
ARTICLE IN PRESS IPL:4146

JID:IPL AID:4146 /SCO [m3G; v 1.30; Prn:21/07/2009; 14:35] P.1 (1-5)

Information Processing Letters ••• (••••) •••–•••
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Time-bounded incompressibility of compressible strings
and sequences

Edgar G. Daylight a,1, Wouter M. Koolen b, Paul M.B. Vitányi b,c,∗
a University of Amsterdam, Institute of Logic, Language, and Computation, Amsterdam, The Netherlands
b Centrum voor Wiskunde en Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands
c University of Amsterdam, Department of Computer Science, Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 September 2008
Received in revised form 25 June 2009
Accepted 26 June 2009
Available online xxxx
Communicated by L.A. Hemaspaandra

Keywords:
Kolmogorov complexity
Compressibility
Time-bounded incompressibility
Barzdins’s lemma
Finite strings and infinite sequences
Computational complexity

For every total recursive time bound t, a constant fraction of all compressible (low Kol-
mogorov complexity) strings is t-bounded incompressible (high time-bounded Kolmogorov
complexity); there are uncountably many infinite sequences of which every initial segment
of length n is compressible to log n yet t-bounded incompressible below 1

4 n − log n; and
there is a countably infinite number of recursive infinite sequences of which every initial
segment is similarly t-bounded incompressible. These results and their proofs are related
to, but different from, Barzdins’s lemma.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Informally, the Kolmogorov complexity of a finite bi-
nary string is the length of the shortest string from which
the original can be losslessly reconstructed by an effec-
tive general-purpose computer such as a particular univer-
sal Turing machine U . Hence it constitutes a lower bound
on how far a lossless compression program can compress.
Formally, the conditional Kolmogorov complexity C(x|y) is
the length of the shortest input z such that the univer-
sal Turing machine U on input z with auxiliary informa-
tion y outputs x. The unconditional Kolmogorov complexity
C(x) is defined by C(x|ε) where ε is the empty string (of
length 0). Let t be a total recursive function. Then, the

* Corresponding author at: Centrum voor Wiskunde en Informatica, Sci-
ence Park 123, 1098 XG Amsterdam, The Netherlands.

E-mail addresses: egdaylight@yahoo.com (E.G. Daylight),
W.M.Koolen-Wijkstra@cwi.nl (W.M. Koolen), Paul.Vitanyi@cwi.nl
(P.M.B. Vitányi).

1 a.k.a. Karel van Oudheusden.
Please cite this article in press as: E.G. Daylight et al., Time-bounded incompres
Letters (2009), doi:10.1016/j.ipl.2009.06.013

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.06.013
time-bounded conditional Kolmogorov complexity Ct(x|y) is
the length of the shortest input z such that the universal
Turing machine U on input z with auxiliary information y
outputs x within t(n) steps where n is the length in bits
of x. The time-bounded unconditional Kolmogorov complexity
Ct(x) is defined by Ct(x|ε). For an introduction to the defi-
nitions and notions of Kolmogorov complexity (algorithmic
information theory) see [3].

1.1. Related work

Already in 1968 J. Barzdins [2] obtained a result known
as Barzdins’s lemma, probably the first result in resource-
bounded Kolmogorov complexity, of which the lemma be-
low quotes the items that are relevant here. Let χ denote
the characteristic sequence of an arbitrary recursively enu-
merable (r.e.) subset A of the natural numbers. That is, χ
is an infinite sequence χ1χ2 . . . where bit χi equals 1 if
and only if i ∈ A. Let χ1:n denote the first n bits of χ , and
let C(χ1:n|n) denote the conditional Kolmogorov complex-
ity of χ1:n , given the number n.
sibility of compressible strings and sequences, Information Processing

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:egdaylight@yahoo.com
mailto:W.M.Koolen-Wijkstra@cwi.nl
mailto:Paul.Vitanyi@cwi.nl
http://dx.doi.org/10.1016/j.ipl.2009.06.013

ARTICLE IN PRESS IPL:4146

JID:IPL AID:4146 /SCO [m3G; v 1.30; Prn:21/07/2009; 14:35] P.2 (1-5)

2 E.G. Daylight et al. / Information Processing Letters ••• (••••) •••–•••
Lemma 1.

(i) For every characteristic sequence χ of a r.e. set A there ex-
ists a constant c such that for all n we have C(χ1:n|n) �
log n + c.

(ii) There exists a r.e. set A with characteristic sequence χ such
that for every total recursive function t there is a constant
ct with 0 < ct < 1 such that for all n we have Ct(χ1:n|n) �
ctn.

Barzdins actually proved this statement in terms of
D.W. Loveland’s version of Kolmogorov complexity [4],
which is a slightly different setting. He also proved that
there is a r.e. set such that its characteristic sequence
χ = χ1χ2 . . . satisfies C(χ1:n) � log n for every n. Kum-
mer [5], Theorem 3.1, solving the open problem in Exer-
cise 2.59 of the first edition of [3] proved that there exists
a r.e. set such that its characteristic sequence ζ = ζ1, ζ2, . . .

satisfies C(ζ1:n) � 2 log n − c for some constant c and in-
finitely many n.

The converse of item (i) does not hold. To see this,
consider a sequence χ = χ1χ2 . . . and a constant c′ � 2,
such that for every n we have C(χ1:n|n) � n − c′ log n. By
item (i), χ cannot be the characteristic sequence of a r.e.
set. Transform χ into a new sequence ζ = χ1α1χ2α2 . . .

with αi = 02i
, a string of 0s of length 2i . While obvi-

ously ζ cannot be the characteristic sequence of a r.e. set,
there is a constant c such that for every n we have that
C(ζ1:n|n) � log n + c.

Item (i) is easy to prove and item (ii) is hard to
prove. Putting items (i) and (ii) together, there is a
characteristic sequence χ of a r.e. set A whose initial
segments are both logarithmic compressible and time-
bounded linearly incompressible, for every total recur-
sive time bound. Below, we identify the natural numbers
with finite binary strings according to the pairing (ε,0),

(0,1), (1,2), (00,3), (01,4), . . . , where ε again denotes the
empty string.

1.2. Present results

Theorem 1. Let k0,k1 be positive integer constants and t a total
recursive function.

(i) A constant fraction of all strings x of length n with C(x|n) �
k0 logn satisfies Ct(x|n) � n − k1 (Lemma 2).

(ii) Let t(n) � cn for c > 1 sufficiently large. A constant frac-
tion of all strings x of length n with C(x|n) � k0 logn satis-
fies Ct(x|n) � k0 log n (Lemma 3).

(iii) There exist uncountably many (actually 2ℵ0) infinite bi-
nary sequences ω such that C(ω1:n|n) � log n and
Ct(ω1:n|n) � 1

4 n − logn for every n; moreover, there exist
a countably infinite number of (that is ℵ0) recursive infi-
nite binary sequences ω (hence C(ω1:n|n) = O (1)) such
that Ct(ω1:n|n) � 1

4 n − logn for every n (Lemma 5).

Note that the order of quantification in Barzdins’s
lemma is “there exists a r.e. set such that for every total
recursive function t there exists a constant ct .” In con-
trast, in item (iii) we prove “there is a positive constant
Please cite this article in press as: E.G. Daylight et al., Time-bounded incompres
Letters (2009), doi:10.1016/j.ipl.2009.06.013
such that for every total recursive function t there is a se-
quence ω.” While Barzdins’s lemma proves the existence
of a single characteristic sequence of a r.e. set that is time-
limited linearly incompressible, in item (iii) we prove the
existence of uncountably many sequences that are loga-
rithmically compressible over the initial segments, and the
existence of a countably infinite number of recursive se-
quences, such that all those sequences are time-limited
linearly incompressible.

We generalize item (i) in Corollaries 1 and 2. Section 2
presents preliminaries. Section 3 gives the results on finite
strings. Section 4 gives the results on infinite sequences.
Finally, conclusions are presented in Section 5. The proofs
for the results are different from Barzdins’s proofs.

2. Preliminaries

A (binary) program is a concatenation of instructions,
and an instruction is merely a string. Hence, we may view
a program as a string. A program and a Turing machine
(or machine for short) are used synonymously. The length
in bits of a string x is denoted by |x|. If m is a natural num-
ber, then |m| is the length in bits of the mth binary string
in length-increasing lexicographic order, starting with the
empty string ε . We also use the notation |S| to denote the
cardinality of a set S .

Consider a standard enumeration of all Turing machines
T1, T2, Let U denote a universal Turing machine such
that for every y ∈ {0,1}∗ and i � 1 we have U (i, y) =
Ti(y). That is, for all finite binary strings y and every ma-
chine index i � 1, we have that U ’s execution on inputs
i and y results in the same output as that obtained by
executing Ti on input y. Let t be a total recursive func-
tion. Fix U and define that C(x|y) equals minp{|p|: p ∈
{0,1}∗ and U (p, y) = x}. For the same fixed U , define that
Ct(x|y) equals minp{|p|: p ∈ {0,1}∗ and U (p, y) = x in
t(|x|) steps}. (By definition the sets over which is mini-
mized are countable and not empty.)

3. Finite strings

Lemma 2. Let k0,k1 be positive integer constants and t be a
total recursive function. There is a positive constant ct such
that for sufficiently large n the strings x of length n satisfying
Ct(x|n) � n − k1 form a ct -fraction of the strings y of length n
satisfying C(y|n) � k0 log n.

Proof. The proof is by diagonalization. We use the follow-
ing algorithm with inputs t,n,k1 and a natural number m.

Algorithm A(t,n,k1,m).

Step 1. Using the universal reference Turing machine U ,
recursively enumerate a finite list of all binary pro-
grams p of length |p| < n − k1. There are at most
2n/2k1 − 1 such programs. Execute each of these pro-
grams on input n. Consider the set of all programs
that halt within t(n) steps and which output pre-
cisely n bits. Call the set of these outputs B . Note
that |B| � 2n/2k1 − 1 and it can be computed in time
O (2nt(n)/2k1).
sibility of compressible strings and sequences, Information Processing

ARTICLE IN PRESS IPL:4146

JID:IPL AID:4146 /SCO [m3G; v 1.30; Prn:21/07/2009; 14:35] P.3 (1-5)

E.G. Daylight et al. / Information Processing Letters ••• (••••) •••–••• 3
Step 2. Output the (m + 1)th string of length n, say x, in
the lexicographic order of all strings in {0,1}n \ B and
halt. If there is no such string then halt with output ⊥.
End of Algorithm

Because of the selection process in Step 1, |{0,1}n \ B| �
2n − 2n/2k1 + 1 and every x ∈ {0,1}n \ B has time-bounded
complexity

Ct(x|n) � n − k1. (1)

For |m| � k0 logn − c, where the constant c is defined be-
low, and provided {0,1}n \ B is sufficiently large, that is,

nk0/2c � 2n
(

1 − 1

2k1

)
+ 1, (2)

there are at least nk0/2c strings x of length n that will be
output by the algorithm. Call this set D . Each string x ∈ D
satisfies

C(x|t,n,k1, A, p) � |m| � k0 log n − c. (3)

Since we can describe the fixed t,k0,k1, A, a program p to
reconstruct x from these data, and the means to tell them
apart, in an additional constant number of bits, say c bits
(in this way the quantity c can be deduced from the con-
ditional), it follows that C(x|n) � k0 logn. For given k0,k1,
and c, inequality (2) holds for every sufficiently large n.
For such sufficiently large n, the cardinality of the set of
strings of length n satisfying both C(x|n) � k0 log n and
Ct(x|n) � n − k1 is at least |D| = nk0/2c . Since the num-
ber of strings x of length n satisfying C(x|n) � k0 logn is
at most

∑k0 logn
i=0 2i < 2nk0 , the lemma follows with ct =

1/2c+1. �
Corollary 1. Let k0 be a positive integer constant and t be a total
recursive function. For every sufficiently large natural number n,
the set of strings x of length n such that Ct(x|n) � k0 log n is a
positive constant fraction of the strings y of length n satisfying
C(y|n) � k0 logn.

We can generalize Lemma 2. Let t be a total recursive
function, and f , g be total recursive functions such that (4)
below is satisfied.

Corollary 2. For every sufficiently large natural number n, the
set of strings x of length n that satisfy both C(x|n) � f (n) and
Ct(x|n) � g(n) is a positive constant fraction of the strings y of
length n satisfying C(y|n) � f (n).

Proof. Use a similar algorithm A(t,n, g,m) with |p| <

g(n) in Step 1, and |m| � f (n) − c in the analysis. Require

2 f (n)−c � 2n − 2g(n) + 1. � (4)

Lemma 3. Let t be a total recursive function with t(n) � cn
for some c > 1 and k0 be a positive integer constant. For ev-
ery sufficiently large natural number n, there is a positive con-
stant ct such that the set of strings x of length n satisfying
Ct(x|n) � k0 log n is a ct -fraction of the set of strings y of length
n satisfying C(y|n) � k0 log n.
Please cite this article in press as: E.G. Daylight et al., Time-bounded incompres
Letters (2009), doi:10.1016/j.ipl.2009.06.013
Proof. We use the following algorithm that takes positive
integers n,m as inputs and computes a string x of length n
satisfying Ct(x|n) � k0 log n − c.

Algorithm B(n,m).

Output the string 0n−|m+1|(m + 1) (where |m + 1| is the
length of the string representation of m + 1) and halt. End
of Algorithm

Let k0 be a positive integer and c a positive integer
constant chosen below. Consider strings x that are out-
put by algorithm B and that satisfy Ct(x|n, B, p) � |m| �
k0 log n − c with c the number of bits to contain descrip-
tions of B and k0, a program p to reconstruct x from these
data, and the means to tell the constituent items apart.
Hence, Ct(x|n) � k0 log n. The running time of algorithm B
is t(n) = O (n), since the output strings are length n and
to output the mth string with m � 2k0 logn−c we simply
take the binary representation of m and pad it with non-
significant 0s to length n. Obviously, the strings that satisfy
Ct(x|n) � k0 log n are a subset of the strings that satisfy
C(x|n) � k0 logn. There are at least nk0/2c strings of the
first kind while there are at most 2nk0 strings of the sec-
ond kind. Setting ct = 1/2c+1 finishes the proof. �

It is well known that if we flip a fair coin n times,
that is, given n random bits, then we obtain a string x of
length n with Kolmogorov complexity C(x|n) � n − c with
probability at least 1 − 2−c . Such a string x is algorithmi-
cally random. We can also get by with less random bits
to obtain resource-bounded algorithmic randomness from
compressible strings.

Lemma 4. Let a,b be constants as in the proof below. Given the
set of strings x of length n satisfying C(x|n) � k0 log n, a total
recursive function t, the constant k1 as before, and O (ab log n)

fair coin flips, we obtain a set of O (ab) strings of length n such
that with probability at least 1 − 1/2b one string x in this set
satisfies Ct(x|n) � n − k1 .

Proof. By Lemma 2, a ct th fraction of the set A of strings x
of length n that have C(x|n) � k0 log n also have Ct(x|n) �
n −k1. Therefore, by choosing, uniformly at random, a con-
stant number a of strings from the set A we increase
(e.g. by means of a Chernoff bound [3]) the probability
that (at least) one of those strings cannot be compressed
below n − k1 in time t(n) to at least 1

2 . To choose any
one string from A requires O (log n) random bits by di-
viding A in two equal size parts and repeating this with
the chosen half, and so on. The selected a elements take
O (a log n) random bits. Applying the previous step b times,
the probability that at least one of the ab chosen strings
cannot be compressed below n − k1 bits in time t(n) is at
least 1 − 1/2b . �
4. From finite strings to infinite sequences

We prove a result reminiscent of Barzdins’s lemma,
Lemma 1. In Barzdins’s version, characteristic sequences ω
sibility of compressible strings and sequences, Information Processing

ARTICLE IN PRESS IPL:4146

JID:IPL AID:4146 /SCO [m3G; v 1.30; Prn:21/07/2009; 14:35] P.4 (1-5)

4 E.G. Daylight et al. / Information Processing Letters ••• (••••) •••–•••
of r.e. sets are considered which by Lemma 1 have com-
plexity C(ω1:n|n) � log n + c. Here, we consider a wider
class of sequences of which the initial segments are log-
arithmically compressible (such sequences are not neces-
sarily characteristic sequences of r.e. sets as explained in
Section 1.1).

Lemma 5. Let t be a total recursive function.

(i) There are uncountably many (actually 2ℵ0) sequences ω =
ω1ω2 . . . such that both C(ω1:n|n) � log n and Ct(ω1:n|n)

� 1
4 n − log n for every n.

(ii) The set in item (i) contains a countably infinite number of
(that is ℵ0) recursive sequences ω = ω1ω2 . . . such that
Ct(ω1:n|n) � 1

4 n − log n for every n.

Proof. (i) Let g(n) = 1
2 n − log n. Let c � 2 be a constant

to be chosen later, mi = c2i , B(i), C(i), D(i) ⊆ {0,1}mi for
i = 0,1, . . . , and C(−1) = {ε}. The C sets are constructed
so that they contain the target strings in the form of
a binary tree, where C(i) contains all target strings of
length mi . The B(i) sets correspond to forbidden prefixes
of length mi . The D(i) sets consist of the set of strings of
length mi with prefixes in C(i − 1) from which the strings
in C(i) are selected.

Algorithm C(t, g).

for i := 0,1, . . . do

Step 1. Using the universal reference Turing machine U ,
recursively enumerate the finite list of all binary pro-
grams p of length |p| < g(mi) with mi = c2i and the
constant c defined below. There are at most 2g(mi) − 1
such programs. Execute each of these programs on
all inputs mi + j with 0 � j < mi . Consider the set of
all programs with input mi + j that halt with out-
put x = yz within t(|x|) time with |x| = mi + j, y ∈
C(i − 1) (then |y| = mi−1 for i > 0 and |y| = 0 for
i = 0), and z is a binary string such that x satis-
fies mi � |x| < mi+1. There are at most mi(2g(mi) − 1)

such x’s. Let B(i) be the set of the mi-length prefixes
of these x’s. Then, |B(i)| � mi(2g(mi) − 1) and it can
be computed in time O (mi2g(mi)t(mi+1)). Note that if
u ∈ {0,1}mi \ B(i) then Ct(uw| |uw|) � g(|u|) for every
w such that |uw| < mi+1.

Step 2. Let C(i − 1) = {x1, x2, . . . , xh} and D(i) =
(C(i − 1){0,1}∗ ∩ {0,1}mi) \ B(i). for l := 1, . . . ,h do
for k := 0,1 do put the kth string with initial segment
xl , in the lexicographic order of D(i), in C(i). If there
is no such a string then halt with output ⊥. od od od
End of Algorithm

Clearly, C(i){0,1}∗ ⊆ C(i−1){0,1}∗ for every i = 0,1,

Therefore, if

∞⋂
i=0

C(i){0,1}∞
= ∅, (5)

then the elements of this intersection constitute the infi-
nite sequences ω in the statement of the lemma.
Please cite this article in press as: E.G. Daylight et al., Time-bounded incompres
Letters (2009), doi:10.1016/j.ipl.2009.06.013
Claim 1. With g(mi) = 1
2 mi − log mi, we have |C(i)| = 2i+1 for

i = 0,1,

Proof. The proof is by induction. Recall that mi = c2i with
the constant c � 2.

Base case: |C(0)| = 2 since C(−1) = {ε} and |D(0)| �
2m0 − m0(2g(m0) − 1) � 2.

Induction: Assume that the lemma is true for every
0 � j < i. Then, every string in C(i − 1) has two exten-
sions in C(i), since for every string in C(i − 1) there are
2mi−mi−1 extensions available of which at most |B(i)| �
mi(2g(mi) − 1) are forbidden. Namely, 2mi−mi−1 − |B(i)| �
2mi/2 − 2g(mi)+log mi + mi � 2. Hence it follows that the bi-
nary k-choice can always be made in Step 2 of the algo-
rithm for every l. Therefore |C(i)| = 2i+1. �

Let a constant c1 account for the constant number of
bits to specify the functions t, g , the algorithm C , and a re-
construction program that executes the following: We can
specify every initial mi-length segment of a particular ω
in the set on the left-hand side of (5) by running the al-
gorithm C using the data represented by the c1 bits, mi ,
and the indexes k j ∈ {0,1} of the strings in D(j) with ini-
tial segment in C(j − 1), 0 � j � i, that form a prefix of ω.
Therefore,

C(ω1:mi |mi) � c1 + i + 1.

Setting c = 2c1+1 yields C(ω1:mi |mi) � log c + i = log mi .
By the choice of B(i) in the algorithm we know that
Ct(ω1:mi+ j |mi + j) � g(mi) for every j satisfying 0 �
j < mi . Because 2mi = mi+1, for every n satisfying mi �
n < mi+1, Ct(ω1:n|n) � 1

2 mi − logmi � 1
4 n − log n. Since

this holds for every i = 0,1, . . . , item (i) is proven with
Ct(ω1:n|n) � 1

4 n− log n for every n. The number of ω’s con-
cerned equals the number of paths in an infinite complete
binary tree, that is, 2ℵ0 .

(ii) This is the same as item (i) except that we always
take, for example, ki = 0 (no binary choice) in Step 2 of
the algorithm. In fact, we can specify an arbitrary com-
putable 0–1 valued function to choose the ki ’s. There are
a countably infinite number of (that is ℵ0) such functions.
The specification of every such function φ takes C(φ) bits.
Hence we do not have to specify the successive ki bits,
and C(ω1:n|n) = c1 + 1 + C(φ) = O (1) with c1 the constant
in the proof of item (i). Trivially, still Ct(ω1:mi+ j |mi + j) �
g(mi) for every j satisfying 0 � j < mi . Since this holds for
every i = 0,1, . . . , item (ii) is proven by item (i). �
5. Conclusions

We have proved the items promised in the abstract. In
Lemma 5 we iterated the proof method of Lemma 2 to
prove a result which is reminiscent of Barzdins’s Lemma 1,
relating compressibility and time-bounded incompressibil-
ity of infinite sequences in another manner. Alternatively,
we could have studied space-bounded incompressibility.
It is easily verified that the results also hold when the
time-bound t is replaced by a space bound s and the time-
bounded Kolmogorov complexity is replaced by space-
bounded Kolmogorov complexity.
sibility of compressible strings and sequences, Information Processing

ARTICLE IN PRESS IPL:4146

JID:IPL AID:4146 /SCO [m3G; v 1.30; Prn:21/07/2009; 14:35] P.5 (1-5)

E.G. Daylight et al. / Information Processing Letters ••• (••••) •••–••• 5
Acknowledgement

We thank the referees for comments, references, point-
ing out an error in the original proof of Lemma 2 and that
the argument used there is both independent and close to
that used to prove Theorem 3.2 in [1].

References

[1] L. Antunes, L. Fortnow, D. van Melkebeek, N.V. Vinodchandran,
Please cite this article in press as: E.G. Daylight et al., Time-bounded incompres
Letters (2009), doi:10.1016/j.ipl.2009.06.013
Computational depth: Concept and applications, Theoret. Comput.
Sci. 354 (3) (2006) 391–404.

[2] Ja.M. Barzdins, Complexity of programs to determine whether natural
numbers not greater than n belong to a recursively enumerable set,
Soviet Math. Dokl. 9 (1968) 1251–1254.

[3] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, third edition, Springer-Verlag, New York, 2008.

[4] D.W. Loveland, A variant of the Kolmogorov concept of complexity,
Inform. and Control 15 (1969) 510–526.

[5] M. Kummer, Kolmogorov complexity and instance complexity of re-
cursively enumerable sets, SIAM J. Comput. 25 (1996) 1123–1143.
sibility of compressible strings and sequences, Information Processing

	Time-bounded incompressibility of compressible strings and sequences
	Introduction
	Related work
	Present results

	Preliminaries
	Finite strings
	From finite strings to infinite sequences
	Conclusions
	Acknowledgement
	References

