
ar
X

iv
:c

s/
06

05
09

9v
3 

 [
cs

.I
T

] 
 2

8 
M

ar
 2

00
9

Alphabetic Coding with Exponential Costs ⋆

Michael B. Baer

Abstract

An alphabetic binary tree formulation applies to problems in which an outcome
needs to be determined via alphabetically ordered search prior to the termina-
tion of some window of opportunity. Rather than finding a decision tree minimiz-
ing

∑n
i=1w(i)l(i), this variant involves minimizing loga

∑n
i=1 w(i)a

l(i) for a given
a ∈ (0, 1). This note introduces a dynamic programming algorithm that finds the
optimal solution in polynomial time and space, and shows that methods tradition-
ally used to improve the speed of optimizations in related problems, such as the
Hu-Tucker procedure, fail for this problem. This note thus also introduces two ap-
proximation algorithms which can find a suboptimal solution in linear time (for
one) or O(n log n) time (for the other), with associated coding redundancy bounds.

Key words: Approximation algorithms; dynamic programming; information
retrieval; Rényi entropy; tree searching

1 Introduction

Applications such as searching [8] and coding theory [6] make extensive use of
binary trees. We denote the length (number of edges) of a path from the root
to node i ∈ {1, 2, . . . , n} of the tree as l(i), and the weight (usually probability)
of the leaf as w(i). Given a set of weights, Huffman’s algorithm [6] finds a tree
minimizing cost function

n
∑

i=1

w(i)l(i) (1)

and Hu and Tucker’s algorithm [5] finds an optimal alphabetic tree:

⋆ Material in this paper was presented at the 2006 International Symposium on
Information Theory, Seattle, Washington, USA.

Email address: calbear@1̇eee.org (Michael B. Baer).

Preprint submitted to Elsevier 8 July 2018

http://arxiv.org/abs/cs/0605099v3


Definition 1 An alphabetic tree is a tree with leaves are in numerical order
given inorder tree traversal (i.e., 1, 2, . . . , n from left to right).

Three papers independently considered the problem of minimizing

La(w, l) , loga

n
∑

i=1

w(i)al(i) (2)

for a > 1 [5, p. 254] [10, p. 485] [7, p. 231] for unconstrained (Huffman-
like) minimization, the solution of which is very similar to that of Huffman’s
algorithm. One of these further noted that an algorithm similar to Hu and
Tucker’s solves the alphabetically constrained version of this problem [5], while
another noted that the Huffman-like solution also solves the unconstrained (2)
for a < 1 [7], in which loga x is monotonically decreasing and the objective’s
summation term is thus maximized.

A recent paper showed that the a < 1 problem describes certain situations
of single-shot decision-making [1]. Given a window of time corresponding to
a memoryless random variable, if we wish to find the leaf of the binary tree
through constant-time edge traversal, this is found in time with probability
aLa(w,l) — which we thus wish to minimize — for some known a < 1. However,
solving the alphabetic version of this problem remained unaddressed.

Here we present an O(n3) algorithm for minimizing (2) that is somewhat sim-
ilar to Gilbert and Moore’s method for (1) [4]. We then introduce counterex-
amples on attempts to minimize using faster methods, such the modification
of Hu and Tucker’s, which only succeeds for a > 1. Finally we present ap-
proximation algorithms, related to those for the linear problem, which find
suboptimal solutions in O(n) and O(n logn), leading to simple bounds for
both these solutions and the optimal ones.

2 Optimal Alphabetic Trees

Because the alphabetic tree imposes leaf order, each decision of which child to
take, represented by a 0 (for left) or 1 (for right), is equivalent to a question
of the form, “Is the output greater than or equal to s?” where s is one of the
possible symbols, a symbol we call the splitting point :

Definition 2 The splitting point of an internal node (or the corresponding
subtree) is the smallest index among the leaves of the right subtree.

Definition 3 Each codeword c(i) is the sequence of bits corresponding to the
sequence of decisions (path) to arrive at leaf i. The overall set of codewords

2



— alphabetic code C — fully describes the tree, as does length vector l, the
sequence of lengths {l(i)}.

The dynamic programming approach of Gilbert and Moore [4] is adapted to
this problem (2):

Theorem 1 An algorithm finds the maximum tree weight Wj,k (and corre-
sponding optimum tree) for items j through k for each value of k − j from 0
to n− 1 (in order), by computing inductively

Wj,k ← amaxs∈{j+1,j+2,...,k}[Wj,s−1 +Ws,k] starting with Wj,j ← w(j) (3)

for 1 ≤ j < k ≤ n in O(n3) time and O(n2) space.
Proof Recall first that maximizing aLa(w,l) =

∑

iw(i)a
l(i) minimizes La(w, l),

which is why (3) is a maximization operation. One can see that W1,n = aLa(w,l)

inductively by considering a (sub)tree’s two subtrees as independent, rooted
trees, one with summation W1,s−1 =

∑s−1
i=1 w(i)a

l(i)−1, the other with summa-
tion Ws,n =

∑n
i=s w(i)a

l(i)−1. Then W1,n = a(W1,s−1 + Ws,n). Starting with
Wj,j = w(j), then, we see that these values can be built up accordingly (since
the path length from a leaf to itself is 0, Wj,j = a0w(j), and there is noth-
ing numerically special about the final tree). Since all subtrees of an optimal
tree are optimal — via a substitution argument, e.g., [8] — the maximization
finds an optimal solution. This suggests the dynamic programming algorithm;
similarly to [8], calculating all optimal subtrees of a size less than that of
the (sub)tree in a current step, we can try all possible splitting points using
optimal subtrees, yielding the optimal tree.
O(n2) items are stored — O(n2) weights for every possible range and the as-
sociated splitting points; these are used to recursively find the implied subtree
— calculated by testing O(n) splitting points for each internal node, thus the
time and space complexity.

Knuth [8] reduced the algorithmic complexity of Gilbert and Moore’s method
for (1) by using the fact that the splitting point of an optimal tree of size
n must be between the splitting points of the two optimal subtrees of size
n − 1. With (2), this no longer holds. Consider a = 0.6 with input weights
w = (8, 1, 9, 6). The splitting point of (8, 1, 9) is s = 3 (w(s) = w(3) = 9,
yielding subtrees with (8, 1) and (9)), and the splitting point of (1, 9, 6) is
s = 4 (w(s) = 6). However, the optimal splitting point of (8, 1, 9, 6) is s = 2
(w(s) = 1).

Similarly, for (2) with a > 1 [5], there is a procedure based on the Hu-Tucker
algorithm for finding an optimal alphabetic solution. The Hu-Tucker algorithm
begins with the input weights arranged as leaves in numerical order (1, 2, . . . , n
in a line). It then combines the two items i and j that, of all pairs of items
without a leaf separating them, have a minimum weight sum, putting it in

3



the place of either node, both of which are now (ordered) children. In the
original Hu-Tucker algorithm, this item is given weight w(i) + w(j), whereas
for (2) with a > 1 it is given weight aw(i) + aw(j). The algorithm then finds
the minimum weighted pair among those pairs of distinct items (uncombined
input leaves and combined items) without any uncombined leaf between them,
placing the resulting node in the place of either original node. Continuing on,
we obtain a tree that is not necessarily alphabetical, but which has the same
lengths as an alphabetic tree which can be easily reconstructed, (optimally)
solving the problem (for a > 1).

However, consider again a = 0.6, this time for weights (8, 1, 9, 6, 2). The Hu-
Tucker-like algorithm first combines 6 and 2, then 8 and 1, then the first
combined node with 9, and finally the remaining two nodes, resulting in a
tree with lengths l

′ = (2, 2, 2, 3, 3) and La(w, l
′) ≈ −4.121. However, a tree

with lengths l
′′ = (1, 3, 3, 3, 3), having La(w, l

′′) ≈ −4.232, shows that the
Hu-Tucker-like solution is nonoptimal.

Result 1 Knuth’s method for speeding up dynamic programming fails for a <
1, as does using the Hu-Tucker-like method optimal for a > 1.

3 Approximation Algorithms and Bounds

In this section, we add the assertion
∑n

i=1w(i) = 1 to our problem, which can
be considered an optimization of (2) with constraints:

1. The Kraft inequality of binary trees,
∑n

i=1 2
−l(i) ≤ 1;

2. The integer constraint, l(i) ∈ Z;
3. The alphabetic constraint.

The first and second of these are necessary and sufficient for the lengths to
correspond to a binary tree. Relaxing the second and third allows for a numer-
ical solution which can bound the performance of the optimal solution. The
numerical solution, l†, shown by Campbell [2, 3], results in the Shannon-like

ls(i) , ⌈l†⌉ =









−
1

1 + log2a
log2w(i) + log2





n
∑

j=1

w(j)
1

1+log2a













a valid (but not necessarily optimal) solution to the problem with only the
alphabetic constraint relaxed, that is, the Huffman-like problem.

The approximation algorithm in Fig. 3 has a linear-time variant patterned
after that in [11] — relying on l

s — and a O(n logn)-time variant patterned
after [9] — instead using l

h, those lengths obtained from solving the optimal

4



Procedure for Finding a Near-Optimal Code

1. Start with an optimal or near-optimal nonalphabetic code with length
vector lnon, either the Shannon-like l

s or the Huffman-like l
h.

2. Find the set of all minimal points: i such that 1 < i < n, lnon(i) <
lnon(i− 1), and lnon(i) < lnon(i+ 1); or i ∈ [j, j + k] minimizing w(i) for
lnon(j − 1) > lnon(j) = lnon(j + 1) = · · · = lnon(j + k) < lnon(j + k + 1).

3. Assign a preliminary alphabetic code with lengths lpre(i) = lnon(i) + 1
for all minimal points and lpre(i) = lnon(i) for all other items. The first
codeword is lpre(1) zeros, and each additional codeword c(i) is obtained
by either truncating c(i − 1) to lpre(i) bits and adding 1 to the integer
that the binary codeword represents (if lpre(i) ≤ lpre(i− 1)) or by adding
1 to the integer/codeword c(i−1) and appending lpre(i)− lpre(i−1) zeros
(if lpre(i) > lpre(i− 1)), defining the binary tree.

4. Go through the code tree (with, e.g., a depth-first search), and remove any
redundant nodes. Any node with only one child can replace the child by
its grandchild or grandchildren. At the end of this process, an alphabetic
code with

∑n
i=1 2

−l(i) = 1 is obtained.

code tree for the Huffman-like problem.

Every step after the first takes linear time with linear space, thus the overall
complexity of the algorithms. Step 3 is the method by which Nakatsu showed
that any nonalphabetic code can be made into an alphabetic code with similar
lengths [9]. (The use of weights as a tie breaker and the nonlinearity of the
problem do not change the validity of the algorithm.) Step 4 is the method
by which Yeung showed that any alphabetic code can be made into another
alphabetic code with

∑n
i=1 2

−l(i) = 1 without lengthening any codewords [11].
Thus this is a hybrid and extension of these two approaches.

For w = (8/26, 1/26, 9/26, 6/26, 2/26) with a = 0.6, applying the Shannon-
like version of this algorithm, we find that l

s = (2, 13, 1, 4, 10), preliminary
codeword lengths are l

pre
s = (2, 13, 2, 4, 10), and the preliminary code tree is

as follows:

C = (00, 0100000000000 , 10, 1100, 1101000000)

The italicized bits are redundant, and therefore so are the corresponding
nodes in the code tree. They are thus removed in Step 4, which means the
final tree has lengths (2, 2, 2, 3, 3). The probability of success is aLa(w,l) ≈
0.316 (La(w, l) ≈ 0.851), close to the optimal probability of about 0.334
(La(w, l

∗) ≈ 0.843). Using the Huffman-like approximation algorithm yields
l
h = (2, 4, 1, 3, 4), a preliminary tree of lengths lpreh = (2, 4, 2, 3, 4), and an out-
put tree with lengths (2, 2, 2, 3, 3), which are identical to the above. The same
probability mass function with a = 0.7 yields an optimal tree in the Huffman-
like version. For a ∈ (0.5, 1), coding bounds follow from these approaches:

5



Theorem 2 Let

• Lā
a(w) be the minimized (2) for the alphabetic problem,

• Lh̃
a(w) be that obtained using the l

h-based approximation algorithm,
• Ls̃

a(w) be that obtained using the l
s-based approximation algorithm,

• Lnon
a (w) = La(w, l

non), Ls
a(w) = La(w, l

s), and Lh
a(w) = La(w, l

h) (using
those l values from Fig. 3).

Then

Hα(w) ≤ Lh
a(w) ≤ Lā

a(w) ≤ Lh̃
a(w) < 1 + Lh

a(w) < 2 +Hα(w) (4)

Hα(w) ≤ Lh
a(w) ≤ Lā

a(w) ≤ Ls̃
a(w) < 1 + Ls

a(w) < 2 +Hα(w) (5)

where Hα(w) is the Rényi entropy for α = (1 + log2a)
−1:

Hα(w) =
1

1− α
log2

n
∑

i=1

w(i)α = (loga 2a)

(

log2

n
∑

i=1

w(i)
1

1+log2a

)

Proof This is a corollary of Campbell’s Shannon-like bounds for a > 0.5 —
Hα(w) ≤ Lh

a(w) ≤ Ls
a(w) < 1+Hα(w) — along with the facts that (a) the two

approximation algorithm lengths corresponding to items 1 and n are no greater
than those in l

non and (b) no other length exceeds the corresponding length in

l
non by 1 or more. This results in Lh̃

a(w) < 1 + Lh
a(w) and Ls̃

a(w) < 1 + Ls
a(w)

due to (2), and, since no alphabetic tree is better than the optimal alphabetic
tree and no alphabetic tree is better than the optimal Huffman-like tree, we
arrive at (4) and (5).

The lower limit to Lā
a(w) is satisfied by (2, 2), while the upper limit is ap-

proached by (ǫ, 1− 2ǫ, ǫ), which approaches entropy 0 and penalty 2.

Both these algorithms and the bounds due to analogous inequalities apply
to a > 1 and to the traditional alphabetic problem (a → 1, where H1 is
Shannon entropy [3]). For the traditional problem, due to Step 4, the Huffman-
based approximation version of the above algorithm is a strict improvement
on Yeung’s Huffman-based approximation [11].

Acknowledgments

The author would like to thank T. C. Hu and J. David Morgenthaler for
discussions and encouragement on this topic.

6



References

[1] M. B. Baer. Optimal prefix codes for infinite alphabets with nonlinear costs.
IEEE Trans. Inf. Theory, IT-54(3):1273–1286, Mar. 2008.

[2] L. L. Campbell. A coding problem and Rényi’s entropy. Inf. Contr., 8(4):423–
429, Aug. 1965.

[3] L. L. Campbell. Definition of entropy by means of a coding problem. Z.

Wahrscheinlichkeitstheorie und verwandte Gebiete, 6:113–118, 1966.

[4] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell Syst.

Tech. J., 38:933–967, July 1959.

[5] T. C. Hu, D. J. Kleitman, and J. K. Tamaki. Binary trees optimum under
various criteria. SIAM J. Appl. Math., 37(2):246–256, Apr. 1979.

[6] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proc. IRE, 40(9):1098–1101, Sept. 1952.

[7] P. A. Humblet. Generalization of Huffman coding to minimize the probability
of buffer overflow. IEEE Trans. Inf. Theory, IT-27(2):230–232, Mar. 1981.

[8] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.

[9] N. Nakatsu. Bounds on the redundancy of binary alphabetical codes. IEEE

Trans. Inf. Theory, IT-37(4):1225–1229, July 1991.

[10] D. S. Parker, Jr. Conditions for optimality of the Huffman algorithm. SIAM J.

Comput., 9(3):470–489, Aug. 1980.

[11] R. W. Yeung. Alphabetic codes revisited. IEEE Trans. Inf. Theory, IT-
37(3):564–572, May 1991.

7


	Introduction
	Optimal Alphabetic Trees
	Approximation Algorithms and Bounds
	References

