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Abstract

In this note we show that the asymmetric Prover-Delayer game developed in
[BGL10] for Parameterized Resolution is also applicable to other tree-like proof
systems. In particular, we use this asymmetric Prover-Delayer game to show a
lower bound of the form 22("1°€7) for the pigeonhole principle in tree-like Reso-
lution. This gives a new and simpler proof of the same lower bound established
by Iwama and Miyazaki [IM99] and Dantchev and Riis [DRO1].
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1. Introduction

Proving lower bounds by games is a very fruitful technique in proof com-
plexity [PB94, Pud99, PI00, ADO08]. In particular, the Prover-Delayer game
of Pudldk and Impagliazzo [PI00] is one of the canonical tools to study lower
bounds in tree-like Resolution [PI00, BSIWO04] and tree-like Res(k) [EGMO04].
The Prover-Delayer game of Pudlak and Impagliazzo arises from the well-known
fact [Kra95] that a tree-like Resolution proof for a formula F' can be viewed as a
decision tree which solves the search problem of finding a clause of F falsified by
a given assignment. In the game, Prover queries a variable and Delayer either
gives it a value or leaves the decision to Prover and receives one point. The
number of Delayer’s points at the end of the game is then proportional to the
height of the proof tree. It is easy to argue that showing lower bounds by this
game only works if (the graph of) every tree-like Resolution refutation contains
a balanced sub-tree as a minor, and the height of that sub-tree then gives the
size lower bound.

In [BGL10] we developed a new asymmetric Prover-Delayer game which
extends the game of Pudldk and Impagliazzo to make it applicable to obtain
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lower bounds to tree-like proofs when the proof trees are very unbalanced. In
[BGL10] we used the new asymmetric game to obtain lower bounds in tree-like
Parameterized Resolution, a proof system in the context of parameterized proof
complexity recently introduced by Dantchev, Martin, and Szeider [DMS07]. The
lower bounds we obtain in [BGL10] for tree-like Parameterized Resolution are
of the form Q(n*) (n is the formula size and k the parameter), but the tree-like
Parameterized Resolution refutations of the formulas in question only contain
balanced sub-trees of height k.

The aim of this note is to show that the asymmetric Prover-Delayer game
is also applicable to other (non-parameterized) tree-like proof systems. One of
the best studied principles is the pigeonhole principle. Iwama and Miyazaki
[IM99] and independently Dantchev and Riis [DR0O1] show that the pigeonhole
principle requires tree-like Resolution refutations of size roughly n! while its tree-
like Resolution proofs only contain balanced sub-trees of height n. Therefore
the game of Pudldk and Impagliazzo only yields a 29" lower bound which is
weaker than the optimal bound 2%("1°87) established by Iwama and Miyazaki.
Here we provide a new and easier proof of this lower bound by our asymmetric
Prover-Delayer game.

2. Preliminaries

A literal is a positive or negated propositional variable and a clause is a set
of literals. A clause is interpreted as the disjunctions of its literals and a set
of clauses as the conjunction of the clauses. Hence clause sets correspond to
formulas in CNF. The Resolution system is a refutation system for the set of all
unsatisfiable CNF. Resolution uses as its only rule the Resolution rule

{z}uC {-2}uUD
CuD

for clauses C, D and a variable x. The aim in Resolution is to demonstrate
unsatisfiability of a clause set by deriving the empty clause. If in a derivation
every derived clause is used at most once as a prerequisite of the Resolution
rule, then the derivation is called tree-like, otherwise it is dag-like. The size of
a Resolution proof is the number of its clauses. Undoubtedly, Resolution is the
most studied and best-understood propositional proof system (cf. [Seg07]).

It is well known (cf. [Kra95]) that a tree-like refutation of F' can equiva-
lently be described as a boolean decision tree. A boolean decision tree for F'
is a binary tree where inner nodes are labeled with variables from F and leafs
are labeled with clauses from F'. Each path in the tree corresponds to a partial
assignment where a variable z gets value 0 or 1 according to whether the path
branches left or right at the node labeled with . The condition on the decision
tree is that each path o must lead to a clause which is falsified by the assign-
ment corresponding to . Therefore, a boolean decision tree solves the search
problem for F which, given an assignment «, asks for a clause from F falsified
by «. It is easy to verify that each tree-like Resolution refutation of F' yields



a boolean decision tree for F' and vice versa, where the size of the Resolution
proof equals the number of nodes in the decision tree. In the sequel, we will
therefore concentrate on boolean decision trees to prove our lower bound to
tree-like Resolution.

3. Tree-like Lower Bounds via Asymmetric Prover-Delayer Games

We review the asymmetric Prover-Delayer game from [BGL10]. Let F' be a
set of clauses in n variables x1,...,2,. In the asymmetric game, Prover and
Delayer build a (partial) assignment to 1, ..., 2,. The game is over as soon as
the partial assignment falsifies a clause from F. The game proceeds in rounds.
In each round, Prover suggests a variable x;, and Delayer either chooses a value
0 or 1 for x; or leaves the choice to the Prover. In this last case, if the Prover
sets the value, then the Delayer gets some points. The number of points Delayer
earns depends on the variable x;, the assignment « constructed so far in the
game, and two functions co(x;, @) and ¢1(x;, ). More precisely, the number of
points that Delayer will get is

0 if Delayer chooses the value,
log co(x;, ) if Prover sets z; to 0, and
logc1(xs, ) if Prover sets z; to 1.

Moreover, the functions ¢o(z, @) and ¢1(x, «) are chosen in such a way that for
each variable  and assignment «
1 1

co(z, ) ¢z, )

=1 (1)

holds. Let us call this game the (co, ¢1)-game on F'.

The connection of this game to size of proofs in tree-like Resolution is given
by Theorem 1. The theorem is essentially contained in [BGL10], but for com-
pleteness we include the full proof.

Theorem 1 ([BGL10]). Let F' be unsatisfiable formula in CNF and let co and
¢y be two functions satisfying (1) for all partial assignments « to the variables of
F. If F has a tree-like Resolution refutation of size at most S, then the Delayer
gets at most log S points in each (co,c1)-game played on F.

Proof. Let F' be an unsatisfiable CNF in variables x1,...,z, and let II be a
tree-like Resolution refutation of F'. Assume now that Prover and Delayer play
a game on F where they successively construct an assignment a. Let «; be
the partial assignment constructed after ¢ rounds of the game, i.e., o; assigns i
variables a value 0 or 1. By p; we denote the number of points that Delayer has
earned after ¢ rounds, and by II,, we denote the sub-tree of the decision tree of
IT which has as its root the node reached in IT along the path specified by «;.

We use induction on the number of rounds in the game to prove the following
claim:

|

< — for any round 1.
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To see that the theorem follows from this claim, let o be an assignment con-
structed during the game yielding p, points to the Delayer. As a contradiction
has been reached in the game, the size of 11, is 1, and therefore by the inductive
claim

<
= 9Pa

yielding p, < log |II| as desired.

In the beginning of the game, II,, is the full tree and the Delayer has 0
points. Therefore the claim holds.

For the inductive step, assume that the claim holds after ¢ rounds and Prover
asks for a value of the variable x in round ¢+ 1. If the Delayer chooses the value,
then p;11 = p; and hence

_ g
- 2pi Pi+1

M., | < |,
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If the Delayer defers the choice to the Prover, then the Prover uses the following
strategy to set the value of x. Let af=° be the assignment extending «; by
setting = to 0, and let a?=! be the assignment extending «; by setting z to
1. Now, Prover sets = 0 if [IL =] < m\ﬂaiL otherwise he sets x =
1,1

co(w,ai) c1(@,ai)

[T e=1| < mma\ Thus, if Prover’s choice is = j with j € {0,1}, then
we get

1. Because = 1, we know that if Prover sets x = 1, then

T, || 11| 11|
‘Hai+1| = |Haf:j| < C-(:L‘ a_) = C‘(SC 044)21’1' = 2pi+10gcj'(w,06i) = 2Pi+1
' G\ Qg gLy O
This completes the proof of the induction. O

As remarked in [BGL10] we get the game of Pudlék and Impagliazzo [PI00]
by setting co(z, o) = ¢1(x, @) = 2 for all variables z and partial assignments .

4. Tree-like Resolution Lower Bounds for the Pigeonhole Principle

The weak pigeonhole principle PHP) with m > n uses variables z; ; with
i € [m] and j € [n], indicating that pigeon ¢ goes into hole j. PHP)" consists of
the clauses
\/ x;; for all pigeons i € [m]
J€[n]

and —x;, ; V-, ; for all choices of distinct pigeons i1, € [m] and holes j € [n].
We prove that PHP;' is hard for tree-like Resolution. Showing the lower bound
by the asymmetric game from the last section, requires a suitable choice of
the functions ¢y and ¢; and then the definition of the Delayer-strategy for the
(co, c1)-game.

Theorem 2. Any tree-like Resolution refutation of PHP™ has size 2("108™)



Proof. Let o be a partial assignment to the variables {x; ; | i € [m],j € [n] }.
Let

pi(e) ={j€[n]| a(z;;) =0and a(zy ;) #1foralli' € [m]}| .

Intuitively, p;(«) corresponds to the number of holes which are still free but
are explicitely excluded for pigeon ¢ by a (we do not count the holes which are
excluded because some other pigeon is sitting there). We define

%] _p(a
co(wij, ) = W and ¢ (z5,0) =5 +1—pi(a) .
For simplicity we assume that n is divisible by 2. During the game it will never
be the case that Prover gets the choice when p;(a) > 4. Therefore the functions
co and c; are always greater than zero when the Delayer gets points, thus the
score function is always well defined. Furthermore notice that this definition
satisfies (1).

We now describe Delayer’s strategy in a (¢, ¢1)-game played on PHP)'. If
Prover asks for a value of x; ;, then Delayer decides as follows:

set a(x; ;) =0 if there exists i’ € [m] \ {i} such that a(z; ;) =1 or

if there exists j' € [n] \ {j} such that a(z; /) =1,
set oz, ;) =1 if pi(a) > % and there is no i’ € [m] with a(zy ;) = 1, and
let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon ¢ does not
already sit in a hole, hole j is still free, and there are at most § excluded free
holes for pigeon 1.

Let us pause to give an intuitive explanation of why we choose the functions
co and c; and thus the points for Delayer as above. As a first observation,
Delayer always earns more when Prover is setting a variable z; ; to 1 instead of
setting it to 0. This is intuitively correct as the amount of freedom for Delayer
to continue the game is by far more diminished by sending pigeon 4 to some hole
j than by just excluding that hole j for pigeon 4. In fact, our choice of scores can
be completely explained by the following information-theoretic interpretation:
When Prover sends a pigeon to a hole, Delayer should always get about logn
points on that pigeon. For our Delayer strategy, sending pigeon ¢ to a hole
either means that Prover excluded 3 holes for pigeon 4 or was setting pigeon 4
directly to a hole. When we play the game, in each round Delayer should get
some number of points proportional to the progress Prover made towards fixing
pigeon i to a hole. For instance, if Prover fixes ¢ to a hole in the very beginning
by answering 1 to x; j, Delayer should get the logn points immediately. On the
other extreme, if Prover has already excluded § — 1 holes for pigeon i, then it
does not matter whether Prover sets x; ; to 0 or 1 because after both answers
pigeon i will be forced to a hole. Consequently, in the latter case, Delayer gets
just 1 point regardless of whether Prover answers 0 or 1. This is exactly what
our score function provides.



If Delayer uses the above strategy, then the small clauses —;, ; V-, ; from
PHP;" will not be violated in the game. Therefore, a contradiction will always
be reached on one of the big clauses \/ jen) Tij- Let us assume now that the
game ends by violating \/je[n] x; j, 1. e., for pigeon ¢ all variables x; ; with j € [n]
have been set to 0. As soon as the number p;(«) of excluded free holes for pigeon
i reaches the threshold 5, Delayer will not leave the choice to Prover. Instead,
Delayer will try to place pigeon ¢ into some hole. If Delayer still answers 0 to
z;; even after p;(a) > %, it must be the case that some other pigeon already
sits in hole j, i.e., for some ' # i, a(x; ;) = 1. Therefore, at the end of the
game at least § variables have been set to 1. W.l.o.g. we assume that these
are the variables x; ;, fori=1,..., 7.

Let us check how many points Delayer earns in this game. We calculate the
points separately for each pigeon ¢ = 1,..., 5 and distinguish two cases: whether
x;,5, was set to 1 by Delayer or Prover. Let us first assume that Delayer sets the
variable x; ;, to 1. Then pigeon 7 was not assigned to a hole yet and, moreover,
there must be § unoccupied holes which are already excluded for pigeon i by
a, i.e., there is some J C [n] with |J| = §, a(xy j) # 1 for i’ € [m], j' € J,
and a(z; ;) = 0 for all j/ € J. All of these 0’s have been assigned by Prover,
as Delayer has only assigned a 0 to z; ;7 when some other pigeon was already
sitting in hole j/, and this is not the case for the holes from J (at the moment
when Delayer assigns the 1 to z; ;,). Thus, before Delayer sets «(z; ;,) = 1, she
has already earned points for all § variables x; j/, j* € J, yielding

Zl HZ%, zlog(g—&-l)
points for the Delayer. Let us note that because Delayer never allows a pigeon
to go into more than one hole, she will really get the number of points calculated
above for every of the variables which she set to 1.
If, conversely, Prover sets variable z; j, to 1, then Delayer gets log(5 + 1 —
p;(a)) points for this, but she also received points for the p;(«) varlables set to
0 before by Prover. Thus, in this case Delayer earns on pigeon i

pi(a)—1

n g+1-p
log(§+1—pi(a))+ Z logﬂ
p=0
n 7 +1
= log(= +1—pi(a)) + log —=2
8(5 pi(a)) BT ) + 1
n
(300
og 2+

points. In total, Delayer gets at least

n n
5los (5 +1)

points in the game. Applying Theorem 1, we obtain 22 log(§+1) a5 a lower
bound to the size of each tree-like Resolutlon refutation of PHP,. O



By inspection of the above Delayer strategy it becomes clear that the lower
bound from Theorem 2 also holds for the functional pigeonhole principle where
in addition to the clauses from PHP)' we also include —x; ;, V —x; j, for all
pigeons i € [m] and distinct holes j1, j2 € [n].

We remark that the choice of the score functions ¢y and ¢; in the proof
of Theorem 2 is by no means unique. It is even possible to obtain the same
asymptotic lower bound 22("1°8™) by choosing simpler score functions cg, ¢;
which do not depend on the game played so far, i.e., ¢y and c¢; just depend on
n, but are independent of the assignment « and the queried variable x. Namely,
setting

C1 1

1 log n
=1 — Q c1—1) — QQ(T)
C1 — 1 + C1 — 1 (e ' )

and ¢o=

1= logn

we obtain score functions which satisfy (1) and lead to the following modified
analysis in the proof of Theorem 2: if the Prover sets x; ; to 1, then Delayer earns
at least logc; = Q(logn) points. Otherwise, she still earns at least 3 logco =
Q(logn) points on pigeon i. Thus, in total Delayer earns % - Q(logn) points
during the game, yielding the lower bound.

Our first proof of Theorem 2 has the advantage that it yields more precise
and better bounds, namely exactly 2% log(5+1) which is the same lower bound
obtained by Dantchev and Riis [DRO1]. There might also be scenarios where
the adaptive definition of points according to our above information-theoretic
interpretation indeed yields better asymptotic bounds.
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