On the Additive Constant of the k-server Work Function Algorithm

Yuval Emek^{*}

Pierre Fraigniaud[†]

Amos Korman[‡]

Adi Rosén[§]

Abstract

We consider the Work Function Algorithm for the k-server problem [2, 3]. We show that if the Work Function Algorithm is c-competitive, then it is also strictly (2c)-competitive. As a consequence of [3] this also shows that the Work Function Algorithm is strictly (4k - 2)competitive.

1 Introduction

A (deterministic) online algorithm Alg is said to be *c*-competitive if for all finite request sequences ρ , it holds that $\operatorname{Alg}(\rho) \leq c \cdot OPT(\rho) + \beta$, where $\operatorname{Alg}(\rho)$ and $OPT(\rho)$ are the costs incurred by Alg and the optimal algorithm, respectively, on σ and β is a constant independent of ρ . When this condition holds for $\beta = 0$, then Alg is said to be strictly *c*-competitive.

The k-server problem is one of the most extensively studied online problems (cf. [1]). To date, the best known competitive ratio for the k-server problem on general metric spaces is 2k - 1 [3], which is achieved by the Work Function Algorithm [2]. A lower bound of k for any metric space with at least k + 1 nodes is also known [4]. The question whether online algorithms are strictly competitive, and in particular if there is a *strictly* competitive k-server algorithm, is of interest for two reasons. First, as a purely theoretical question. Second, at times one attempts to build a competitive online algorithm by repeatedly applying another online algorithm as a subroutine. In that case, if the online algorithm applied as a subroutine is not strictly competitive, the resulting online algorithm may not be competitive at all due to the growth of the additive constant with the length of the request sequence.

^{*}Tel Aviv University, Tel Aviv, 69978 Israel. E-mail: yuvale@eng.tau.ac.il. This work was partially done during this author's visit at LIAFA, CNRS and University Paris Diderot, supported by Action COST 295 DYNAMO.

[†]CNRS and University Paris Diderot, France. Email: pierre.fraigniaud@liafa.jussieu.fr. Additional support from the ANR project ALADDIN, by the INRIA project GANG, and by COST Action 295 DYNAMO.

[‡]CNRS and University Paris Diderot, France. Email: amos.korman@liafa.jussieu.fr. Additional support from the ANR project ALADDIN, by the INRIA project GANG, and by COST Action 295 DYNAMO.

[§]CNRS and University of Paris 11, France. Email: adiro@lri.fr. Research partially supported by ANR projects AlgoQP and ALADDIN.

In this paper we show that there exists a strictly competitive k-server algorithm for general metric spaces. In fact, we show that if the Work Function Algorithm is c-competitive, then it is also strictly (2c)-competitive. As a consequence of [3], we thus also show that the Work Function Algorithm is strictly (4k - 2)-competitive.

2 Preliminaries

Let $\mathcal{M} = (V, \delta)$ be a metric space. We consider instances of the k-server problem on \mathcal{M} , and when clear from the context, omit the mention of the metric space. At any given time, each server resides in some node $v \in V$. A subset $X \subseteq V$, |X| = k, where the servers reside is called a *configuration*. The *distance* between two configurations X and Y, denoted by D(X, Y), is defined as the weight of a minimum weight matching between X and Y. In every *round*, a new *request* $r \in V$ is presented and should be *served* by ensuring that a server resides on the request r. The servers can move from node to node, and the movement of a server from node x to node y incurs a *cost* of $\delta(x, y)$.

Fix some initial configuration A_0 and some finite request sequence ρ . The work function $w_{\rho}(X)$ of the configuration X with respect to ρ is the optimal cost of serving ρ starting in A_0 and ending up in configuration X. The collection of work function values $w_{\rho}(\cdot) = \{(X, w_{\rho}(X)) \mid X \subseteq V, |X| = k\}$ is referred to as the work vector of ρ (and initial configuration A_0).

A move of some server from node x to node y in round t is called *forced* if a request was presented at y in round t. (An empty move, in case that x = y, is also considered to be forced.) An algorithm for the k-server problem is said to be *lazy* if it only makes forced moves. Given some configuration X, an offline algorithm for the k-server problem is said to be X-*lazy* if in every round other than the last round, it only makes forced moves, while in the last round, it makes a forced move and it is also allowed to move servers to nodes in X from nodes not in X. Since unforced moves can always be postponed, it follows that $w_{\rho}(X)$ can be realized by an X-lazy (offline) algorithm for every choice of configuration X.

Given an initial configuration A_0 and a request sequence ρ , we denote the total cost paid by an online algorithm Alg for serving ρ (in an online fashion) when it starts in A_0 by Alg (A_0, ρ) . The optimal cost for serving ρ starting in A_0 is denoted by $Opt(A_0, \rho) = \min_X \{w_\rho(X)\}$. The optimal cost for serving ρ starting in A_0 and ending in configuration X is denoted by $Opt(A_0, \rho, X) = w_\rho(X)$. (This seemingly redundant notation is found useful hereafter.)

Consider some metric space \mathcal{M} . In the context of the k-server problem, an algorithm Alg is said to be *c*-competitive if for any initial configuration A_0 , and any finite request sequence ρ , $\operatorname{Alg}(A_0,\rho) \leq c \cdot \operatorname{Opt}(A_0,\rho) + \beta$, where β may depend on the initial configuration A_0 , but not on the request sequence ρ . Alg is said to be *strictly c*-competitive if it is *c*-competitive with additive constant $\beta = 0$, that is, if for any initial configuration A_0 and any finite request sequence ρ , $\operatorname{Alg}(A_0,\rho) \leq c \cdot \operatorname{Opt}(A_0,\rho)$. As common in other works, we assume that the online algorithm and the optimal algorithm have the same initial configuration.

3 Strictly competitive analysis

We prove the following theorem.

Theorem 3.1. If the Work Function Algorithm is c-competitive, then it is also strictly (2c)-competitive.

In fact, we shall prove Theorem 3.1 for a (somewhat) larger class of k-server online algorithms, referred to as *robust* algorithms (this class will be defined soon). We say that an online algorithm for the k-server problem is *request-sequence-oblivious*, if for every initial configuration A_0 , request sequence ρ , current configuration X, and request r, the action of the algorithm on r after it served ρ (starting in A_0) is fully determined by X, r, and the work vector $w_{\rho}(\cdot)$. In other words, a request-sequence-oblivious online algorithm can replace the explicit knowledge of A_0 and ρ with the knowledge of $w_{\rho}(\cdot)$. An online algorithm is said to be *robust* if it is lazy, request-sequence-oblivious, and its behavior does not change if one adds to all entries of the work vector any given value d. We prove that if a robust algorithm is *c*-competitive, then it is also strictly (2*c*)-competitive. Theorem 3.1 follows as the work function algorithm is robust.

In what follows, we consider a robust online algorithm Alg and a lazy optimal (offline) algorithm Opt for the k-server problem. (In some cases, Opt will be assumed to be X-lazy for some configuration X. This will be explicitly stated.) We also consider some underlying metric $\mathcal{M} = (V, \delta)$ that we do not explicitly specify. Suppose that Alg is α -competitive and given the initial configuration A_0 , let $\beta = \beta(A_0)$ be the additive constant in the performance guarantee.

Subsequently, we fix some arbitrary initial configuration A_0 and request sequence ρ . We have to prove that $\operatorname{Alg}(A_0, \rho) \leq 2\alpha \operatorname{Opt}(A_0, \rho)$. A key ingredient in our proof is a designated request sequence σ referred to as the *anchor* of A_0 and ρ . Let $\ell = \min\{\delta(x, y) \mid x, y \in A_0, x \neq y\}$. Given that $A_0 = \{x_1, \ldots, x_k\}$, the anchor is defined to be

$$\sigma = (x_1 \cdots x_k)^m, \text{ where } m = \left\lceil \max\left\{\frac{2k \operatorname{Opt}(A_0, \rho)}{\ell} + k^2, \frac{2\alpha \operatorname{Opt}(A_0, \rho) + \beta(A_0)}{\ell}\right\} \right\rceil + 1.$$

That is, the anchor consists of m cycles of requests presented at the nodes of A_0 in a round-robin fashion.

Informally, we shall append σ to ρ in order to ensure that both Alg and Opt return to the initial configuration A_0 . This will allow us to analyze request sequences of the form $(\rho\sigma)^q$ as q disjoint executions on the request sequence $\rho\sigma$, thus preventing any possibility to "hide" an additive constant in the performance guarantee of Alg (A_0, ρ) . Before we can analyze this phenomenon, we have to establish some preliminary properties.

Proposition 3.2. For every initial configuration A_0 and request sequence ρ , we have $Opt(A_0, \rho, A_0) \leq 2 \cdot Opt(A_0, \rho)$.

Proof. Consider an execution η that (i) starts in configuration A_0 ; (ii) serves ρ optimally; and (iii) moves (optimally) to configuration A_0 at the end of round $|\rho|$. The cost of step (iii) cannot exceed that of step (ii) as we can always retrace the moves η did in step (ii) back to the initial configuration A_0 . The assertion follows since η is a candidate to realize $Opt(A_0, \rho, A_0)$.

Since no moves are needed in order to serve the anchor σ from configuration A_0 , it follows that

$$\operatorname{Opt}(A_0, \rho) \le \operatorname{Opt}(A_0, \rho\sigma) \le 2 \cdot \operatorname{Opt}(A_0, \rho) . \tag{1}$$

Proposition 3.2 is also employed to establish the following lemma.

Lemma 3.3. Given some configuration X, consider an X-lazy execution η that realizes $Opt(A_0, \rho\sigma, X)$. Then η must be in configuration A_0 at the end of round t for some $|\rho| \le t < |\rho\sigma|$.

Proof. Assume by way of contradiction that η 's configuration at the end of round t differs from A_0 for every $|\rho| \leq t < |\rho\sigma|$. The cost $Opt(A_0, \rho\sigma, X)$ paid by η is at most $2 \cdot Opt(A_0, \rho) + D(A_0, X)$ as Proposition 3.2 guarantees that this is the total cost paid by an execution that (i) realizes $Opt(A_0, \rho, A_0)$; (ii) stays in configuration A_0 until (including) round $|\rho\sigma|$; and (iii) moves (optimally) to configuration X.

Let Y be the configuration of η at the end of round $|\rho|$. We can rewrite the total cost paid by η as $\operatorname{Opt}(A_0, \rho\sigma, X) = \operatorname{Opt}(A_0, \rho, Y) + \operatorname{Opt}(Y, \sigma, X)$. Clearly, the former term $\operatorname{Opt}(A_0, \rho, Y)$ is not smaller than $D(A_0, Y)$ which lower bounds the cost paid by any execution that starts in configuration A_0 and ends in configuration Y. We will soon prove (under the assumption that η 's configuration at the end of round t differs from A_0 for every $|\rho| \leq t < |\rho\sigma|$) that the latter term $\operatorname{Opt}(Y, \sigma, X)$ is (strictly) greater than $2 \cdot \operatorname{Opt}(A_0, \rho) + D(Y, X)$. Therefore $D(A_0, Y) + 2 \cdot \operatorname{Opt}(A_0, \rho) + D(Y, X) < \operatorname{Opt}(A_0, \rho, Y) +$ $\operatorname{Opt}(Y, \sigma, X) = \operatorname{Opt}(A_0, \rho\sigma, X)$. The inequality $\operatorname{Opt}(A_0, \rho\sigma, X) \leq 2 \cdot \operatorname{Opt}(A_0, \rho) + D(A_0, X)$ then implies that $D(A_0, X) > D(A_0, y) + D(Y, X)$, in contradiction to the triangle inequality.

It remains to prove that $\operatorname{Opt}(Y, \sigma, X) > 2 \cdot \operatorname{Opt}(A_0, \rho) + D(Y, X)$. For that purpose, we consider the suffix ϕ of η which corresponds to the execution on the subsequence σ (ϕ is an X-lazy execution that realizes $\operatorname{Opt}(Y, \sigma, X)$). Clearly, ϕ must shift from configuration Y to configuration X, paying cost of at least D(Y, X). Moreover, since ϕ is X-lazy, and by the assumption that ϕ does not reside in configuration A_0 , it follows that in each of the m cycles of the round-robin, at least one server must move between two different nodes in A_0 . (To see this, recall that each server's move of the lazy execution ends up in a node of A_0 . On the other hand, all k servers never reside in configuration A_0 .) Thus ϕ pays a cost of at least ℓ per cycle, and $m\ell$ altogether. A portion of this $m\ell$ cost can be charged on the shift from configuration Y to configuration X, but we show that the remaining cost is strictly greater than $2 \cdot \operatorname{Opt}(A_0, \rho)$, thus deriving the desired inequality $\operatorname{Opt}(Y, \sigma, X) > 2 \cdot \operatorname{Opt}(A_0, \rho) + D(Y, X)$.

The k servers make at least m moves between two different nodes in A_0 when ϕ serves the subsequence σ , hence there exists some server s that makes at least m/k such moves as part of

 ϕ . The total cost paid by all other servers in ϕ is bounded from below by their contribution to D(Y, X). As there are k nodes in A_0 , at most k out of the m/k moves made by s arrive at a new node, i.e., a node which was not previously reached by s in ϕ . Therefore at least m/k - k moves of s cannot be charged on its shift from Y to X. It follows that the cost paid by s in ϕ is at least $(m/k - k)\ell$ plus the contribution of s to D(Y, X). The assertion now follows by the definition of m, since $(m/k - k)\ell > 2 \cdot \operatorname{Opt}(A_0, \rho)$.

Since the optimal algorithm Opt is assumed to be lazy, Lemma 3.3 implies the following corollary. **Corollary 3.4.** If the optimal algorithm Opt serves a request sequence of the form $\rho\sigma\tau$ (for any choice of suffix τ) starting from the initial configuration A_0 , then at the end of round $|\rho\sigma|$ it must be in configuration A_0 .

Consider an arbitrary configuration X. We want to prove that $w_{\rho\sigma}(X) \ge w_{\rho\sigma}(A_0) + D(A_0, X)$. To this end, assume by way of contradiction that $w_{\rho\sigma}(X) < w_{\rho\sigma}(A_0) + D(A_0, X)$. Fix $w_0 = w_{\rho\sigma}(A_0)$. Lemma 3.3 guarantees that an X-lazy execution η that realizes $w_{\rho\sigma}(X) = \mathsf{Opt}(A_0, \rho\sigma, X)$ must be in configuration A_0 at the end of some round $|\rho| \le t < |\rho\sigma|$. Let w_t be the cost paid by η up to the end of round t. The cost paid by η in order to move from A_0 to X is at least $D(A_0, X)$, hence $w_{\rho\sigma}(X) \ge w_t + D(A_0, X)$. Therefore $w_t < w_0$, which derives a contradiction, since w_0 can be realized by an execution that reaches A_0 at the end of round t and stays in A_0 until it completes serving σ without paying any more cost. As $w_{\rho\sigma}(X) \le w_{\rho\sigma}(A_0) + D(A_0, X)$, we can establish the following corollary.

Corollary 3.5. For every configuration X, we have $w_{\rho\sigma}(X) = w_{\rho\sigma}(A_0) + D(A_0, X)$.

Recall that we have fixed the initial configuration A_0 and the request sequence ρ and that σ is their anchor. We now turn to analyze the request sequence $\chi = (\rho \sigma)^q$, where q is a sufficiently large integer that will be determined soon. Corollary 3.4 guarantees that Opt is in the initial configuration A_0 at the end of round $|\rho\sigma|$. By induction on i, it follows that Opt is in A_0 at the end of round $i \cdot |\rho\sigma|$ for every $1 \le i \le q$. Therefore the total cost paid by Opt on χ is merely

$$\mathsf{Opt}(A_0, \chi) = q \cdot \mathsf{Opt}(A_0, \rho\sigma) .$$
⁽²⁾

Suppose by way of contradiction that the online algorithm Alg, when invoked on the request sequence $\rho\sigma$ from initial configuration A_0 , does not end up in A_0 . Since Alg is lazy, we conclude that Alg is not in configuration A_0 at the end of round t for any $|\rho| \leq t < |\rho\sigma|$. Therefore in each cycle of the round-robin, Alg moves at least once between two different nodes in A_0 , paying cost of at least ℓ . By the definition of m (the number of cycles), this sums up to $\text{Alg}(A_0, \rho\sigma) \geq m\ell >$ $2\alpha \text{Opt}(A_0, \rho) + \beta(A_0)$. By inequality (1), we conclude that $\text{Alg}(A_0, \rho\sigma) > \alpha \text{Opt}(A_0, \rho\sigma) + \beta(A_0)$, in contradiction to the performance guarantee of Alg. It follows that Alg returns to the initial configuration A_0 after serving the request sequence $\rho\sigma$.

Consider some two request sequences τ and τ' . We say that the work vector $w_{\tau}(\cdot)$ is *d*-equivalent to the work vector $w_{\tau'}(\cdot)$, where *d* is some real, if $w_{\tau}(X) - w_{\tau'}(X) = d$ for every $X \subseteq V$, |X| = k. It

is easy to verify that if $w_{\tau}(\cdot)$ is *d*-equivalent to $w_{\tau'}(\cdot)$, then $w_{\tau r}(\cdot)$ is *d*-equivalent to $w_{\tau' r}(\cdot)$ for any choice of request $r \in V$. Corollary 3.5 guarantees that the work vector $w_{\rho\sigma}(\cdot)$ is *d*-equivalent to the work vector $w_{\omega}(\cdot)$ for some real *d*, where ω stands for the empty request sequence. (In fact, *d* is exactly $w_{\rho\sigma}(A_0)$.) By induction on *j*, we show that for every prefix π of $\rho\sigma$ and for every $1 \leq i < q$ such that $|(\rho\sigma)^i\pi| = j$, the work vector $w_{(\rho\sigma)^i\pi}(\cdot)$ is *d*-equivalent to the work vector $w_{\pi}(\cdot)$ for some real *d*. Therefore the behavior of the robust online algorithm Alg on χ is merely a repetition (*q* times) of its behavior on $\rho\sigma$ and

$$\operatorname{Alg}(A_0, \chi) = q \cdot \operatorname{Alg}(A_0, \rho\sigma) . \tag{3}$$

We are now ready to establish the following inequality:

$$\begin{split} \operatorname{Alg}(A_0,\rho) &\leq \operatorname{Alg}(A_0,\rho\sigma) \\ &= \frac{\operatorname{Alg}(A_0,\chi)}{q} \quad \text{by inequality (3)} \\ &\leq \frac{\operatorname{\alphaOpt}(A_0,\chi) + \beta(A_0)}{q} \quad \text{by the performance guarantee of Alg} \\ &= \frac{\operatorname{\alphaqOpt}(A_0,\rho\sigma) + \beta(A_0)}{q} \quad \text{by inequality (2)} \\ &\leq \frac{2\operatorname{\alphaqOpt}(A_0,\rho) + \beta(A_0)}{q} \quad \text{by inequality (1)} \\ &= 2\operatorname{\alphaOpt}(A_0,\rho) + \frac{\beta(A_0)}{q} \,. \end{split}$$

For any real $\epsilon > 0$, we can fix $q = \lceil \beta(A_0)/\epsilon \rceil + 1$ and conclude that $\text{Alg}(A_0, \rho) < 2\alpha \text{Opt}(A_0, \rho) + \epsilon$. Theorem 3.1 follows.

As the Work Function Algorithm is known to be (2k - 1)-competitive [3], we also get the following corollary.

Corollary 3.6. The Work Function Algorithm is strictly (4k-2)-competitive.

Acknowledgments We thank Elias Koutsoupias for useful discussions.

References

- [1] A. Borodin and R. El-Yaniv, *Online Computation and Competitive Analysis*. Cambridge University Press, 1998.
- [2] M. Chrobak and L.L. Larmore. The server problem and on-line games. In On-line algorithms: Proc. of a DIMACS Workshop. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 7, pages 11–64, 1991.

- [3] E. Koutsoupias and C.H. Papadimitriou. On the k-server conjecture. J. ACM, 42(5):971–983, 1995.
- [4] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for server problems. Journal of Algorithms, 11:208–230, 1990.