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Abstract

A Direct Sum Theorem holds in a model of computation, when solving some k input instances
together is k times as expensive as solving one. We show that Direct Sum Theorems hold in the
models of deterministic and randomized decision trees for all relations. We also note that a near
optimal Direct Sum Theorem holds for quantum decision trees for boolean functions.

1 Introduction

One of the goals of complexity theory is to understand the structural properties of different models of
computation. A fundamental question that can be asked in every model of computation is how well
different computations may be combined. Can we achieve substantial savings when solving the same
problem on k (independent) inputs together? Or is the straightforward approach, namely running
the same algorithm £ times, optimal? This question is known as the direct sum problem, and has
been studied in many different settings and variations.

We say that a Direct Sum Theorem holds for a measure of complexity, when solving & input
instances together is roughly as costly as k times solving one instance according to that measure.
Since we are often interested in bounded error computations, we also need to specify how the error
on k input instances relates to the error on one instance. The direct sum question in a narrower
sense relates to solving k instances with constant error, while a Strong Direct Product Theorem holds
when even using roughly k times the resources required to solve one instance with constant error,
the success probability goes down exponentially in k. This happens when we solve the k instances
independently, and a Strong Direct Product Theorem states that this is optimal with respect to
resources and error. In this paper we only consider the direct sum problem in the narrower sense:
we compare solving one instance with constant (resp. no) error to solving k instances with constant
(resp. no) error.

The decision tree model (see [BW02]) is perhaps the simplest model of computation, measuring
the number of input positions that need to be accessed in order to compute a function/solve a
relation. Still many questions about this model remain open. In this paper we show that the direct
sum property holds for deterministic and randomized decision trees.
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Previously, a Strong Direct Product Theorem for decision trees was established by Nisan et
al. [NRS94]. However, their result does not imply a Direct Sum Theorem in our sense, because it
is only shown in a weaker setting. Instead of analyzing a single algorithm that has access to all &
inputs and produces all k outputs, Nisan et al. consider a setting where k algorithms (that can access
all inputs), each making at most d queries, compute one of the k outputs each, where d is the query
complexity of computing one instance (with bounded error). Hence this does not establish a Direct
Sum Theorem in the above sense.

Previous papers [NRS94, BN95] have dismissed the direct sum problem for decision trees as
either very simple, or uninteresting. To quote [NRS94]: “While it is an easy exercise to see that
direct-sum holds for decision tree depth, the other two problems (direct product and help bits) are
more difficult.” The paper does not make it clear, what kind of decision tree is meant (the setting
considered there is distributional complexity). In the distributional setting a general counterexample
by Shaltiel [Sha0Ol] makes it clear that some very tight direct sum statements are not even true for
the model where there is one decision tree that has to solve all k input instances together.

Ben-Asher and Newman claim in [BN95]: “In the standard decision tree model the question is
quite uninteresting as queries do not involve variables of more than one of the problem instances at a
time.” This does not seem to be a valid assessment of the problem, because with the same argument
the strong direct product question for decision trees could be dismissed, which is as of now still an
open problem (in the setting where one algorithm makes all outputs).

We give proofs of Direct Sum Theorems for the case of deterministic and randomized decision
trees. In the deterministic case the main problem is to construct a more efficient decision tree for
one instance from a given tree for two instances. In the randomized case the proof is along the lines
of some proofs of Direct Sum Theorems in communication complexity e.g. [JRS05].

One may ask if a similar result is true for quantum decision trees, also known as quantum query
algorithms. While we do not have a proof for this model, a weaker statement can be derived from
recent results by Reichardt. In [R09] he shows that the general quantum adversary bound is tight
within a logarithmic factor for the quantum decision tree complexity of every boolean function (his
Theorem 1.4). He also shows that the general adversary bound has a direct sum behavior (see
Theorem 7.2 in the long version of the paper. Note that one has to choose a good “connection”
function f like XOR because the adversary bound works only for boolean functions). The direct
sum for the general adversary bound has also been shown previously in Ambainis, Childs, Le Gall
and Tani [ACGT09]. Hence we can conclude that in the quantum case, at least within a logarithmic
factor and for boolean functions, a Direct Sum Theorem also holds.

2 Preliminaries

A deterministic decision tree on m variables is a rooted binary tree T° whose internal vertices are
labeled by the boolean variables x1, ..., x,,, and whose leaves are labeled by the output values from
a set ). For every vertex v in T', we denote by vy (respectively v1) the left son (respectively the
right son) of v, and by T'(v) the subtree of T rooted at v. We set T;, = T'(vp,), for b € {0,1}, where
v is the root of 7. The depth dr(v) of vertex v in tree 7', is defined recursively: it is 0 if v is a
leaf, otherwise dp(v) = max{dr(vg),dr(v1)} + 1. The depth d(T') of T is simply the depth of its
root. Every tree naturally computes a function fr on m variables, whose value at an assignment
x = (r1,...,%m) € {0,1}™ is defined recursively as follows: If the root of T is a leaf, then fr(z) is
the value of its label. Otherwise, if z; is the label of the root and x; = b, then fr(z) = fr,(z).
Clearly, several decision tree compute the same function f. The deterministic decision tree com-
plexity of f is the depth of the minimal depth decision tree T such that fr = f, and we denote it by

D(f).



The above definitions naturally extend to trees whose leaves are labeled by elements of Y*, for
some positive integer k. We call these trees k-output deterministic decision trees, they compute
k-output functions whose range is by definition Y*. We will use the notation f = (f O f (k))
for k-output functions, where f® is the function computing the ith output of f. In particular,
we are interested here in the case when m = kn and the functions do not share common input
variables. More precisely, let f : {0,1}*” — V* be a k-output function whose input variables are
1y Tlmy e s Thds--o Lhm. We set T = (2;1,...,%;p), and say that f is k-independent if the
value of £ depends only on Z;.

One can also extend the definition of deterministic decision trees and k-independence to relations
f C€{0,1}™ x Y instead of functions in a straightforward way (decision trees are required to find an
output y for each input x € {0,1}™ so that (z,y) € f).

In particular, for a relation f C {0,1}™ x V¥, the relation f) C {0,1}™ x ) consists of all (x,y),
such that (z,y1,...,Yi-1,Y, Yi+1,---,Yk) € f for some yq ..., Yi—1,Yit1s-- -, Yk-

Note that for inputs z for which there is no y with (x,y) € f no requirement on the output is
made, and hence we can assume that all relations are total without loss of generality. Since for each
input only one output can be produced, each deterministic tree automatically computes a function
that is consistent with the relation in question.

For a relation f C {0,1}" x ), we define the kth tensor power of f as the relation f®F C
{0, 1} x Y* by fOF = {((Z1,...,%k), (Y1, yk)) : Vi : (Zi, 1) € f}. Note that f®* is k-independent.

A randomized decision tree on m variables is a convex combination of deterministic decision trees,
such that for each input z a correct output is computed with probability 1 — € for a given error
probability e. If not mentioned otherwise e = 1/3. For k-output relations f an output (yi,...,yx)
is considered erroneous, if (Z;,y;) & f (@) for some i, i.e., all k outputs are required to be correct
simultaneously.

R.(f) denotes the e-error randomized query complexity of f, which is the maximum number of
queries made by the best randomized decision tree with error being at most € on any input. Let u be
a distribution on {0,1}". Let RY(f) represent the e-error distributional query complexity of f, which
is the maximum number of queries made by the best randomized decision tree with average error at
most € under p (note that such a tree can be assumed to be deterministic w.l.o.g., but sometimes it
is simpler to give a randomized tree). We have the following fact from [Y83].

Fact 1 (Yao’s Principle) R.(f) = max, RE(f).

3 Direct Sum for Deterministic Complexity

Let f C {0,1}*" x Y* be a k-output relation. Obviously D(f) < Zle D i) since the values @ can
be evaluated sequentially. We prove that for k-independent relations this is in fact the least expensive
way to evaluate f, that is the inverse inequality also holds.

Theorem 1 (Deterministic Direct Sum) For every k-independent relation f C {0,1}F" x Y*,

we have D(f) > Zle D(f(i))'

Proof Let T be a k-output deterministic decision tree on variables {z11,...,25,}. Fori=1,... k,
we refer to {x; 1,...,x;n} as the ith group of variables. For every vertex v of T', we define recursively
k single output decision trees T (v),. .., Ti(v), where the vertices of T;(v) are labeled by the variables
from the ith group. If v is a leaf with label (by,...,b), then T;(v) is a single node tree (a leaf), with
label b;. Otherwise, let v be an internal node and let’s suppose that its label is from the jth group of
variables. The root of T)j(v) is by definition v with the same label as in 7T, its left subtree is T}(vg)
and its right subtree is Tj(v1). For all i # j, the tree Tj(v) is defined as the shallower (smaller depth)
tree between T;(vg) and T;(v1).



Claim 1 For every vertex v of T, we have Zle d(T;(v)) < dp(v).

Proof The proof is by induction on the depth of v, and the statement is obviously true when
v is a leaf. We suppose without loss of generality that the label of v is from the jth group. Let
b € {0,1} such that d(7T;(v)) = d(T;(vs)) + 1. By definition, for all i # j, we have d(T;(v)) =
min{d(T;(vo)),d(T;(v1))}, and therefore d(T;(v)) < d(T;(vp)). Thus

k
Y ATi(w) < dATi(w)+1+) d
i=1 i#j
< dT(Ub)+l
< dr(v),

where the second inequality follows from the inductive hypothesis, and the third one from the defi-
nition of the depth. [J

We say that T is parsimonious if no variable appears twice on the same root-leaf path.

Claim 2 Let T be parsimonious. Then for every vertex v in T, for every 1 < i < k, and for every
assignment x; € {0,1}™ for the variables in the ith group, there exists, for all j # i, an assignment
zj € {0,1}" for the variables in the jth group such that

f1,0)(Zi) = }i()v)(ilw--,fz’,---,wk).

Proof The proof is again by induction on the depth of v. Fix 1 < ¢ < k. If v is a leaf, we can
choose for every z; € {0,1}" an arbitrary z; € {0,1}", for j # i. Otherwise, we distinguish two
cases, according to the label of v.

Case 1: The label of v is x;;, from the ith group of variables, for some 1 < p <n. Let z; € {0,1}"
be an assignment for the variables in the ith group, and let x;, = b. By the inductive hypothesis
there exists a: , for j # 4, such that

fTi(vb)(‘%) j(j()vb)(fllw"?jia”'?j;c)‘

We set ; = 77, for j # i. Then we have

fri) (@) = fr,)(@i)
= j("z()vb) ("illa » L, 7x;g)
= j(j()v)(:i'l,... 77 a:k)

The first equality follows from the definition of fr,(,,)(#;) since z;;, = b. The third equality also holds
because by definition fr(,)(Z1,. .., Ziy- -, Tk) = fr,)(T1,- - Tiy -, Tk).-

Case 2: The label of v is x; from the jth set of variables for some j # i and 1 < p < n. Let b be
such that T;(v) = T;(vp). Then again by the inductive hypothesis, for every z; € {0,1}", there exists
%, for j # i, that satisfy

P @) = 10 @ iy T,
We define 2y, for [ #i and ¢ =1,...,n by
_ {b if (1,) = (4. p),
xl,q =

) . otherwise.
b



Then, similarly to Case 1, we have the following series of equalities:

I (@) = frw) (@)
j(“l()vb) (jllv y Ly 733;6)
J(wi()v)(i‘l,...,jz, :Ek)

The first equality is true because T;(v) = T;(vp). The path followed on input (Z1,...,%;, ..., %)
in T'(v) goes from v to v, since x;, = b, and then it is identical to the path followed on in-
put (Z%,...,Zi,...,7}) in T(vp) because T is parsimonious. Therefore fre,\(T7,...,Ti;...,T}) =
ITw) (Z1,...,Ti,...,Tk), and the last equality also holds. [J

We now prove Theorem [l by contradiction. Let us suppose that D(f) < Y7, D(f®). Let T
be a deterministic decision tree of depth D(f) which computes a function f that is consistent with
the relation f. Since T is a minimal depth decision tree computing f, we can suppose without loss
of generality that 7" is parsimonious. Let r be the root of T, then d(r) = D(f). Fori=1,. k; let
T; = T;(r). By Claim 2 and k- mdependence T; computes an (), which is consistent with f , and
therefore D(f®) < d(T;). Thus d(r) < ZZ 1 d(T;), contradicting Clalmﬂl O

Corollary 1 For every relation f C {0,1}"* x Y and for every integer k, we have D(f®*) = k- D(f).

4 Direct Sum for Randomized Query Complexity

Theorem 2 (Randomized Direct Sum) Let f C {0,1}" x Y be a relation. Let k be a positive
integer and let § > 0 be a small constant. Then R.(f®*) > 6% - k- Ro(f), where € = 15 + .

Proof Let c = R.(f®*). Let P be a randomized protocol for f®* with ¢ queries and worst case error
at most €. Let u be a distribution on {0,1}". Let u®* represent the distribution on {0,1}*" which
consists of k independent copies of . Now let us consider the situation when we provide input to P
distributed according to u®*. In such a situation we can fix the random coins of P in a suitable manner
to get another protocol Py such that E(,, 4,y ekle(z1...2x)] <€ where e(z1 ... zy) represents the
error made by P, which is now a deterministic protocol, on input (zj ...zy) where each z; € {0,1}"
represents the input for the ith instance of f. For notional convenience we use z; here instead of ;
as used in the previous section. Let ¢(z7 ... xy) represent the number of queries made by P; on input
(z1...x5). For each 1 <i <k, let ¢;(x;...xp) represent the number of queries made by P; on z; on

input (x;...xy). Since ¢(x; ... xx) = Zle gi(z1 ... xy), we have,

¢ > B apeporla(@r. . )]

k
= E(gcl...mk)<—u®k [Z qi(:El e l‘k)]
i=1
k
- Z E (2 ..a)pok [gi(x1 ... xp)]
i=1
Therefore there exists 1 < j < k such that E(x L) i [qj(z1...2)] < £. Without loss of generality

let j = 1. Using this and the fact E(,, 4, orle(z1...21)] <€ we can argue by standard applica-
tions of Markov’s inequality that there exist a4 ...z}, € {0,1}*"~" such that E,, . ,[q1(z12} ... 2})] <
sz and Eqy o yle(xiahy ... 2p)] < 155. Therefore fixing o5 . ..z, in Py naturally gives rise to a protocol



Py for f with expected number of queries under p being at most 57 and expected error under p
being at most =5. Now let us consider a protocol P3 which proceeds exactly as Py but terminates
whenever the number of queries exceeds 57;.. Again, using Markov’s inequality, it can be argued that
the expected error of P3 under 4 is at most € = 5 + ¢ and of course the maximum queries made
by Ps is at most 5. Hence by definition RE(f) < 5o+ Since this is true for every distribution u on

{0,1}", we get from Yao’s Principle the desired result as follows.

Re f®k
Rolf) = mas RA(f) < o = P

5 Open Problems

We proved direct sum theorems for deterministic and randomized query complexity. Note that it
is also very easy to establish the direct sum property for nondeterministic query complexity (also
known as certificate complexity). However, several related open problems remain:

1. The direct sum theorem in the randomized case loses a factor of 62 in the lower bound, as well
as an additive J in the error bound. While at least the factor in the lower bound is unavoidable
in the setting of distributional complexity according to a result by Shaltiel [Sha0l], this might
not be necessary in the worst case complexity setting.

2. In the quantum case no tight result is known, and the result following from Reichardt’s work
holds only for boolean functions. Can a tight result be established, even for all relations?

3. Establishing general strong direct product theorems is open for both the quantum and the
randomized /distributional setting. Note that the result of [NRS94] holds only in the weaker
model where k algorithms compute one output each.
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