
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-10-01

Lower Bounds on the Rotation
Distance of Binary Trees

Fabrizio Luccio Antonio Mesa Enriquez Linda Pagli

January 4, 2010
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Lower Bounds on the Rotation Distance of Binary Trees

Fabrizio Luccio Antonio Mesa Enriquez Linda Pagli

January 4, 2010

Abstract

The rotation distance d(S, T) between two binary trees S, T of n vertices is the minimum
number of rotations to transform S into T . While it is known that d(S, T) ≤ 2n − 6, a well
known conjecture states that there are trees for which this bound is sharp for any value of
n ≥ 11. We are unable to prove the conjecture, but we give here some simple criteria for lower
bound evaluation, leading for example to individuate some “regular” tree structures for which
d(S, T) = 3n/2−O(1), or d(S, T) = 5n/3−O(1).

Keywords: Rotation distance, Lower bound, Binary tree, Design of algorithms.

1 The problem

Consider two rooted binary trees S and T of n vertices, simply called trees in the following. The
vertices of both trees may be numbered from 1 to n in infix order, so that all the integers of the
left (respectively, right) subtree of each vertex v are smaller (respectively, greater) than the integer
of v. Vertices will be identified by these numbers. A rotation of two adjacent vertices of a tree is a
local change of the vertex positions preserving the infix order of the numbering (see next section).
The rotation distance d(S, T) between S and T is the minimum number of rotations by which S
can be transformed into T . This concept was introduced by Culik and Wood [1]. Sleator, Tarjan,
and Thurston [9] proved that d(S, T) ≤ 2n−6 for any pair S, T , with n ≥ 11. Mäkinen [6] showed
that slightly weaker results can be obtained by an elementary procedure, and Luccio and Pagli [5]
gave a simple combinatorial proof for the upper bound of [9]. More important, by a deep geometric
argument the authors of [9] proved that the upper bound 2n − 6 is sharp for (ineffectively) large
values of n, and conjectured that is sharp for any n ≥ 11. No efficient algorithm is known to
compute d(S, T), but estimates were given by Pallo [7] and Rogers [8]. It is not even known if the
problem is NP-hard.

In this note we prove some elementary properties of binary trees leading to the formulation
of lower bound criteria for d(S, T), and show that such criteria are significant for some particu-
lar families of trees. The same results may give hints on the construction of a “good” rotation
algorithm.

2 Lower bound arguments

A rotation rot(x, y) is defined for a pair of parent-child vertices x, y, called the parameters of rot.
For y < x (i.e., y is the left child of x), rot(x, y) raises y to the place of x while x becomes the right
child of y, the original right subtree of y becomes the left subtree of x, and the rest of the tree
remains unchanged. This is called a right rotation, see figure 1. For y > x (i.e., y is the right child
of x), rot(x, y) is symmetrical and is called a left rotation. Two consecutive rotations rot(x, y),
rot(y, x) leave the tree unchanged. This also implies that d(S, T) = d(T, S) for two arbitrary trees
S, T .

1

α β
γ α

β γ

x

y x
y⇒

rot(x,y)

Figure 1: A right rotation (y < x).

S

8

4

121

3

T

22

5 7

6

9

11

10
13

15

14

7

5 13

2 4

3

10

12

11

15

14

8

6

1

9

Figure 2: Partitioning S, T into two forests FS , FT .

We now establish some notation and review some simple properties of binary trees. For any
vertex x of a tree S, let SUB(x) be the subtree of S rooted at x; and let ld(x), rd(x) be the number
of left and right descendants of x, i.e. the number of vertices in the subtrees rooted at the left-child
and at the right-child of x. We have 0 ≤ ld(x) ≤ x− 1, 0 ≤ rd(x) ≤ n− x. If needed a subscript
S will be added to the notation to denote tree S.

An immediate consequence of the infix order is that the vertices of SUB(x) form a closed non
empty interval INT(x) = [x − ld(x), x + rd(x)]. For the trees S, T of figure 2 we have INTS(4)
= [2,7], INTS(7) = [7,7], INTT (8) = [2,15]. The interval INT(x) (in fact, the pair of values
ld(x), rd(x)) identifies the vertices of SUB(x) but not its shape. Given two trees S, T , if S = T
we obviously have INTS(x) = INTT (x) for all x. If S 6= T , d(S, T) is the minimum number of
rotations needed to attain the above condition.

Let x l y indicate that vertices x and y lie on the same path from the root to a leaf, and let
x ↓ y indicate that x l y and x is closer to the root than y. We have:

Fact 1 For each vertex x, 1 ≤ x ≤ n− 1, we have x l x+1.
Proof. Let the tree be built as a binary search tree with the node numbers treated as keys. If
vertex x has entered the tree before x+1, then x+1 follows the same path from the root to the
position of x before proceeding further down in the path to a leaf. In this case we have x ↓ x+1.
The same reasoning applies if x+1 enters the tree before x, and we have x+1 ↓ x. Q.E.D.

Consider two vertices x, y respectively in S, T , with x 6= root(S), y 6= root(T), and INTS(x) =

2

INTT (y). The corresponding subtrees SUBS(x), SUBT (y) are said to be equivalent. In fact they
have the same vertices (specified in the intervals), although they may have different roots if x 6= y.
For example in figure 2 we have INTS(4) = INTT (5) = [2,7], hence SUBS(4) and SUBT (5) are
equivalent. Similary SUBS(15), SUBT (14) are equivalent, and SUBS(7), SUBT (7) are equivalent.
Consider now a pair of vertices z, x, where INT(x) = [a,b] and x is a child of z. An immediate
consequence of Fact 1 is that if z < x then z = a − 1, if z > x then z = b + 1. In figure 2, for
tree S and vertex x = 4 we have INTS(4) = [2,7] and the parent of x = 4 is z = 1 < 4: in fact
z = a− 1. In the equivalent subtree we have INTT (5) = [2,7] and the parent of x is z = 8 > 5: in
fact z = b + 1.

Using the above property we can find all the pairs of equivalent subtrees in S, T in linear time
with the algorithm EQSUB reported in Table 1. Upon exit from the algorithm, stack A contains
all the pairs of roots of the equivalent subtrees in S, T . For the example of figure 2, A will contain
<15,14>, <7,7>, <4,5>. From an elementary analysis of Algorithm EQSUB we have:

Fact 2 Given two trees S, T , all the pairs of equivalent subtrees can be determined in O(n) time.

Once all the pairs of equivalent subtrees of S, T have been determined, the two trees can be
transformed into two forests FS = {S1, ..., Sk}, FT = {T1, ..., Tk} by cutting all the edges connecting
the equivalent subtrees to the rest of S and T (see figure 2). A (non immediate) consequence of
the geometric argument developed in [9] is that a shortest sequence of rotations to transform S
into T can be divided into k independent subsequences to transform each Si into Ti. In particular
if Si and Ti consist of a single vertex x (e.g., x is a leaf in both S and T), then x will never be
rotated in a shortest sequence. In figure 2, S and T are partitioned into four independent trees
respectively containing the vertices 2 to 6, 7, 1 together with 8 to 13, and 14-15. Due to Fact 2
this partition is obtained here in linear time, while the corresponding result for the technique of [9]
was obtained in quadratic time in [4].

algorithm EQSUB(S, T)
let A be an empty stack of pairs;
for (x ∈ {1, ..., n}) compute {INTS(x); INTT (x)};
for (x ∈ {1, ..., n} and x 6= root(S)) {

if (INTS(x) = INTT (x)) < x, x > → A

else {
let INTS(x) = [a,b];
if (a > 1) {

y = rightchild(a-1) in T ;
if (INTT (y) = [a,b]) < x, y > → A; }

if (b < n) {
y = leftchild(b+1) in T ;
if (INTT (y) = [a,b]) < x, y > → A; } } }

Table 1. Computing equivalent subtrees in linear time.

We can now prove our first lower bound result, namely:

Lemma 1 d(S, T) ≥ e, where e is the total number of edges in the forest FS, and the value of e
can be computed in O(n) time.
Proof. In a rotation rot(x,y) only the intervals INT(x), INT(y) change (see figure 1). However
the value of INT(y) after the rotation is equal to the value of INT(x) before the rotation, while a

3

S
24

12
6 18

2 5

T
1

3

8 11

9

14 17

15

20 23

21

13
7 19

2 5

4

8 14 17

16

20 23

22

11

10

1 4 7 10 13 16 19 22 3 6 9 12 15 18 21 24

Figure 3: Two trees with the maximum number of inversions. For trees with this shape we have
d(S, T) = 5n/3−O(1) (see section 3).

new value arises for INT(x) after the rotation. So in the set of all intervals of the tree exactly one
value changes after a rotation. If the sets of intervals relative to S and T have c different elements
we then have d(S, T) ≥ c. Note now that the roots of S, T correspond to the same interval [1,n],
and any two equivalent subtrees in S, T correspond to two equal intervals. Therefore if the trees
can be decomposed into two forests FS , FT of k pairwise equivalent subtrees, the lists of intervals
of S and T differ for c = n− 1− k intervals. It can be immediately seen that this value equals e,
the number of edges in FS (or FT , see figure 2). As a consequence of Fact 2, the value of e can be
computed in linear time. Q.E.D.

For the trees of figure 2 we have d(S, T) ≥ 5 + 5 + 1 = 11. We also have:

Corollary 1 If FS = S, FT = T then d(S, T) ≥ n− 1.

This is the case of the trees in figure 3, for which we have d(S, T) ≥ 23.
The vertices x, x+1 are called consecutive. Given two trees S, T , if x ↓ x+1 in S (respectively,

in T), and x+1 ↓ x in T (respectively, in S), then x, x+1 are said to form an inversion. I(S, T)
denotes the number of inversions in S, T . We have:

Fact 3 If x, x+1 form an inversion in S, T , then any rotation algorithm to transform S into T
must include a rotation with parameters x, x+1.
Proof. Let x ↓ x+1 in S; let α, β be the left and right subtrees of x; and let γ be the rest
of S deprived of x and all its descendants. Note that π(x, y) lies in α. Any rotation with both
parameters in α, or in β, or in γ, maintains x ↓ x+1. Then a rotation rot(x, x+1) is needed to
invert the order of the two vertices. The same reasoning applies if x+1 ↓ x in S. Q.E.D.

Therefore we immediately have:

Lemma 2 d(S, T) ≥ I(S, T).

For example the two trees of figure 3 have n− 1 = 23 inversions, then d(S, T) ≥ 23. Note that
this bound was already derived from Corollary 1.

3 Sharpening the bounds

Lemmas 1 and 2 give a basis for fixing a lower bound to d(S, T), but the emerging value is at most
n−1, far from the uper bound of 2n−1 that applies to all trees. Two subtler arguments, however,
may allow to sharpen such a lower bound substantially.

4

The technique of Lemma 1 is improved by comparing the intervals INTS(x), INTT (x) of the
same vertex x in the two trees. In fact, to transform S into T such intervals must become equal
for all vertices. As already noted in the proof of Lemma 1, in a rotation rot(x,y) only the intervals
of vertices x and y change (see figure 1). Let INT(x)=[lx, rx], INT(y)=[ly, ry] (another subscript
may be added to indicate the tree). In a right rotation (y < x) the values of lx and ry increase
while the values of rx and ly keep their values. In a left rotation (y > x) the values of rx and ly
decrease while the values of lx and ry keep their values.

Given two trees S, T , let L+, L−, R+, R− respectively denote the number of vetices x such
that lx,S > lx,T , or lx,S < lx,T , or rx,S > rx,T , or rx,S < rx,T . In the example of figure 4 we have
lx,S > lx,T for x = 2, 3, 4, 5, 6, hence L+ = 5. Similarly L− = 5, R+ = 5, R− = 5. In fact, for such
trees all these values are equal to n− 1. We have:

Fact 4 d(S, T) ≥ max(L+, R+) + max(L−, R−).
Proof. As already noted, a right rotation causes the increase of one left and one right interval
extreme, and a left rotation causes the decrease of one left and one right interval extreme. Then
at least max(L−, R−) right rotations, plus at least max(L+, R+) left rotations, must be executed
for the intervals of all vertices in S and T to become equal. Q.E.D.

Applying Fact 4 to the trees of figure 4 we have d(S, T) ≥ 5 + 5 = 10 = n − 1. The same
bound is found applying Corollary 1 (in fact FS = S, FT = T), or Lemma 2 (in fact I(S,T)
= n − 1), therefore the new fact is not useful without a further observation. For the vertices
y = 2, 3, 4, 5, 6 of S contributing to L+, the values ly,S can be decreased only by a left rotation
rot(x,y). However all these vertices, except for the last one 6, have the parent x at their right,
so their left rotations require that a previous rotation be performed to create a parent at the
left: in fact only a previous right rotation rot(x,y), or a previous left rotation rot(z,x), where z
is the grandparent of y, allows a successive right rotation rot(z,y). Note now that none of such
previous rotations influence the values of L+ or R−, then L+ − 1 rotations must be performed in
addition to the ≥ L+ +R− rotations needed bring the values of L+ and R− to zero. Then we have
d(S, T) ≥ 4 + 5 + 5 = 14 = (n− 1)/2− 1 + 2(n− 1)/2 = 3n/2− 5/2. For a tree of same shape with
n even, such a bound immediately becomes 3n/2− 2. It is also interesting to note that this lower
bound is sharp, because S is transformed into T by 3n/2 − 5/2 rotations applying the algorithm
of [6].

Let us now generalize the above observation. Let Λ be the set of vertices y with ly,S > ly,T

(i.e., they contribute to L+) and the parent x is at the right of y. And let Λ̃ be the subset of
vertices y ∈ Λ such that ry,S ≥ ry,T (i.e., no vertex in Λ̃ contributes to R−). In figure 4 we have
Λ = {2, 3, 4, 5} and Λ̃ = Λ. Similarly let Γ be the set of vertices y with ry,S < ry,T (i.e., they
contribute to R−) and the parent x is at the left of y. And let Γ̃ be the subset of vertices y ∈ Γ
such that ly,S ≤ ly,T (i.e., no vertex in Γ̃ contributes to L+). In figure 4 we have Γ = {10, 9, 8, 7, 6},
and Γ̃ = {10, 9, 8, 7}. By an immediate extension of the reasoning above we have:

Lemma 3 d(S, T) ≥ L+ + R−+ max(|Λ̃| , |Γ̃|).

For the trees of figure 4 both parameters of the function max have value 4, and we have the
lower bound 14 already found.

Let us now sharpen the bound of Lemma 2. From Fact 1 we know that two consecutive
vertices x, x+1 lie on the same path from the root to a leaf. Let π(x, x+1) be the portion of that
path between x and x+1 (we may have x ↓ x+1 or x+1 ↓ x), and let δ(x, x+1) be the length
(number of edges) of π(x, x+1). Fact 3 indicates that if x and x+1 form an inversion they must
participate into the same rotation, therefore x and x+1 must become adjacent at a certain stage
of the transformation. That is, if δ(x, x+1)> 1, at least δ(x, x+1)−1 rotations must take place in
S along π(x, x+1) to reduce the length of this path to 1. A symmetrical condition holds after the
rotation between x and x+1 has been executed, if the two vertices are not adjacent in T . If some
of these rotations along the two paths in S and T must be made between vertices not forming

5

S
11

1

T

10

6
5

1

3
4

2
2

9
3

8
4

7
5

6

7

11

9
8

10

[1,11]

[2,10]

[3,9]

[4,8]

[5,7]

[6,6]

[1,10]

[2,9]

[3,8]

[4,7]

[5,6]

[1,11]

[7,11]

[8,11]

[9,11]

[10,11]

[11,11]

[1,5]

[1,4]

[1,3]

[1,2]

[1,1]

Figure 4: Two trees and the intervals of their vertices. For trees with this shape we have d(S, T) =
3n/2−O(1).

an inversion, their number must be added to the lower bound I(S,T) of Lemma 2. We must then
count the minimum number of these extra rotations needed.

For the trees of figure 4 this count is easy. All pairs x, x+1 with 1 ≤ x ≤ n−1 form an inversion,
and all the corresponding paths in T have length 1, so we must examine only the paths in S. Out of
these, π(5,6) and π(6,7) are not considered because the first has length 1, and the second has length
2 but can be shortened by 1 with a rotation between the vertices 5, 6 that form an inversion. All
the other paths π(x, x+1), with x equal 1 to 4, and 7 to 10, have length 2 and do not include pairs
of inverted vertices, so in principle they contribute to increasing the lower bound. Note however
that all such paths are pairwise overlapping, so only one half of them must be considered, because
cutting one edge to one of them implies cutting the same edge to the overlapping path. This
argument will be more formally proved in the next lemma. For the moment note that the paths
π(1,2), π(2,3), π(3,4), and π(4,5) have no common edges and require one extra rotation each to be
reduced to length 1, so at least four rotations must be added to the lower bound 10 of Lemma 2.
The total lower bound then becomes 10+4=14 (or in general n− 1 + (n− 1)/2− 1 = 3n/2− 5/2)
as already found with Lemma 3. In general we have:

Fact 5 Let the vertices x, x+1 form an inversion, and let σx be the number of pairs of vertices
in π(x, x+1) forming an inversion (including pair x, x+1). To bring x adjacent to x+1 at least
τx = δ(x, x+1)−σx rotations between non inversion vertices are necessary along π(x, x+1).
Proof. Let px denote the path between x and x+1 at various steps of the transformation. And
let dx, sx, tx respectively denote the values of δ(x, x+1), σx, τx at the same steps. If during the
transformation no vertex external to px enters this path the fact is immediately proved. Note now
that for any vertex y external to px, vertex y− 1, or y +1, but not both may be present in px, due
to Fact 1. Then if y enters px at most one new pair of inversion vertices may appear in the path.
That is dx is increased by 1 and sx is increased at most by 1, hence tx is not decreased and the
fact follows. Q.E.D.

As already noted, the rotations to bring x adjacent to x+1 may bring closer other pairs of
inversion vertices whose paths overlap with π(x, x+1). Then we have to individuate a set of
inversion pairs whose paths do not share any edge. Formally let a clean subset of vertices X =

6

{x1, ..., xk} be such that xi, xi + 1 is an inversion for 1 ≤ i ≤ k; and π(xi, xi+1), π(xj , xj+1) have
no common edges for i 6= j. And let TX =

∑k
i=1 τxi , with τxi defined as in Fact 5. We have

immediately:

Lemma 4 If X is a clean subset, then d(S, T) ≥ I(S, T) + TX .

Ideally we are interested in a clean subset X whose TX has maximal value. Since we are
unable to give a polynomial time algorithm to find such a subset in the general case, we turn to
using the best clean subset we can get heuristically. For the example of figure 4, the clean subset
X = {1, 2, 3, 4} already found has in fact maximal value TX = 4 (or in general TX = (n−1)/2−1),
since the corresponding lower bound is sharp. Let us now examine a more interesting example.

For the trees of figure 3 we have n = 24 +23 = 24 (or in general n = 2k +2k−1). A clean subset
X is given by the union of the two subsets X1 = {5, 11, 17, 23} in S and X2 = {1, 7, 13, 19} in T ,
whose paths are indicated with dots in the figure. Note that the only inversion pairs appearing in
these paths are constituted by the extreme vertices and we have: τ5 = 1, τ11 = 2, τ17 = 1, τ23 = 3
in X1; τ1 = 3, τ7 = 1, τ13 = 2, τ19 = 1 in X2. In total we have TX = TX1 +TX2 = 14 (or in general
TX = 2k − 2). By Lemma 4 we then have: d(S, T) ≥ I(S, T) + TX = 23 + 14 = 37, or in general:
d(S, T) ≥ 2k + 2k−1 + 2k − 2 = 5n/3− 3.

With some ingenuity it can be shown that this is also an upper bound to d(S, T), i.e. the lower
bound of Lemma 4 is sharp for trees of this shape.

4 Concluding remarks.

The initial goal of this work was finding two trees S, T with a “regular” structure, leading to
establish a lower bound of 2n− 6 (or at least 2n−O(1)) to the rotation distance between S and T
for all values of n > 11, thus proving the conjecture of [9]. An even more ambitious goal was casting
some light on an optimal algorithm for computing the rotation distance. We did not secceed in
either direction, so these problems remain substantially open.

A complete enumaration conducted for 11 ≤ n ≤ 20 shows that there is an exceedingly large
number of pairs of trees requiring 2n − 6 rotations for their transformation [3], but none of the
pairs that we could examine thus far exhibits a structure apt to derive the matching lower bound.
This could be the reason why proving this bound appears to be so difficult. In any case we believe
that further work has to be done along the line of this paper.

Finally, it is worth noting that an interesting combinatorial study on the rotation distance
has recently appeared in the Web, as a manuscript yet unpublished in paper [2]. In particular
it exhibits trees with a lower bound of 2n − O(

√
n), in addition to several other examples. The

techniques and results presented in [2] are quite complex and completely different from ours, so
the two studies may be regarded as being complementary.

References

[1] K. Culik and D. Wood, A note on some tree similarity measures, Information Processing Letters 15
(1982) 39-42.

[2] P. Dehornoy,On the rotation distance between binary trees,(2009) http://arxiv.org/abs/0901.2557

[3] E. Del Tessandoro,The upper bound on the rotation distance of binary tree: an experimental study,
Dipartimento di Informatica, University of Pisa. Report on a Project for B.S. Degree in Informatics
(2009).

[4] J. Lucas,Untangling binary trees via rotations,The Computer Journal 47 (2) (2004) 259-269.

[5] F. Luccio and L. Pagli, On the upper bound on the rotation distance of binary trees, Information
Processing Letters 31 (2) (1989) 57-60.

7

[6] E. Mäkinen, On the rotation distance of binary trees, Information Processing Letters 26 (5) (1988)
271-272.

[7] J. Pallo, An efficient upper bound of the rotation distance of binary trees, Information Processing
Letters 73 (3-4) (2000) 87-92.

[8] R. Rogers, On finding shortest paths in the rotation graph of binary trees, in: Proc. Southeastern
Internat. Conf. on Combinatorics, Graph Theory, and Computing, Vol. 137 (1999) 77-95.

[9] D.D. Sleator, R.E. Tarjan, W.R. Thurston,Rotation distance, triangulations, and hyperbolic geometry,
J. Amer. Math. Soc. 1 (3) (1988) 647-681.

8

