetic operations, addition, sub-
traction, and multiplication, can be performed in O(logn) time using nOM)
processors. These operations can also be done in the manner of log-space
uniform. However, the parallel complexity of integer division is a subtle
problem and has attracted a lot of attention. The first O(logn) time n°™)
sized circuit for integer division was exhibited by Beame, Cook and Hoover
[1]. Recently, the log-depth, polynomial size, logspace-uniform circuit fam-
ily for integer division (i.e., integer division is in logspace-uniform NC') was
described by Chiu, Davida and Litow [2]. This settled a longstanding open
problem and provided an optimal computation efficiency theoretically.

In this paper, we discuss some issues concerning the Chinese remainder-
ing representation. The organization of the paper is as follows. Section 2
describes the Chinese remaindering system. Two methods for converting a
vector to the corresponding integer are presented in this section. Section 3
focuses on the integer division using CRR. Under the framework of NC!, an
efficient refinement of the division algorithm of Chiu, Davida and Litow [2]

is proposed.

2 Chinese Remainder Representation

Let M = {my,ma,...,m;} be a set of pairwise coprime integers and M =
T
Hm,-. For a set of integers x1,xo,...,2, with 0 < z; < m;, the Chinese
i=1

Remainder Theorem says that the system of congruence

x=x1 (mod my)
x=xz9 (mod mg)

r =z, (modm,)

has a unique solution 0 < x < M. In fact, using the extended Euclidean

algorithm, one finds integers ui, uso, - -+ , u, such that
M
> Ui =1,
i=1 ¢



and it is easy to verify that

- M
x = Zaz,u,a (mod M) (1)
i=1

gives the desired solution. It is remarked that one can also choose u; =

M

(—)~! (mod m;); and such choice of u; will be used in the rest of our
e

discussion.

The above system is called a Chinese remaindering representation (CRR)
based on the set M, and is denoted by CRR(M).

Now we present a method of finding u;’s which can be seen as an alter-
native to the Garner algorithm described in [7] (pages 290,293).

For each j > 1, m; is coprime to my - - - m;_1. Therefore, by the extended
Euclidean algorithm, there exist integers «;, 8; such that

a;m; + ﬁjml ceemyjop = 1. (2)

With these r» — 1 pairs of (g, i), the coefficients u; can be computed as
follows:

up <+ agaz---ap (mod my)

4

U9 Boas - a,  (mod mg)

us < fPsag---ap (mod ms)
up < Br (mod m,)
The correctness of the above algorithm is based on the following identity:

(ag - ap)mamsz---my + (Beaz - - - ap)mimg - - - my +

(Bsaq -+ ap)mimomy -+ -my + -+ + fpmimg - - - mp_1 = 1.

This identity can be verified using the standard mathematical induction:
for ¢ > 2, suppose that

(-~ aj_1)moms---mi_1 + (B2az - j—1)mima---m;_1 +

(53044 te ai—l)m1m2m4 oMy 4+ Bimimame - -mi—g = 1.



Multiply both sides of the above by «;m;, and apply the equation () for
j =1, one gets

(g -+ ag)mams - m; + (Baaz - - ci)mamg - - - m; +

(Bgoug - - a)mimamy - - -myi + - -+ + Bimimg - - mi—q = 1.

It is remarked that in this process, we call the extended Euclidean algo-

r(r—1)
2

extended Euclidean algorithm need to be invoked, for pairs (m;,m;) with

rithm 7 — 1 times. For the method described in [7], instances of

<.

Next we present a probabilistic converting method for CRT. For positive
integers Ny, No, let aj, a9, -+ ,a, be in {1,2,--- | Ny}. Pick 2r uniformly
distributed random integers si, s, - , s, and t1,to, -+ ,t,. in {1,2,--- , No}
and consider the linear forms

T T
S = Zaisi, T = Zaiti.
i=1 i=1
It has been proved by Cooperman, Feisel, von zur Gathen and Havasin in
[3] that with high probability
ged(aq,ag, -+ ,a,) = ged(S,T). (3)

This was improved recently by von zur Gathen and Shparlinski [5] and they
6

gave the following strong result: with probability at least — + o(1),
77

ng(a17a27 e ,(17«) = ng(Sv T)7

provided that is large enough.

Ny
r+1n N

This result can be used to produce a very efficient probabilistic algorithm
for Chinese remaindering. Let us take a; = %Z We can find x such that

x1  (mod myq)

X

x=xz9 (mod mg)

r =z, (modm,)

by the following steps:



1. Choose random linear forms S, T until
ged(S,T) = 1.

(The expected number for getting the desired pair of S,T is less than
2.)

2. Use extended Euclidean algorithm to get integers u,v such that

- M
uS + vl = Z(usl + vti)g =1.

i=1 g

3. The solution zx is
T
M
xr = Z;xl(usl + Uti)% (mod M).
i

Remark. It can be seen that in this routine, if the extended Euclidean
algorithm is used to compute all geds, then the expected number of rounds
to get u,v in step 2 is less than 2. In step 3, us; + vt; can be replaced by
(us; + vt;) (mod my).

3 An Improved NC! Division Algorithm

In this section, we discuss the division algorithm of Chiu, Davida and Litow
[2]. A careful analysis enables us to reduce the number of prime moduli by
a factor of logn.
Let a be a real number. A rational number o is said to be an n—bit
under approximation to o if
0<a—d < i
< S on
The next result improves the lemma 3.2 of [2]:

t1 t t
Lemma 1 Let%§a<1and5:1—a. IfA—l,A—2,...,A"+1
1 A2 n+1

are (n +

3)—bit underapprorimations to [3, then

t it t;
14+ = i
Tt AT +.HA

1
s an n—bit underapproximation to —.
@



Proof. Let

. t;
U_ISI%ISHE'
N h < <1 do< < 1 h
ote t atO_ﬁ_ian O_B—n_w,weseet at
+1
1 tl t1t2 3 ti 1 2 1
Z (14 = 2y < 2.1 n+
iU wil v +EA2‘) < S (dntnt et
1 1_nn+2
T 1-8  1-7
2
_ ( 1 B 1 )+nn+
1-8 1-n" 1-n
_ fom
(1-=8)1-n) 1-n
ST | g
27L 27L
S T 1t
22 2
1

In [2], the log-depth, polynomial size, logspace-uniform circuit family
for integer division was constructed by Chiu, Davida and Litow. In other
words, integer division is proved to be in logspace-uniform NC!. This solves
a longstanding open problem.

Notice that the original construction of the NC! circuit family for integer
division needs 3n? (actually 2n? + 5n) primes numbers. The main purpose
of this section is to refine the Chiu-Davida-Litow construc%ion to achieve

more efficiency. To be more specific, we shall show that + 3n primes

ogn
will be sufficient.
Theorem 1 The number of prime moduli of the Chiu-Davida-Litow NC*
2

+ 3n.

n
integer division algorithm can be reduced to ]
ogn

Proof. The proof follows the similar line as in [2].
The goal is: given z,y < 2", compute the CRR of {EJ



n2
Let N = { J +3n
logn

Suppose that x, y are represented in a CRR system with base {m, mo, ..., my,}
where m; is the (i + 2)th prime (m; > 3). This base is extended to

{m17m27"' y My, Mip4-1,5 - -+ 7mN}'

A product D of the initial part of the base and some power of 2 will be
constructed so that
< 1.

DO | =
IN
o<

[\)

According to [2], if y = 2, set D = 2. If y > 2, then take j < m to be the

number such that

mimg---myj; <y <mimg---Mmimjyg.
Let k be the smallest positive integer such that y < 2¥mymsy - - - m; (therefore
m > %), and set

_ 9k .
D =2"mimgy---m;.

B . 2
n—logn—(logn)” o 4 e ihat

Let r = LILJ If n > 26, then
ogn

Mp+1 > 2n gives

logn

(Mmpy1)" > (Zn)tﬁJ

n
> (2log n+1) —logn_l
n—log n—(log 7L)2
= 2n+ logn
> 2n+3 (4)

Since n+ (n + 1)r < N, we can form the following products:

A = Mp41Mp42 - My
Ay = Mpgr41Mp4r42 - Mn42p
Apy1 = Mot 1Mntnrs2 Myt (n4-1)r-



We note that 4; > 273 for i = 1,2,...,n+ 1, by (@).
Next, choose

(D —y)A;

ti=| 5

|, fori=1,2,...,n+1

t.
Similar to [2], -~ can be computed in NC!. Tt is also routine to check that

A;
t; D —
— is an (n + 3)—bit underapproximation to 3 = Z_ ¥
A; D
1
Finally, by the lemma [l we get an n—bit underapproximation to —
@
Y
here a = =:
v D
t t1t tito---1
v=1+ b, bt 1t2 ntl

R e AN L
A A1A A1As - Apga

Again, similar to [2], we have

And all the computations are done in NC!.

Remark. The Chebyshev bounds for primes can be used to get an inequality
which is a bit sharper than the inequality (), but there is no significant
reduction on the number of prime moduli.
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