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Abstract

In this work, we consider a variant of the classical Longest Com-
mon Subsequence problem called Doubly-Constrained Longest Com-
mon Subsequence (DC-LCS). Given two strings s1 and s2 over an
alphabet Σ, a set Cs of strings, and a function Co : Σ → N , the
DC-LCS problem consists in finding the longest subsequence s of s1
and s2 such that s is a supersequence of all the strings in Cs and
such that the number of occurrences in s of each symbol σ ∈ Σ is
upper bounded by Co(σ). The DC-LCS problem provides a clear
mathematical formulation of a sequence comparison problem in Com-
putational Biology and generalizes two other constrained variants of
the LCS problem: the Constrained LCS and the Repetition-Free LCS.
We present two results for the DC-LCS problem. First, we illustrate
a fixed-parameter algorithm where the parameter is the length of the
solution. Secondly, we prove a parameterized hardness result for the
Constrained LCS problem when the parameter is the number of the
constraint strings (|Cs|) and the size of the alphabet Σ. This hardness
result also implies the parameterized hardness of the DC-LCS prob-
lem (with the same parameters) and its NP-hardness when the size of
the alphabet is constant.

1 Introduction

The problem of computing the longest common subsequence (LCS) of two
sequences is a fundamental problem in stringology and in the whole field of
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algorithms, as it couples a wide range of applications with a simple math-
ematical formulation. Applications of variants of LCS range from Compu-
tational Biology to data compression, syntactic pattern recognition and file
comparison (for instance it is used in the Unix diff command).

A few basic definitions are in order. Given two sequences s and t over
a finite alphabet Σ, s is a subsequence of t if s can be obtained from t by
removing some (possibly zero) characters. When s is a subsequence of t,
then t is a supersequence of s. Given two sequences s1 and s2, the longest
common subsequence problem asks for a longest possible sequence t that is
a subsequence of both s1 and s2.

The problem of computing the longest common subsequence of two se-
quences has been deeply investigated and polynomial time algorithms are
well-known for the problem [11]. It is possible to generalize the LCS prob-
lem to a set of sequences: in such case the result is a sequence that is a
subsequence of all input sequences. The problem is NP-hard even on bi-
nary alphabet [10] and it is not approximable within factor O(n1−ε), for any
constant ε > 0, on arbitrary alphabet [9].

Computational Biology is a field where several variants of the LCS prob-
lem have been introduced for various purposes. For instance researchers
defined some similarity measures between genome sequences based on con-
strained forms of the LCS problem. More precisely, it has been studied
an LCS-like problem that deals with two types of symbols (mandatory and
optional symbols) to model the differences in the number of occurrences
allowed for each gene [4, 2]. An illustrative example is the definition of
repetition-free longest common subsequence [2] where, given two sequences
s1 and s2, a repetition-free common subsequence is a subsequence of both
s1, s2 that contains at most one occurrence of each symbol. Such a model
can be useful in the genome rearrangement analysis, in particular when deal-
ing with the exemplar model. In such framework we want to compute an
exemplar sequence, that is a sequence that contains only one representative
(called the exemplar) for each family of duplicated genes inside a genome.
In biological terms, the exemplar gene may correspond to the original copy
of the gene, from which all other copies have been originated.

A different variant of LCS that has been introduced to compare bio-
logical sequences is called Constrained Longest Common Subsequence [15].
More precisely, such variant of LCS can be useful when comparing two bi-
ological sequences that have a known substructure in common [15]. Given
two sequences s1, s2, and a constraint sequence sc, we look for a longest
common subsequence s of s1, s2, such that sc is a subsequence of s. The
constrained LCS problem admits polynomial-time algorithms [15, 3, 5] but
it becomes NP-hard when generalized to a set of input sequences or to a set
of constraint sequences [8].

In this paper we introduce a new problem, called Doubly-Constrained
Longest Common Subsequence and denoted as DC-LCS, that extends both
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the repetition-free longest common subsequence problem and the constrained
longest common subsequence problem. More precisely, given two input se-
quences s1, s2, the DC-LCS problem asks for the longest common subse-
quence s that satisfies two constraints: (i) the number of occurrences of
each symbol σ is upper bounded by a quantity Co(σ), and (ii) s is a su-
persequence of the strings of a specified constraint set. First, we design a
fixed-parameter algorithm [7] when the parameter is the length of the so-
lution. Then we give a parameterized hardness result for the Constrained
Longest Common Subsequence, when the number of constraint sequences
and the size of the alphabet are considered as parameters. This result im-
plies the same parameterized hardness result of DC-LCS.

2 Basic Definitions

Let s1, s2 be two strings over an alphabet Σ. Given a string s, we denote
by s[i] the symbol at position i in string s, and by s[i . . . j], the substring
of s starting at position i and ending at position j. A string constraint CS

consists of a set of strings, while an occurrence constraint Co is a function
Co : Σ → N, assigning an upper bound on the number of occurrences of each
symbol in Σ. First, consider the following variant of the LCS problem.

Problem 1. Constrained Longest Common Subsequence (C-LCS)
Input: two strings s1 and s2, a string constraint Cs.
Output: a longest common subsequence s of s1 and s2, so that each string
in Cs is a subsequence of s.

The problem admits a polynomial time algorithm when Cs consists of a
single string [15, 3, 5], while it is NP-hard when Cs consists of an arbitrary
number of strings [8]. In the latter case, notice that C-LCS cannot be
approximated, since a feasible solution for the C-LCS problem must be a
supersequence of all the strings in the constraint Cs and computing if such
a feasible solution exists is NP-complete [8].

Problem 2. Repetition-free Longest Common Subsequence (RF-LCS)
Input: two strings s1 and s2.
Output: a longest common subsequence s of s1 and s2, so that s contains
at most one occurrence of each symbol σ ∈ Σ.

The problem is APX-hard even when each symbol occurs at most twice
in each of the input strings s1 and s2 [2]. A positive note is that allowing
at most k occurrences of each symbol in each of s1 and s2 results in a 1

k
-

approximation algorithm [2].
We can introduce an even more general version of both the C-LCS and

RF-LCS problem, called Doubly-Constrained Longest Common Subsequence
(DC-LCS) problem.
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Problem 3. Doubly-Constrained Longest Common Subsequence

(DC-LCS)
Input: two strings s1 and s2, a string constraint Cs, and an occurrence
constraint Co.
Output: a longest common subsequence s of s1 and s2, so that each string
in Cs is a subsequence of s and s contains at most Co(σ) occurrences of each
symbol σ ∈ Σ.

It is easy to see that C-LCS problem is the restriction of the DC-LCS

problem when Co(σ) = |s1| + |s2| for each σ ∈ Σ. At the same time, the
RF-LCS problem is the restriction of the C-LCS problem when Cs = ∅ and
Co(σ) = 1 for each σ ∈ Σ. Therefore the DC-LCS problem is APX-hard,
since it inherits all hardness properties of C-LCS and RF-LCS.

3 A Fixed-Parameter Algorithm for DC-LCS

Initially we present a fixed-parameter algorithm for the DC-LCS problem
when |Cs| ≤ 1 (hence the result holds also for the RF-LCS problem), where
the parameter is the size of a solution of DC-LCS. Later on, we will extend
the algorithm to a generic set Cs.

The algorithm is based on the color coding technique [1]. We recall the
basic definition of perfect family of hash functions [14]. Given a set S, a
family F of hash functions from S to {1, 2, . . . , k} is called perfect if for any
S′ ⊆ S of size k, there exists an injective hash function f ∈ F from S′ to
the set of labels {1, 2, . . . , k}.

Since |Cs| ≤ 1, we denote by sc the only sequence in Cs. Let k be
the size of a solution for DC-LCS, and recall that a solution contains at
most Co(σ) occurrences of each symbol σ ∈ Σ. Notice that, since s is
a subsequence of both s1 and s2, and by the definition of Co, the num-
ber of occurrences of each symbol σ ∈ Σ in a solution s is also (upper)
bounded by the number of occurrences of σ in each s1 and s2 (i.e. occ(σ, s) ≤
min{Co(σ), occ(σ, s1), occ(σ, s2)}). Let C

′
o be a function from Σ to N defined

as C ′
o(σ) := min{Co(σ), occ(σ, s1), occ(σ, s2)}.
Given C ′

o and the sequences s1 and s2, we construct a set Σ̃ that contains
the pairs (σ, i) for each σ ∈ Σ and i ∈ {1, . . . , C ′

o(σ)}. For example, if s1 =
aaaa bbb cc d, s2 = dd c bbbb aaaa, and Co(a) = Co(b) = Co(c) = Co(d) = 3,
then the set Σ̃ is equal to {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (d, 1)}.

Consider now a perfect family F of hash functions from Σ̃ to the set
{1, 2 . . . , k}. We can associate a function l : Σ → 2{1,2 ...,k} with each f ∈ F ,
where l(σ) = {f(σ, i) : (σ, i) ∈ Σ̃}. Let s be a solution of the DC-LCS

problem of length at most k, and let L be a subset of {1, . . . , k}. Then s

is an L-colorful solution w.r.t. a hash function f ∈ F (and its associated
function l) if and only if there exists a function l1 : Σ → 2{1,2,...,k} which
satisfies the following conditions:
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(i) ∀σ ∈ Σ, l1(σ) ⊆ l(σ) ∩ L,

(ii) ∀σ ∈ Σ, |l1(σ)| is equal to the number of occurrences of σ in s,

(iii) ∀σ1, σ2 ∈ Σ, l1(σ1) ∩ l1(σ2) = ∅.

Intuitively, an L-colorful solution s is a sequence such that it is possible to
associate distinct elements (labels) of the set L with all the characters of s
by using the function l. Notice that the length of an L-colorful solution s is
equal to the number of labels that s uses, and each symbol σ does not occur
more than C ′

o(σ) times in s.
The basic idea of our algorithm is to verify if there exists an L-colorful

solution that uses all labels in L or, equivalently, if the length of an optimal
L-colorful solution is |L|. Such task is fulfilled via a dynamic programming
recurrence. Since F is a perfect family of hash functions, for each feasible
solution s of length k, there exists a hash function f ∈ F such that s is
{1, . . . , k}-colorful w.r.t. f . Therefore, by computing the recurrence for all
hash functions of F , we are guaranteed to find a solution of length k, if such
a solution exists.

Given a hash function f , we define V [i, j, h, L] which takes value 1 if
and only if there exists an L-colorful common subsequence s of s1[1 . . . i]
and s2[1 . . . j], such that s is a supersequence of sc[1 . . . h] and s has length
equal to |L| (or, equivalently, s uses all labels in L). Notice that the actual
supersequence can be computed by a standard backtracking technique. The-
orem 3.1 states that V [i, j, h, L] can be computed by the following dynamic
programming recurrence which is an extension of the standard equation for
the Longest Common Subsequence (LCS) problem [6].

V [i, j, h, L] = max





V [i− 1, j, h, L]
V [i, j − 1, h, L]
V [i− 1, j − 1, h, L \ {λ}] if s1[i] = s2[j] and

λ ∈ L ∩ l(s1[i])
V [i− 1, j − 1, h − 1, L \ {λ}] if s1[i] = s2[j] = sc[h] and

λ ∈ L ∩ l(s1[i])
(1)

The boundary conditions are V [0, j, h, L] = 0 and V [i, 0, h, L] = 0 if
L 6= ∅, while V [i, j, 0,∅] = 1, and V [i, j, h,∅] = 0 when h > 0. More-
over, notice that, as a consequence of the recurrence’s definition, we have
V [i, j, h, L] = 0 for all h > |L|. A feasible solution of length k is {1, . . . , k}-
colorful w.r.t. f if and only if V [|s1|, |s2|, |sc|, {1, . . . , k}] = 1. In this case, a
standard backtracking search can reconstruct the actual solution.

Theorem 3.1. Let f ∈ F be a hash function mapping injectively the solution
s to the set of labels {1, . . . , k}. Then Equation (1) is correct.
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Proof. We will prove the theorem by induction, that is we will prove the
correctness of the value in V [ia, ja, ha, La] by assuming that of V [ib, jb, hb, Lb]
when ib ≤ ia, jb ≤ ia, hb ≤ ha, Lb ⊆ La, and at least one inequality is strict.

Let s be an optimal La-colorful solution for the sequences s1[1, . . . , ia],
s2[1, . . . , ja], sc[1, . . . , ha], and let β be the last symbol of s, that is s = tβ,
where t is the prefix of s consisting of all but the last character.

If α 6= β then, just as for the recurrences of the standard LCS problem [6],
the theorem holds.

Therefore we can assume now that α = β. Since s is La-colorful, then
there exists a mapping l1 satisfying the definition of L-colorfulness. By
condition (ii), |l1(β)| is equal to the number of occurrences of β in s. Let
z be the label which is image through f of the last character of s. Then
there exists an L\{z}-colorful solution t of s1[1, . . . , ia−1], s2[1, . . . , ja−1],
sc[1, . . . , ja] (if t is a supersequence of sc[1, . . . , ja]) or of s1[1, . . . , ia − 1],
s2[1, . . . , ja − 1], sc[1, . . . , ja − 1], hence completing the proof.

If f is a hash function that does not map injectively the solution s of
length k to the set of labels {1, . . . , k} then, by definition of hash func-
tion, there is a label z ∈ {1, . . . , k} that is not in the image through f

of any character of s. The latter observation also implies that z is not in
the image through l of any symbol, therefore for each set L including z,
the last two cases of our recurrence equation cannot apply, which implies
that V [i, j, h, {1, . . . , k}] = 0 for all values of i, j, h, hence estabilshing the
correctness of our algorithm.

It is immediate to notice that the total number of entries of the matrix
V [·, ·, ·, ·] is |s1||s2||sc|2

k. Furthermore notice that computing each entry re-
quires at most O(k) time, as case 1 and case 2 of the recurrence require
constant time, while case 2 and case 4 require at most O(k) time, since
|L| ≤ k. Since there exists a perfect family of hash functions whose size is
O(log |Σ̃|)2O(k) and that can be computed in O(|Σ̃| log |Σ̃|)2O(k) time [1], and
|Σ̃| ≤ |s1, the algorithm has an overall O(|s1| log |s1|)2

O(k)+O(|s1||s2||sc|k2
k)

time complexity.
The algorithm actually computes a longest supersequence of sc that is a

feasible solution of the problem. Assume now that Cs is a generic occurrence
set, and let x be an optimal solution of a generic instance of the DC-LCS

problem of size k. It is immediate to notice that, by removing from x all
symbols that are not also in one of the sequence of Cs, we obtain a common
supersequence x1 of Cs that is a subsequence of x. Moreover, as x has size
k, x1 contains at most k characters (where k is the length of an optimal
solution).

Notice that the alphabet consisting of the symbols appearing in at least
one sequence of Cs contains at most k symbols, for otherwise all superse-
quences of Cs would be longer than k. Consequently there are at most kk

such supersequences. Our algorithm for a generic Cs enumerates all such
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supersequences sc, and applies the algorithm for |Cs| = 1 on the new set of
constraint sequences made only of sc, returning the longest feasible solution
computed.

The overall time complexity is clearly O
(
kk(|s1| log |s1|)2

O(k) + |s1||s2||sc|k2
k)
)
.

4 W[1]-hardness of C-LCS

In this section we prove that computing if there exists a feasible solution
of C-LCS is not only NP-complete, but it is also W[1]-hard when the pa-
rameter is the number of string in Cs and the alphabet Σ (see [7] for an
exposition on the consequences of W[1]-hardness).

We reduce the Shortest Common Supersequence (SCS) problem param-
eterized by the number of input strings and the size of alphabet Σ, which
is known to be W[1]-hard [12]. Let R = {r1, . . . , rk} be a set of sequences
over alphabet Σ, hence R is a generic instance of the SCS problem. In what
follows we denote by l the size of a solution of the SCS problem.

The input of the C-LCS consists of two sequences s1, s2, and a string
constraint Cs. Let # be a delimiter symbol not in Σ. Moreover, given a se-
quence ri = y1y2 · · · yz over alphabet Σ, let c(ri) be the sequence y1#y2# · · ·#yz#.
Pose Cs = {#l} ∪ {c(ri) : ri ∈ R}, let w be a sequence over Σ such that w
contains exactly one occurrence of each symbol in Σ, and let rev(w) be the
reversal of w. Finally, let s1 = (w#)l and s2 = (rev(w)#)l. In the following
we call each occurrence of w or of rev(w) a block.

Let t be any supersequence of #l that is also a common subsequence
of s1 and s2. Since in each of those sequences there are l #s, then also
t must contain l #s, which in turn implies that, by construction of w, at
most one symbol of each block can be in t. Therefore t contains at most 2l
symbols. At the same time, let p be a generic sequence no longer than 2l,
ending with a # and such that no two symbols from Σ appear consecutively
in p. Since each symbol of Σ occurs exactly once in w, it is immediate to
notice that p is a common subsequence of s1 and s2. Consequently, the set
of all supersequences of #l that are also common subsequences of s1 and s2
is equal to the set of sequences q with length not larger than 2l and such
that (i) q contains exactly l #s, (ii) q ends with a #, and (iii) taken two
consecutive symbols from q, at least one of those symbols is equal to #.

An immediate consequence is that there exists a feasible solution of
length 2l of the instance of C-LCS made of the set Cs and the two se-
quences s1 and s2 iff there exists a supersequence of length 2l of the set R
of sequences.

The reduction described is an FPT-reduction [7]. Finally, notice that
the W[1]-hardness of C-LCS with parameters |Cs| and |Σ| implies the W[1]-
hardness of DC-LCS with parameters |Cs| and |Σ| since C-LCS is a restric-
tion of the DC-LCS problem.
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Moreover, notice that the same reduction can be applied starting from
the SCS problem over binary alphabet, implying that the DC-LCS problem
is NP-hard over a fixed ternary alphabet, as the SCS problem is NP-hard
over a binary alphabet [13].
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[13] K.-J. Räihä and E. Ukkonen. The shortest common supersequence
problem over binary alphabet is NP-complete. Theoretical Computer
Science, 16:187–198, 1981.

[14] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe
hash functions. SIAM J. on Computing, 19(5):775–786, 1990.

[15] Y.-T. Tsai. The constrained longest common subsequence problem. Inf.
Process. Lett., 88(4):173–176, 2003.

9


	Introduction
	Basic Definitions
	A Fixed-Parameter Algorithm for DC-LCS
	W[1]-hardness of C-LCS

