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1. Introduction

A contrast pattern, also known as an emerging pattern [7], is an itemset

whose frequency differs significantly between two classes of data. Such pat-

terns describe differences between datasets and have been shown to be useful

for building powerful classifiers [11, 9, 2, 8] 1. Incrementally mining them in

changing data is very important, where transactions can be inserted and deleted

and mining needs to be repeated after changes occur. When the changes are

small, the previously mined contrast patterns should be reused where possible,

to compute the new patterns. A primary example of changing data is a data

stream - a sequence of continuously arriving transactions (or itemsets). Mining

of contrast patterns in a data stream is useful for stream classification [2] and

network traffic change detection [4]. Work in [10] presented an algorithm to in-

crementally mine contrast patterns, but is oriented to updates of a single type.

When a dataset changes due to insertion and deletion together, the efficiency

of [10]’s approach is reduced, due to redundant computations. In this paper,

we present a new algorithm that addresses the scenario of incrementally mining

contrast patterns in response to simultaneous insertion and deletion. Our ap-
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proach can be applied to any evolving dataset, but we particularly focus on data

streams, a popular type of dataset for data mining (e.g. [6, 1]). The patterns of

contrast correspond to itemsets which appear in the more recent transactions

and not in the less recent ones.

A sliding window model [5] is a natural choice for determining which data

to include for stream contrasts. Here, efficient incremental maintenance of the

patterns in the sliding window is important. Arrival of new transactions deletes

some of the oldest transactions from the window. This simultaneous transaction

insertion and deletion may result in some interactions between these updates.

The existing incremental technique for mining contrast patterns [10], performs

well when changes of a single type occur in the input data, but has drawbacks

when changes of multiple types simultaneously occur.

Contributions: We propose a new efficient technique for incrementally mining

contrast patterns in scenarios where simultaneous insertions and deletions occur,

such as in a data stream. We experimentally show it can deliver substantial

speedups over the previous approach of [10].

2. Preliminary Definitions

Assume a database D, with attributes {A1, A2, . . . , An}. Attribute Ai is

defined by some values domain(Ai). The set of all items I is the aggregate of all

such domain values across attributes. I =
⋃

i=1..n domain(Ai). An itemset is a

set of items in I. A dataset is a set of transactions, where each transaction is an

itemset. For itemsets, P and Q, Q is a superset of P , or Q contains P , iff every

item in P is also in Q. Given two sets of itemsets, X and Y , X∩B Y denotes the

border intersection of X and Y , namely all elements of X which are contained in

at least one element of Y . The support of an itemset S in D, supportD(S), is the

number of transactions which contain S, divided by the number of transactions
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Figure 1: Sliding Window Model (|∇n| = |∆n| = |∇p| = |∆p| = δ)

in D. A principal type of contrast pattern is the emerging pattern (EP) [7],

which is an itemset whose support increases significantly from one dataset, la-

beled as the negative class, to another, labeled as the positive class. Let Dp and

Dn be the positive and negative classes. The growth rate of S is the ratio of its

support in Dp over that in Dn, i.e.
supportDp

(S)

supportDn
(S) . We will focus on a particular

type of pattern, known as the Jumping Emerging Pattern (JEP)[7], which is an

EP with an infinite growth rate (i.e. supportDn
(S) = 0) and can capture sharp

contrasts. A JEP is minimal if it is not a superset of other JEPs. Focusing

on mining only the minimal JEPs helps reduce overlap in a set of patterns.

Assume an operator JEP(Dp,Dn), which mines the minimal JEPs between Dp

and Dn. It can be computed by existing algorithms such as [7, 3, 9], which can

be treated as a “black box” 2. The set of patterns which is output from mining

may be used for either domain understanding or for the construction of models

and (ensemble) classifiers. Although the set of mined patterns can be large,

any specific test instance (transaction) is unlikely to match with many patterns

from the ensemble. So with respect to any individual classification decision, the

amount of redundancy amongst the matched patterns is likely to be small.

A data stream is a sequence of transactions. We define a sliding window of

length k, which can be viewed as an evolving dataset. The window contains

two sub-windows. The more recent sub-window is referred to as the positive

class (i.e. Dp), and the less recent sub-window as the negative class (i.e. Dn),

where |Dp| + |Dn| = k. See Fig. 1 for an illustration. In the current window

2In our experiments, we use an implementation of [3].
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(window(i)), as JEP(Dp, Dn) is being computed, newly arriving transactions

are buffered (labeled as ∆p). When mining completes, the window is updated

to include the buffered transactions. It now contains sub-windows newDp and

newDn, with the oldest transactions (labeled ∇n) being removed. At the same

time, some transactions of Dp are deleted from Dp (labeled as ∇p) and inserted

to newDn (labeled as ∆n). Thus, ∇p ≡ ∆n, newDp = D−

p ∪∆p, and newDn =

D−

n ∪ ∆n, where D−

p = Dp − ∇p and D−

n = Dn − ∇n. The increment size, δ,

is the number of deleted and inserted transactions in each class, i.e. |∇n| =

|∆n| = |∇p| = |∆p| = δ, and δ << k.

3. Efficient Incremental JEP Maintenance Algorithms

Our objective is to (incrementally) compute JEP(newDp, newDn), given the

inputs: JEP(Dp, Dn) and updates ∇p,∇n, ∆p, ∆n. We will shortly describe our

algorithm ExclusiveIncremental. First we provide some intuition about the

limitations of the existing incremental technique from [10], known as LMDR.

LMDR processes the updates sequentially in four steps: It incrementally

mines the patterns after each of the updates 1) ∇n, followed by 2) ∆n, then 3)

∇p and then 4) ∆p. Patterns may be added at Steps 1) and 4), while existing

patterns may be deleted at Steps 2) and 3). The drawback is that the effect of

each update is evaluated independently of the other updates. This means that

redundant computations may occur, whereby certain patterns appear due to an

earlier update, only to be eliminated due to a later update (or vice versa).

For example, ∇n and ∆n may contain transactions which intersect. Consider

two transactions {a, b, c, d} ∈ ∇n and {c, d, e, f} ∈ ∆n. These intersect on

the itemset {c, d}. Now {c, d} might be a new pattern which is inserted after

processing ∇n, but which then gets deleted after subsequently processing update

∆n. Similar interactions can occur with respect to the pairs of updates ∇n plus
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Algorithm 1 ExclusiveIncremental: mine contrasts w.r.t. newDp and newDn

J0 = JEP(Dp, Dn), D−

p = Dp −∇p, D−

n = Dn −∇n, newDp = D−

p ∪∆p,
newDn = D−

n ∪∆n

LMDR
+ vs ExclusiveIncremental

+(J0,newDp, Dn): compute JEP(newDp, Dn)

LMDR
+: ExclusiveIncremental

+:
1: Jretain ← J0 ∩B D−

p

2: Jappear ← JEP(∆p, Dn)
3: JEP(newDp, Dn) ← Jretain ∪ Jappear

1: J ′

retain ← J0 ∩B newDp

2: J ′

appear ← JEP(∆p, (Dp ∪Dn))
3: JEP(newDp, Dn)← J ′

retain ∪J ′

appear

LMDR
− vs ExclusiveIncremental

−(J0, Dp,newDn): compute JEP(Dp, newDn)

LMDR
−: ExclusiveIncremental

−:

1: Jn ← J0 ∪ (JEP(∇n, D−

n ) ∩B Dp))
2: Jdisappear ← JEP(Dp, ∆n)
3: JEP(Dp, newDn) ←

(Jn × Jdisappear ) ∩B Dp

1: Jinvalid ← J0 ∩B ∆n

2: Jretain ← J0 − Jinvalid

3: Jnew ← JEP(∇n,newDn) ∩B Dp

4: Jdisappear ← JEP(Dp, ∆n)
5: JEP(Dp,newDn) ← Jretain ∪ Jnew

∪ ((Jinvalid × Jdisappear ) ∩B Dp)

ExclusiveIncremental(J0, newDp,newDn): compute JEP(newDp,newDn)
1: J ′

0 ← ExclusiveIncremental
−(J0, D

−

p ,newDn)
2: JEP(newDp,newDn) ← ExclusiveIncremental

+(J ′

0,newDp,newDn)

∇p, and ∇p plus ∆p. In contrast, our new algorithm avoids unnecessary work

by taking into account the interactions between updates.

Our algorithm (ExclusiveIncremental) and a comparison to LMDR are shown

in Algorithm 1. The logic is divided into two subalgorithms, one processing up-

dates to Dn and the other processing updates to Dp. ExclusiveIncremental is

both correct (only mines valid patterns) and complete (mines all valid patterns).

Updating the Positive Class (ExclusiveIncremental+). Upon deletion of

∇p, LMDR+ keeps the old JEPs occurring in D−

p (represented by Jretain , line

1). Subsequently, insertion of ∆p may cause new JEPs to appear, which are

JEPs for ∆p versus Dn (represented by Jappear , line 2). However, Jretain and

Jappear may overlap, and so Jappear may contain some old JEPs which were

removed from Jretain . To remove this cancellation, our algorithm finds both

J ′

retain, which includes the old JEPs which occur in ∆p (line 1), and J ′

appear

which excludes new JEPs which occur in Dp (line 2); (J ′

retain ∩ J ′

appear) = ∅.

Updating the Negative Class (ExclusiveIncremental−). Upon deletion of

∇n, LMDR− finds the newly occurring JEPs by finding itemsets of JEP(∇n,D−

n )
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which occur in Dp (represented by Jn, line 1). Such itemsets do not exist in J0.

Then, the insertion of ∆n is processed by finding the pair-wise union between

Jn and Jdisappear = JEP(Dp, ∆n), to find all the minimal JEPs which occur in

Dp, but not in D−

n nor ∆n (line 3). However, some itemsets in Jn may remain

in the output. They are itemsets which occur in Dp but not in ∇n. Some

of the old JEPs which were removed from Jn, moreover, may re-appear. This

cancellation is removed in our algorithm. Firstly, all of the old JEPs which do

not occur in ∆n are kept (line 1-2). Then, the new JEPs are found from the

deleted transactions in ∇n, which do not occur in D−

n nor ∆n (line 3). Finally,

only old JEPs which occur in ∆n (represented by Jinvalid ) are involved in the

pair-wise union (line 5). Jinvalid is a smaller set than Jn.

Updating Both the Positive and Negative Classes (ExclusiveIncre-

mental). When incremental changes occur to both classes, the two algorithms

can be combined. We begin with ExclusiveIncremental−() for handling the

changes in Dn, then pass its output to ExclusiveIncremental+(). Since ∇p =

∆n in a sliding window, references to Dp in the first routine can be substi-

tuted by D−

p . This avoids generating patterns which occur in ∇p. Line 1 in

ExclusiveIncremental+() can be replaced by J ′

retain = J0 for a sliding window.

4. Performance Study and Discussion

We compare the performance of our ExclusiveIncremental algorithm, against

LMDR [10], and also a “Naive” algorithm which mines the JEPs from scratch

in every window. We use three data stream datasets: DATA 1: KDD-CUP

1999, DATA 2: KDD-CUP 2000 and DATA 3: a synthetic dataset generated

by the IBM data generator3. Tables 1 and 2 show the characteristics of each

3http://www.almaden.ibm.com. DATA 3 was generated with parameter ’-g0 0.3 -p 10 -
shake 5’; -shake models the fuzzy boundary between the classes; -g0 and -p determine the
class distribution. All continuous attributes are discretized by equi-width binning.
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Dataset DATA 1 DATA 2 DATA 3
Source KDD’99 KDD’00 Synthetic

#attributes 20 30 10
#items 200 600 50

Table 1: Data Characteristics

S A B C D E
|Dn| 1000 1000 5000 5000 10000
|Dp| 200 200 500 1000 1000

δ 10 20 100 100 100

Table 2: Scenarios (S = Scenario)

Dataset S |J0| Incremental Mining Time (seconds)
PosIncremental NegIncremental PosNegIncremental

Naive+ ExInc+ Naive− ExInc− Naive ExInc
(speed-up) (speed-up) (speed-up)

DATA 1 A 10 0.05 0.01 (5.00) 0.12 0.04 (3.00) 0.17 0.01 (17.00)
B 2 0.02 0.02 (1.00) 0.12 0.17 (0.71) 0.14 0.03 (4.67)
C 2 0.42 0.08 (5.25) 0.50 0.36 (1.39) 0.92 0.15 (6.13)
D 5 0.28 0.07 (4.00) 1.12 0.53 (2.11) 1.40 0.21 (6.67)
E 8 0.68 0.14 (4.86) 2.45 1.02 (2.40) 3.13 0.26 (12.04)

DATA 2 A 85 1.61 0.11 (14.64) 3.03 0.54 (5.61) 4.64 0.19 (24.42)
B 145 1.36 0.43 (3.16) 3.85 1.06 (3.63) 5.21 0.59 (8.83)
C 362 29.97 7.05 (4.25) 59.60 28.81 (2.07) 88.57 18.62 (4.76)
D 576 78.18 8.90 (8.78) 45.95 53.39 (0.86) 124.13 27.11 (4.58)
E 1005 63.18 15.47 (4.08) 258.25 86.42 (2.99) 321.43 37.64 (8.54)

DATA 3 A 1333 0.30 1.47 (0.20) 1.15 0.49 (2.35) 1.45 1.91 (0.76)
B 1357 0.32 2.69 (0.12) 1.17 1.00 (1.17) 1.49 3.06 (0.49)
C 1680 3.07 7.73 (0.40) 9.87 8.31 (1.19) 12.94 11.20 (1.16)
D 3149 11.41 12.38 (0.92) 20.24 16.66 (1.21) 31.65 22.22 (1.42)
E 2182 11.64 11.80 (0.99) 29.36 20.37 (1.44) 41.00 15.96 (2.57)

Table 3: Runtime Comparison Against the Naive Algorithm; ExInc = ExclusiveIncremental ;

speed-up = runtime of Naive
runtime of ExclusiveIncremental

data stream, and the scenarios used. All experiments used a 2.4GHz CPU

with 3GB RAM running Solaris. Tables 3 and 4 show the runtimes of each

algorithm, averaged over 100 windows. ExInc refers to our ExclusiveIncremen-

tal algorithm. PosIncremental shows the runtimes for processing the positive

class changes, NegIncremental for processing the negative class changes, and

PosNegIncremental for processing simultaneous changes to both classes.

Compared to Naive, our algorithm is usually faster, depending (as expected)

on the degree of change undergone by the window. For handling the changes in

the positive class, ExInc+ is up to 8 times faster than Naive+, for which Dp and

Dn have a large size and the increment is small, and it is up to 3 times faster

than LMDR+ for DATA 1 and DATA 2. For DATA 3 however, since it is dense

(i.e. contains a small number of items but a large number of patterns), ExInc+ is

slower than both Naive+ and LMDR+, except for scenario D where the number
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Dataset S Incremental Mining Time (seconds)
PosIncremental NegIncremental PosNegIncremental

LMDR
+ ExInc+

LMDR
− ExInc− LMDR ExInc

(speed-up) (speed-up) (speed-up)

DATA 1 A 0.01 0.01 (1.00) 0.06 0.04 (1.50) 0.07 0.01 (7.00)
B 0.02 0.02 (1.00) 0.01 0.17 (0.06) 0.03 0.03 (1.00)
C 0.19 0.08 (2.38) 0.23 0.36 (0.64) 0.42 0.15 (2.80)
D 0.19 0.07 (2.71) 0.20 0.53 (0.38) 0.39 0.21 (1.86)
E 0.44 0.14 (3.14) 0.33 1.02 (0.32) 0.77 0.26 (2.96)

DATA 2 A 0.27 0.11 (2.45) 20.61 0.54 (38.17) 20.88 0.19 (109.89)
B 0.82 0.43 (1.91) 78.42 1.06 (73.98) 79.24 0.59 (134.31)
C 24.34 7.05 (3.45) 871.13 28.81 (30.24) 895.47 18.62 (43.26)
D 28.55 8.90 (3.21) 1482.7 53.39 (27.77) 1511.3 27.11 (55.75)
E 52.01 15.47 (3.36) 3217.8 86.42 (37.23) 3269.8 37.64 (86.87)

DATA 3 A 1.42 1.47 (0.97) 1255.3 0.49 (2561.86) 1256.7 1.91 (657.97)
B 2.18 2.69 (0.81) 5512.7 1.00 (5512.70) 5514.9 3.06 (1802.25)
C 5.78 7.73 (0.75) 22441 8.31 (2700.48) 22447 11.20 (2004.11)
D 17.89 12.38 (1.45) 40225 16.66 (2414.47) 40243 22.22 (1811.12)
E 11.18 11.80 (0.95) 49010 20.37 (2405.99) 49021 15.96 (3071.49)

Table 4: Runtime Comparison Against the LMDR [10] algorithm; ExInc = ExclusiveIncre-

mental ; speed-up = runtime of LMDR
runtime of ExclusiveIncremental

of patterns is the largest. The results also show that LMDR+ performs better

than Naive+ in all scenarios for DATA 1 and DATA 2.

For processing changes in the negative class, ExInc− is up to 5 times faster

than Naive−, but LMDR− is the fastest in most scenarios for DATA 1, which is

sparse and contains less patterns. ExInc− is less efficient in this scenario. When

the number of patterns is large, such as in DATA 2 and DATA 3, LMDR− is

slower than Naive−, and ExInc− is up to 5000 times faster than LMDR−, espe-

cially for the dense DATA 3. In those scenarios, the pair-wise union operation

performed by LMDR− (line 3 in Algorithm 1) is computationally expensive,

due to the large number of patterns involved.

Finally, for handling changes in both classes, ExInc has the fastest runtimes,

followed by LMDR, and Naive, for DATA 1. For DATA 2 and DATA 3, where

LMDR performs poorly because of the slow runtime of LMDR−, ExInc is able

to outperform LMDR by up to 5000 times.
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