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Abstract

In this paper, we show that the density of the one-inclusion hypergraph induced by
a family of multi-valued functions is bounded by the pseudo-dimension of this family.
(The original proof for this fact, that has been published quite recently, makes use of a
wrong claim.) We show furthermore that the well-known graph-dimension is another
upper bound on the density (which solves an open problem from [4]).

1 Introduction

Haussler, Littlestone, and Warmuth [2] investigated prediction-strategies for binary classifi-
cation problems in a setting where the learner receives n random points n − 1 of which are
labeled correctly, and the challenge is to predict the missing label of the n’th point with a
small probability for making a mistake. In this model, it is assumed that the “true labels”
are assigned according to an (unknown) function f taken from a (known) class F of func-
tions. In [2], a clever prediction strategy is designed that employs a data structure named
“one-inclusion graph”, and the following is shown:

• The density (i.e. the number of edges over the number of nodes) of the one-inclusion
graph divided by n upper bounds the probability for making a mistake.

• The VC-dimension of F (or even of F restricted to the n given points) upper-bounds
the density of the one-inclusion graph.

Thus, if d denotes the VC-dimension, one arrives at a mistake-bound (i.e. a bound on the
probability for making a mistake) of the form d/n when the one-inclusion prediction strategy
is applied.
Rubinstein, Bartlett, and Rubinstein [4] extended these results as follows:

• They proved a mistake-bound for the one-inclusion prediction strategy that is strictly
smaller than d/n (although asymptotically approaching d/n when d is fixed and n goes
to infinity).

• They generalized the one-inclusion prediction strategy to multiclass classification, there-
by dealing with one-inclusion hypergraphs, and proved a mistake-bound of the form
d/n where d denotes the pseudo-dimension of the (known) class F of multi-valued
functions.
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The proofs of these results are based on a further development of the so-called “shifting-
technique” by Haussler [1]. Specifically, the proof of the second result makes use of a theorem,
Theorem 52 in [4], stating that the pseudo-dimension of F upper-bounds the density of the
corresponding one-inclusion hypergraph. In the proof of this theorem, the shifting-technique
is applied and it is claimed that shifting cannot lead to a larger pseudo-dimension. This
claim, however, is provably wrong. (For a counterexample, see Section A.) In this paper, we
provide an alternative proof for Theorem 52 in [4]. We show furthermore that the well-known
graph-dimension of F is another upper bound on the density (which solves an open problem
from [4]).

2 Definitions, Notations, and Observations

For sake of brevity, let [k] = {0, 1, . . . , k}. Throughout this paper, the set R is a discretized
hyper-rectangle, i.e., R is of the form [k1] × · · · × [kn]. Note that n is the dimension and
k1, . . . , kn are the side-lengths of R.
In the following definition, “P-dimension” stands for “pseudo-dimension”, and G-dimension”
stands for “graph-dimension”. The other dimensions occurring in the definition are intro-
duced for technical reasons (with the GP-dimension being originally introduced in [3]).

Definition 2.1 (Shattered sets, dimensions) Let F be a subset of R.1

1. We say that I = {i1, . . . , id} ⊆ {1, . . . , n} is G-shattered at levels t1, . . . , td if, for every
b ∈ {0, 1}d, F has a non-empty intersection with the set

Rb = {f ∈ R| ∀i ∈ I : (fi = ti if bi = 1) and (fi 6= ti if bi = 0)} .

The G-dimension of F , denoted as G-dim(F ), is the largest d such that there exists a
set I of size d that is G-shattered by F (at d properly chosen levels).

2. We say that I = {i1, . . . , id} ⊆ {1, . . . , n} is G′-shattered at levels t1, . . . , td if, for every
b ∈ {0, 1}d, F has a non-empty intersection with the set

Rb = {f ∈ R| ∀i ∈ I : (fi 6= ti if bi = 1) and (fi = ti if bi = 0)} .

The G′-dimension of F , denoted as G-dim′(F ), is the largest d such that there exists a
set I of size d that is G′-shattered by F (at d properly chosen levels).

3. We say that I = {i1, . . . , id} ⊆ {1, . . . , n} is P-shattered at levels t1, . . . , td if, for every
b ∈ {0, 1}d, F has a non-empty intersection with the set

Rb = {f ∈ R| ∀i ∈ I : (fi ≥ ti if bi = 1) and (fi < ti if bi = 0)} .

The P-dimension of F , denoted as P-dim(F ), is the largest d such that there exists a
set I of size d that is P-shattered by F (at d properly chosen levels).

1You may think of every element of F as a function table for a function f ∈ F restricted to the n random
points that are given to the learner. Compare with the introduction.
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4. We say that I = {i1, . . . , id} ⊆ {1, . . . , n} is GP-shattered at levels t1, . . . , td if, for
every b ∈ {0, 1}d, F has a non-empty intersection with the set

Rb = {f ∈ R| ∀i ∈ I : (fi = ti if bi = 1) and (fi < ti if bi = 0)} .

The GP-dimension of F , denoted as GP-dim(F ), is the largest d such that there exists
a set I of size d that is GP-shattered by F (at d properly chosen levels).

5. We say that I = {i1, . . . , id} ⊆ {1, . . . , n} is GP′-shattered at levels t1, . . . , td if, for
every b ∈ {0, 1}d, F has a non-empty intersection with the set

Rb = {f ∈ R| ∀i ∈ I : (fi > ti if bi = 1) and (fi = ti if bi = 0)} .

The GP′-dimension of F , denoted as GP-dim′(F ), is the largest d such that there exists
a set I of size d that is GP′-shattered by F (at d properly chosen levels).

The following inequalities are easy to verify:

max{GP-dim(F ), GP-dim′(F )} ≤ P-dim(F ) (1)

GP-dim(F ) ≤ G-dim(F ) (2)

GP-dim′(F ) ≤ G-dim′(F ) (3)

Definition 2.2 (One-inclusion hypergraph and corresponding graph) Let F be a sub-
set of R.

1. We define the hypergraph HF induced by F as follows. The set of nodes coincides
with F . For every 1 ≤ j ≤ n, and every choice of coordinates f1, . . . , fj−1, fj+1, . . . , fn,
we have (at most) one hyperedge consisting of all nodes f ∈ F of the form f =
(f1, . . . , fj−1, h, fj+1, . . . , fn) for some 1 ≤ h ≤ kj but we exclude those hyperedges
that consist of one node only.

2. The graph GF induced by F is defined similarly. The set of nodes coincides with F .
An edge in GF is a pair of (non-identical) nodes that are of the form

(f1, . . . , fj−1, h, fj+1, . . . , fn) , (f1, . . . , fj−1, ĥ, fj+1, . . . , fn) , h < ĥ

provided that

{(f1, . . . , fj−1, t, fj+1, . . . , fn)| h < t < ĥ} ∩ F = ∅ .

The density of a finite (hyper-)graph is defined as the number of (hyper-)edges divided by
the number of nodes. Since the node sets of HF and GF coincide, and every hyperedge in
HF is represented by at least one edge in GF , the following obviously holds:

density(HF ) ≤ density(GF ) (4)
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3 Main Results

The following lemma is the main technical contribution of our paper. The recursion used
in the proof is similar to the recursion in the original proof of Sauer’s Lemma [5] (although
Sauer’s Lemma is not at all concerned with density). It is different from the recursion used
in the proof from [3] for generalized versions of Sauer’s Lemma (but could be used as well
for the purpose of proving these generalized versions).

Lemma 3.1 Let F ⊆ [k1] × [k2] × · · · × [kn], and let GF be the graph induced by F . Then,
density(GF ) ≤ GP-dim′(F ).

Proof Throughout the proof, we assume that k1, . . . , kn ≥ 1. Note that this can be always
achieved by identifying a hyper-rectangle with some dimensions of side-length 0 with the
corresponding lower-dimensional hyper-rectangle without dimensions of side-length 0. Let
d := GP-dim′(F ). It follows that

s := k1 + · · ·+ kn ≥ n ≥ d .

The proof proceeds by induction over s ≥ d. If s = d, then F coincides with {0, 1}d so that
HF is the d-dimensional Boolean cube with 2d nodes and d2d−1 edges. In this case,

density(HF ) =
d · 2d−1

2d
=

d

2
< d .

Let us assume now that s > d and remember that n ≥ d. We associate with F the following
two sets:

F ′ := {f ∈ F | fn ≤ kn − 1} ∪ {(f1, . . . , fn−1, kn − 1)| (f1, . . . , fn−1, kn) ∈ F}

F ′′ := {(f1, . . . , fn−1)| (f1, . . . , fn−1, kn − 1), (f1, . . . , fn−1, kn) ∈ F}

Let GF = (V, E), GF ′ = (V ′, E ′) and GF ′′ = (V ′′, E ′′). We claim that, with this notation,
the following holds:

GP-dim′(F ′) ≤ d (5)

GP-dim′(F ′′) ≤ d − 1 (6)

|V | = |V ′| + |V ′′| (7)

|E| ≤ |E ′| + |E ′′| + |V ′′| (8)

This would accomplish the proof of the lemma because

|E| ≤ |E ′| + |E ′′| + |V ′′|
(∗)

≤ d · |V ′| + (d − 1) · |V ′′| + |V ′′| = d · |V | ,

where the inequality marked “(∗)” follows from (5), (6) and the inductive hypothesis. We
still have to prove (5), (6), (7) and (8).
As for (5), assume that 1 ≤ i1 < · · · < ir ≤ n is GP′-shattered by F ′ at levels t1, . . . , tr,
respectively. Since F ′ has side-length kn − 1 in dimension n, we know that either ir < n or
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ir = n and tr ≤ kn − 2. Note that, according to the definition of F ′, every vector f ∈ F ′

belongs to F too or has coordinate kn−1 in dimension n and will belong to F after lifting-up
this coordinate to level kn. It follows that i1, . . . , ir is GP′-shattered by F at the same levels
t1, . . . , tr (because, even if ir = n, it is immaterial whether the n’th coordinate of a vector is
kn − 1 or kn).
As for (6), assume that 1 ≤ i1 < · · · < ir ≤ n − 1 is GP′-shattered by F ′′ at levels t1, . . . , tr,
respectively. Then, according to the definition of F ′′, i1, . . . , ir, n is GP′-shattered by F at
levels t1, . . . , tr, kn − 1, respectively. Thus, (6) must hold.
(7) clearly holds because

(f1, . . . , fn−1, fn) 7→







(f1, . . . , fn−1, fn) if fn ≤ kn − 1
(f1, . . . , fn−1, kn − 1) if fn = kn and (f1, . . . , fn−1, kn − 1) /∈ F
(f1, . . . , fn−1) if fn = kn and (f1, . . . , fn−1, kn − 1) ∈ F

(9)
is a bijection between V and V ′ ∪ V ′′.
We finally have to verify (8). To this end, we will apply a counting argument that proceeds
“line-wise”. Let us first fix coordinates f1, . . . , fn−1 and consider the line segment L between
(f1, . . . , fn−1, 0) and (f1, . . . , fn−1, kn). The number of edges on a line is always one less then
the number of nodes. Thus, since by (9)

|{(f1, . . . , fn−1, h) ∈ V : 0 ≤ h ≤ kn}| =|{(f1, . . . , fn−1, h) ∈ V ′ : 0 ≤ h ≤ kn − 1}|

+ |{(f1, . . . , fn−1)} ∩ V ′′| ,

it holds that the number of edges in E passing along dimension n equals to the sum of |V ′′|
and the number of edges in E ′ passing along dimension n.
Consider now edges e ∈ E that pass along a dimension 1 ≤ j ≤ n − 1. By reasons of
symmetry, we may assume that j = 1. Fix coordinates f2, . . . , fn−1, h and consider the line
segment Lh between (0, f2, . . . , fn−1, h) and (k1, f2, . . . , fn−1, h). We proceed by case analysis
(see Figures 1 and 2 for an illustration of the second case):

Case 1: h ≤ kn − 2.
Then clearly |E ∩ Lh| = |E ′ ∩ Lh|.

Case 2: h = kn − 1, kn.
We consider both line segments simultaneously. Furthermore, let L′′ be the line segment
between (0, f2, . . . , fn−1) and (k1, f2, . . . , fn−1). The bijection in (9) shows that

|E ∩ (Lkn
∪ Lkn−1)| =

{

|E ′ ∩ (Lkn
∪ Lkn−1)| + |E ′′ ∩ L′′| − 1 if V ′′ ∩ L′′ = ∅ and V ∩ Lkn

, V ∩ Lkn−1 6= ∅
|E ′ ∩ (Lkn

∪ Lkn−1)| + |E ′′ ∩ L′′| otherwise
.

(8) follows from the preceding discussion. •

Corollary 3.2 Let F ⊆ [k1]× [k2]×· · ·× [kn], and let GF be the graph induced by F . Then,
density(GF ) ≤ GP-dim(F ).
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dimension n

level k

level kn

n −1

dimension j

L’’

Figure 1: The scenario for edges passing along dimension j at levels kn or kn−1, respectively:
Solid circles represent nodes from V , hollow circles represent nodes from V ′, and squares
represent nodes from V ′′. Thick solid lines indicate edges from E and thick dotted lines
indicate edges from E ′ and E ′′. In this example, |E∩Lkn

| = |E∩Lkn−1| = 4, |E ′∩Lkn−1| = 6,
and |E ′′ ∩ L′′| = 2.

dimension n

level k

level kn

n −1

dimension j

Figure 2: A similar scenario as in Figure 1 but now V ′′∩L′′ = ∅. In this example, |E∩Lkn
| =

3, |E ∩ Lkn−1| = 2, |E ′ ∩ Lkn−1| = 6, and |E ′′ ∩ L′′| = 0.
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Proof The proof is analogous to the proof of Lemma 3.1, but we have to deal with hyper-
rectangles of the form

R = {l1, . . . , k1} × · · · × {ln, . . . , kn} , (10)

which makes the notation more cumbersome. Initially, l1 = · · · = ln = 0, but we are about
to apply an inductive argument which leads to higher values of the parameters li. Given
F ⊆ R where R is a hyper-rectangle of the form (10), the sets F ′ and F ′′ are now defined as
follows:

F ′ := {f ∈ F | fn ≥ ln + 1} ∪ {(f1, . . . , fn−1, ln + 1)| (f1, . . . , fn−1, ln) ∈ F}

F ′′ := {(f1, . . . , fn−1)| (f1, . . . , fn−1, ln), (f1, . . . , fn−1, ln + 1) ∈ F}

We may apply a symmetry argument with levels ln and ln + 1 in dimension n playing the
role that levels kn, kn − 1 were playing before. •

Combining Lemma 3.1 and Corollary 3.2 with (1), (2), (3), and (4), we arrive at the following
result:

Corollary 3.3 Let F ⊆ [k1] × [k2] × · · · × [kn], and let HF be the hypergraph induced by F .
Then,

density(HF ) ≤ density(GF ) ≤ min{GP-dim(F ),GP-dim′(F )}

≤ min{P-dim(F ),G-dim(F ),G-dim′(F )}
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A Shifting and Pseudo-dimension

In [4], the following shifting-operators are used:

• Operator Si,t shifts any vector in F that is located at level t in dimension i to the lowest
level in dimension i that is not occupied by another node from V (thereby keeping the
remaining coordinates fixed).

• Operator Si is defined as the concatenation Si,ki
◦ · · · ◦ Si,1.

It is claimed in [4] that any index set P-shattered by Si(F ) is P-shattered by F too. Clearly,
this would imply that the P-dimension of Si(F ) is upper-bounded by the P-dimension of F .
The simplest counterexample against this claim is as follows:

F = {(0, 0), (0, 1), (1, 1), (1, 2)}

S2(F ) = {(0, 0), (0, 1), (1, 0), (1, 1)}

Note that
P-dim(F ) = 1 < 2 = P-dim(S1(F )) .

By induction, we can extend this counterexample so as to get a d-dimensional set Fd of
P-dimension 1 that can be iteratively shifted to a set F̃d of P-dimension d (which shows that
shifting can increase the P-dimension as much as we like):

1. F1 = {(0), (1)} and vmax(F1) = (1).

2. Fd = ({0} × Fd−1) ∪ ({1} × (vmax + Fd−1)) and vmax(Fd) = {1} × (2vmax(Fd−1)).

For example, F2 is the simple counterexample that we had discussed first, vmax(F2) = (1, 2),
and

F3 = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 2), (1, 1, 2), (1, 1, 3), (1, 2, 3), (1, 2, 4)} ,

vmax(F3) = (1, 2, 4) .

It easy to show inductively that the following holds:

• The vectors from Fd form a chain w.r.t. relation ≤ (understood component-wise). This
implies that P-dim(Fd) = 1.

• Shifting according to S2 ◦ · · · ◦ Sd transforms Fd into F̃d = {0, 1}d. The latter set has
P-dimension d.
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