
ar
X

iv
:0

90
5.

25
27

v1
 [

m
at

h.
C

O
]

 1
5

M
ay

 2
00

9

Finding bipartite subgraphs efficiently

Dhruv Mubayi∗ and György Turán†

Abstract

Polynomial algorithms are given for the following two problems:

• given a graph with n vertices and m edges, where m ≥ 3n3/2, find a complete

balanced bipartite subgraph with parts about lnn
ln(n2/m)

,

• given a graph with n vertices, find a decomposition of its edges into complete

balanced bipartite graphs having altogether O(n2/ lnn) vertices.

Previous proofs of the existence of such objects, due to Kővári-Sós-Turán [10],

Chung-Erdős-Spencer [5], Bublitz [4] and Tuza [13] were non-constructive.

1 Introduction

Determining the minimal number of edges in a bipartite graph which guarantees the

existence of a complete balanced bipartite subgraph Kq,q is known as the Zarankiewicz

problem (see, e.g., Bollobás [3]). It was shown by Kővári, Sós and Turán [10] that every

bipartite graph with n vertices in both sides and cqn
2−1/q edges contains a Kq,q. The

same bound (with different constant cq) holds for general n-vertex graphs. The argument

from [10] also shows that n-vertex graphs of constant density, i.e., graphs with ǫn2 edges,

contain a complete bipartite graph with parts of size at least cǫ lnn. The proofs of all

these results are based on counting, and thus are non-constructive.

∗Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, IL

60607; email: mubayi@math.uic.edu; research supported in part by NSF grant DMS 0653946
†Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,

IL 60607 and Research Group on Artificial Intelligence, Hungarian Academy of Sciences, University of

Szeged; email: gyt@uic.edu

1

http://arxiv.org/abs/0905.2527v1

We consider the question whether such subgraphs can be found by efficient, i.e., polyno-

mial time, algorithms. This question has been considered recently by Kirchner [9], who

gave an efficient algorithm to find a complete balanced bipartite subgraph with parts of

size Ω(
√
lnn) in graphs of constant density. We improve this result by giving an efficient

algorithm which finds a complete balanced bipartite subgraph with parts of size Ω(ln n),

i.e. of the optimal order of magnitude, in graphs of constant density. Our algorithm gives

subgraphs of similar size as the counting argument in other ranges as well 1.

Finding a largest balanced complete bipartite subgraph is an important optimization

problem, which is known to be NP-hard, and even hard to approximate (see, e.g., Feige and

Kogan [6]). We would like to emphasize that we are not trying to give an approximation

algorithm for this problem. Our objective is to give an efficient algorithm which finds a

balanced complete bipartite subgraph of size close to the largest size that is guaranteed to

exist knowing only the number of edges in the graph. Thus, even in a dense graph, we are

finding a subgraph of logarithmic size only. Results of this type are given, for example,

in Alon et al. [1].

The counting argument of [10] has several applications to other combinatorial problems.

It seems to be an interesting question whether the algorithmic version of the counting

argument leads to further algorithmic results in these applications. As a case in point,

we consider the question of decomposing, or partitioning, the edge set of a graph into

complete bipartite graphs. The motivation to look for such algorithms comes from an

application in approximation algorithms [2].

Every n-vertex graph can be decomposed into at most n−1 stars, and Graham and Pollak

[7] showed that n − 1 complete bipartite graphs are necessary for the n-vertex complete

graph. Instead of minimizing the number of complete bipartite graphs in a decomposition,

one can also try to minimize the complexity of decompositions, measured by the sum of

the number of vertices of the complete bipartite graphs used in the decomposition. This

measure of complexity was suggested by Tarján [12] in the context of circuit complexity.

For recent connections to circuit complexity see Jukna [8].

It was shown by Chung, Erdős and Spencer [5], and by Bublitz [4], that there is always

a decomposition of complexity O(n2/ lnn), and this order of magnitude is best possible.

Similar results were obtained by Tuza [13] for decomposing bipartite graphs. These results

are obtained by repeatedly applying the counting argument to show the existence of a

1Note that the problem becomes meaningless in the sense studied here for fewer than n3/2 edges, as

such graphs do not always contain even K2,2 subgraphs.

2

large complete bipartite graph and removing its edges. Thus the decomposition results

obtained in [4, 5, 13] are also non-constructive. As a direct application of our algorithm

for finding bipartite subgraphs, we obtain efficient algorithms to find decompositions of

complexity O(n2/ lnn).

2 Complete balanced bipartite subgraphs

Searching for a Kq,q by checking all subgraphs of that size would give an algorithm with

superpolynomial running time if q is, say, logarithmic in the number of vertices. A

polynomial algorithm could be given by restricting the search space to a polynomial size

set of candidate subgraphs. One possibility for that would be to find a bipartite subgraph

(R, S) with the following properties:

• it is dense enough for the known results to guarantee the existence of a Kq,q, and

• the number of q-element subsets of R is only polynomial.

If such an (R, S) can be found efficiently then a required Kq,q is obtained by checking

the common neighborhood of all q-element subsets of R. It turns out that this approach

indeed works if one chooses R to be the right number of vertices with maximal degree and

S to be the remaining vertices. Thus, we consider the following algorithm, where q(n,m)

and r(n,m) are functions to be determined.

Algorithm FIND-BIPARTITE

input: G = (V,E) with |V | = n and |E| = m

q := q(n,m), r := r(n,m),

R := r vertices having highest degree

for all subsets C ⊆ R with |C| = q do

D :=
⋂

{N(v)−R : v ∈ C}

if |D| ≥ q then D′ := the first q elements of D, return (C,D′)

We now show that with the appropriate choice of q(n,m) and r(n,m) the algorithm works.

3

Theorem 1 Let

q :=

⌊

ln(n/2)

ln(2en2/m)

⌋

, r :=

⌊

qn2

m

⌋

.

If n is sufficiently large and m ≥ 3n3/2 then Algorithm FIND-BIPARTITE returns a

Kq,q (with q ≥ 2 as long as m > 8n3/2). The running time of the algorithm is polynomial

in n.

Remark. Note that our algorithm finds a Kq,q in an n-vertex graph with m = cqn
2−1/q

edges as long as cq is large. This is optimal for q = 2, 3 as there exist n-vertex graphs

with c′qn
2−1/q edges and no Kq,q, and if certain conjectures in extremal graph theory are

true, then it is also optimal for q > 3.

Proof. After selecting i < r vertices, the number of edges incident to these vertices is

less than rn. Hence in the subgraph induced by the remaining vertices there is a vertex

of degree at least 2(m− rn)/n. Thus if R is the set of r highest degree vertices in G then

∑

v∈R

degG(v) ≥
2r(m− rn)

n
.

Hence the bipartite graph H with parts R, V −R and edge set comprising those edges of

G with one endpoint in R and the other in V − R has at least 2rm/n− 3r2 edges.

We will now argue that rm/n ≥ 3r2. Indeed, rm/n ≥ 3r2 is equivalent to r ≤ m/3n. Now

r ≤ qn2/m so it is enough to show that qn2/m ≤ m/3n or equivalently, that 3qn3 ≤ m2.

Using the definition of q, we see that 3qn3 ≤ m2 follows from

m2 ln(2en2/m) ≥ 3n3 ln(n/2).

Suppose first that 3n3/2 ≤ m ≤ 3n3/2
√
lnn. Then

m2 ln

(

2en2

m

)

≥ 9n3 ln

(

2en2

3n3/2
√
lnn

)

> 9n3 ln

(
√

n

lnn

)

> 4n3 lnn > 3n3 ln(n/2).

On the other hand, if m ≥ 3n3/2
√
lnn, then using m < n2/2 we have

m2 ln(2en2/m) ≥ 9n3 lnn ln(2en2/m) > 9n3 lnn ln(4e) > 3n3 ln(n/2).

We conclude that H has at least 2rm/n− 3r2 ≥ rm/n edges.

4

For the correctness of the algorithm it is sufficient to show that H contains a copy of Kq,q.

This follows by the counting argument referred to in the introduction, which is included

here for completeness. Let s denote the number of stars with centers in V − R and q

leaves. Then

s =
∑

v∈V −R

(

degH(v)

q

)

≥ n

2

(

rm/n2

q

)

,

using the convexity of the function which is
(

x
q

)

if x ≥ q − 1 and 0 otherwise, and using

r ≤ n/2 which follows by the lower bound on m. If the latter quantity is greater than

(q−1)
(

r
q

)

then there is a q-subset of R which is the leaf set for at least q distinct stars, and

this gives a copy of Kq,q. Observe that the definition of q implies that n/2 ≥ (2en2/m)q

and this is equivalent to
n

2

(

rm

n2q

)q

≥
(

2er

q

)q

.

Now the inequality above and standard estimates of the binomial coefficients give

n

2

(

rm/n2

q

)

>
n

2

(

rm

n2q

)q

≥
(

2er

q

)q

≥ q

(

re

q

)q

> (q − 1)

(

r

q

)

,

Thus H indeed contains a Kq,q.

In order to show that the running time of the algorithm is polynomial, note first that,

assuming an adjacency matrix representation, the set R can be found in O(n2) steps. For

a given q-subset of R, the common neighbors can be found in O(nq) steps. All q-subsets

can be listed in O(
(

r
q

)

) steps (see, e.g. [11]). Thus the algorithm requires time

O

(

n2 +

(

r

q

)

nq

)

.

The number of iterations is at most
(

r

q

)

≤
(

re

q

)q

≤ eq
(

n2

m

)q

= eqeq ln(n
2/m)

Now m < n2/2 implies that

eq ≤ elnn/ ln 4e = n1/ ln 4e < n0.4195.

and q < lnn/ ln(n2/m) implies that

eq ln(n
2/m) < elnn = n.

Therefore the running time of the algorithm is O(n2.42). ✷

5

3 Decomposition into balanced complete bipartite sub-

graphs

Given a graph G = (V,E), we consider complete bipartite subgraphs Gi = (Ai, Bi, Ei), i =

1, . . . , t such that the edges sets Ei form a partition of E. The complexity of such a

decomposition is measured by the total number of vertices, i.e., by

t
∑

i=1

|Ai|+ |Bi|.

We find a decomposition of complexity O(n2/ lnn). The decomposition contains balanced

bipartite graphs, thus |Ai| = |Bi| holds as well. The algorithm uses Algorithm FIND-

BIPARTITE in a straightforward manner. As stated, Algorithm FIND-BIPARTITE

is guaranteed to work only if n ≥ n0 for some n0. As we are only interested in proving

an asymptotic result, let us assume that graphs on fewer vertices are handled by some

brute-force method.

Algorithm FIND-DECOMPOSITION

Given an n-vertex input graph G = (V,E), if n < n0, use a brute-force

method to find an optimal decomposition of G. Else, use Algorithm FIND-

BIPARTITE repeatedly to find a complete balanced bipartite subgraph and

delete it from the current graph, as long as there are more than n2/ lnn edges.

After that, form a separate bipartite graph from each remaining edge.

Theorem 2 For every n-vertex graph G, Algorithm FIND-DECOMPOSITION finds

a decomposition of G into balanced complete bipartite graphs, having complexity

O

(

n2

lnn

)

.

The running time of the algorithm is polynomial in n.

Proof. As the size of the subgraphs produced by Algorithm FIND-BIPARTITE is

of the same order of magnitude as guaranteed by the existence theorems, the theorem

follows as in [4, 5, 13]. For completeness, we give the argument, following [13].

6

Let the subgraphs produced by the calls of Algorithm FIND-BIPARTITE be Gi =

(Ai, Bi) with |Ai| = |Bi| = qi, where i = 1, . . . , t for some t . We need to show that

∑

i

qi = O

(

n2

lnn

)

. (1)

Let us divide the iterations of the algorithm into phases. The ℓ’th phase consists of

those iterations where the number of edges in the input graph of Algorithm FIND-

BIPARTITE is more than n2/(ℓ+ 1) and at most n2/ℓ. Dividing up the term qi in (1)

between the q2i edges of Gi, each edge gets a weight of 1/qi. We have to upper bound the

sum of the weights assigned to the edges.

It follows from the definition of qi in Theorem 1 that graphs formed in the ℓ’th phase

have qi = Θ(lnn/ ln ℓ). Thus edges, which get their weight in the ℓ’th phase, get a

weight of Θ(ln ℓ/ lnn). The number of edges getting their weight in the ℓ’th phase is

Θ((1
ℓ
− 1

ℓ+1
)n2) = Θ(n2/ℓ2). Hence the total weight assigned to the edges is at most of

the order of magnitude
∞
∑

ℓ=1

ln ℓ

lnn
· n

2

ℓ2
= Θ

(

n2

lnn

)

,

as
∑

ln ℓ
ℓ2

is convergent. The polynomiality of the running time follows directly from the

polynomial running time of Algorithm FIND-BIPARTITE. ✷

4 Subgraphs and decompositions of bipartite graphs

In this section we formulate the result analogous to Theorem 2 for bipartite graphs G =

(A,B,E) having parts A and B, with |A| = a, |B| = b and |E| = m. We assume w.l.o.g.

that a ≥ b.

The algorithms and their analysis are straightforward modifications of those for gen-

eral graphs. Algorithm FIND-BIPARTITE-IN-BIPARTITE, a modified version of

FIND-BIPARTITE, uses functions q(a, b,m) and r(a, b,m). It constructs R as the set

of r highest degree vertices in B, and checks the common neighborhood of all q element

subsets of R. Algorithm FIND-DECOMPOSITION-IN-BIPARTITE, a modified

version of FIND-DECOMPOSITION, uses this modified algorithm while the number

of edges is greater than ab/ ln(a + b).

Theorem 3 Let G be a bipartite graph with sides of size a and b. Algorithm FIND-

DECOMPOSITION-IN-BIPARTITE finds a decomposition of G into balanced com-

7

plete bipartite graphs, having complexity

O

(

ab

ln(a + b)

)

.

The running time of the algorithm is polynomial in a+ b.

Acknowledgment We thank Stefan Kirchner for sending us his Ph.D. dissertation.

References

[1] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, R. Yuster: The algorithmic aspects of

the regularity lemma, J. of Algorithms 16 (1994), 80-109.

[2] A. Bhattacharya, B. DasGupta, Gy. Turán: On approximate Horn minimization. In

preparation.

[3] B. Bollobás: Extremal Graph Theory. Academic Press, 1978.

[4] S. Bublitz: Decomposition of graphs and monotone formula size of homogeneous

fuctions, Acta Informatica 23 (1986), 689-696.

[5] F. R. K. Chung, P. Erdős, J. Spencer: On the decomposition of graphs into complete

bipartite graphs, in: Studies in Pure Mathematics, To the Memory of Paul Turán,

95-101. Akadémiai Kiadó, 1983.

[6] U. Feige, S. Kogan: Hardness of approximation of the balanced complete bipartite

subgraph problem, Tech. Rep. MCS04-04, Dept. of Comp. Sci. and Appl. Math., The

Weizmann Inst. of Science, 2004.

[7] R. L. Graham, H. O. Pollak: On the addressing problem for loop switching, Bell

Syst. Techn. J. 50 (1971), 2495-2519.

[8] S. Jukna: Disproving the single level conjecture, SIAM J. Comp. 36 (2006), 83-98.

[9] S. Kirchner: Lower bounds for Steiner tree algorithms and the construction of bi-

cliques in dense graphs. Ph.D. Dissertation, Humboldt-Universität zu Berlin, 2008.

(In German.)

8

[10] T. Kővári, V. T. Sós, P. Turán: On a problem of K. Zarankiewicz, Colloq. Math. 3

(1954), 50-57.

[11] E. M. Reingold, J. Nievergelt, N. Deo: Combinatorial Algorithms. Prentice Hall,

1977.

[12] T. Tarján: Complexity of lattice-configurations, Studia Sci. Math. Hung. 10 (1975),

203-211.

[13] Zs. Tuza: Covering of graphs by complete bipartite subgraphs; complexity of 0-1

matrices, Combinatorica 4 (1984), 111-116.

9

	Introduction
	Complete balanced bipartite subgraphs
	Decomposition into balanced complete bipartite subgraphs
	Subgraphs and decompositions of bipartite graphs

