arXiv:1008.0521v2 [cs.CC] 8 Dec 2010

Sensitivity versus block sensitivity of Boolean functions

Madars Virza
University of Latvia, Rainis bld. 19, Riga, LV-1586, Latvia

Abstract

Determining the maximal separation between sensitivity and block sensitivity
of Boolean functions is of interest for computational complexity theory. We

construct a sequence of Boolean functions with bs(f) = %s(f)2 + 15(f). The

best known separation previously was bs(f) = 3s(f)2 due to Rubinstein. We

also report results of computer search for functions with at most 12 variables.

Keywords: sensitivity, block sensitivity

1. Introduction

In his 1989 paper @] Noam Nisan gives tight bounds for computing the value
of a Boolean function in CREW-PRAM model. These bounds are expressed in
terms of two complexity measures, namely the sensitivity and block sensitivity.

Let w be a Boolean string of length n and let S be any subset of indices.
Following definitions in @], by w?¥ we will mean w with all bits in S flipped. If
f(w) # f(w®), we will say that f is sensitive to S on w.

Definition 1. The sensitivity s(f,w) of f on the input w is defined as number
of indices i such that f(w) # fwl), s(f,w) = |{i : f(w) # f(wl)}]. The
sensitivity s(f) of f is max s(f,w).

Definition 2. The block sensitivity bs(f,w) of f on n inputs wy, ..., w, (W=
wy ... wy) is defined as maximum number of disjoint subsets Bi,...,Bg of
{1,2,...,n} such that for each B;, f(w) # f(wP"). The block sensitivity bs(f)

of f is maxbs(f,w).

Block sensitivity is polynomially related to many other complexity measures
such as decision tree complexity, certificate complexity, and quantum query
complexity, among others [2]. The prime open problem associated with block
sensitivity is whether sensitivity and block sensitivity are polynomially related.

In 1992 Rubinstein proposed B] a Boolean function f for which bs(f) =
2s(£)?, demonstrating a quadratic separation between these two complexity
measures, which we quote in verbatim:

Email address: madars.virza@lu.lv (Madars Virza)

Preprint submitted to Information Processing Letters October 31, 2018

http://arxiv.org/abs/1008.0521v2

Theorem 1 (Rubinstein). For every n that is an even perfect square, we can
construct a Boolean f on n variables with 2bs(f) = s(f)* = n.

Let A; denote the interval A; = {(i — 1)v/n+1,...,iv/n} (i=1,...,y/n).

Let g; denote the Boolean function defined as follows: g;(H) = 1 exactly if
HNA; ={2j— 1,25} for some j such that 2j € A,;.

We define f to be join of all such g;: f(H) =gi(H)A...Ng m(H).

It is believed that this separation is not far from optimal. However, the best
known upper bound of block sensitivity in terms of sensitivity is exponential [4].

2. Our result

In this paper we give an improvement on Rubinstein’s example, in the case
where the input length n is an odd square. Our function family is a modification
of Rubinstein’s, and our analysis is modelled on his.

Theorem 2. For every non-negative integer k there exists a Boolean function
[of n = (2k+1)? variables, for which s(f) = 2k+1 and bs(f) = (2k+1)(k+1).

Proof. We will divide variables into 2k +1 disjoint sections with 2k+ 1 variables
in each section. We define f to be 1 iff there is a section 1, x9, ..., Togt+1 such
that either:

(1) w2i—1 = x9; = 1 for some 1 <i < k and all other z;’s are 0, or
(i) xor+1 =1 and all other z,’s are 0.

We will call such section a “good” section. For any ¢, we will call x5;_1 and
To; a “pair”.

We observe that for input w = 0...0 we have s(f, w) = 2k+1 and bs(f,w) =
(2k+1)(k+1). We will now prove that these are extremal values for sensitivity
and block sensitivity, respectively.

Suppose we have an arbitrary input w. We will consider two cases:

1. f(w) = 0. Then we claim that for each of 2k + 1 sections there is at most
one bit whose change could flip the value of f.
We will call a pair “incomplete”, if exactly one of its bits is set to 1. We
consider three cases based on the number of incomplete pairs in a section:

(a) there are at least two “incomplete” pairs. Then we can’t change the
value of f by flipping just one bit, because doing so will leave at least
one “incomplete” pair.

(b) there is exactly one “incomplete” pair P. We first note that we can’t
make the section “good” without flipping a bit in P. If unsetting the
1-bit in P makes the section “good”, then wog11 = 1 or x9;—1 = x9; =
1 for some 1 < i < k and setting the 0-bit in P will not make the
section “good”. If setting the 0-bit in P makes the section “good”,
then the only 1-bit in z is also in P and unsetting it will not make
the section “good”. In either case there is at most one choice for the
bit to alter.

(c) there are no “incomplete” pairs. Then flipping any of z; for 1 <
1 < 2k will introduce an “incomplete” pair and the section will not
become “good”. Therefore there is at most one bit whose change
could flip the value of f, namely, zog11.
2. f(w) = 1. If there are two “good” sections, we can’t change the value of
f by flipping just one input bit. If there is only one “good” section, we
have at most 2k + 1 choices for the bit to alter.

This proves that s(f) < 2k + 1 and we indeed have s(f) = 2k + 1.

We will now prove that bs(f) < (2k + 1)(k + 1). Assume that the maximal
block sensitivity is achieved using u blocks of size 1 and v blocks of size at
least 2. Number of blocks of size 1 can’t exceed the sensitivity of the function,
therefore u < 2k + 1. The total size of all blocks is at most u + 2v, furthermore,
the total size of all blocks can’t exceed the total number of variables, therefore
u+2v < (2k + 1)2. Taking these two inequalities together we obtain bs(f) =
utv=3(u+ (u+2v) < 3(2k+1)+ 2k+1)?) = 2k +1)(k+1). O

This implies that for our function we have bs(f) = 3 (f)* + 3s(f). Our
function improves an inequality from an open problem in [4].

3. Maximal separation for functions of few variables

We discovered our function by performing exhaustive computer search of all
Boolean functions with at most 12 variables.

The number of 12-variable Boolean functions is and a brute-force ap-
proach is clearly not feasible. In our experiments we reduced the block sen-
sitivity problem to the SAT problem and used a SAT solver on the resulting
problem instances. We built our SAT instances by considering 2'? variables
corresponding to the values of f(z1,z2,...212) and additional variables and
clauses to describe constraints s(f) < s and bs(f) > bs, for arbitrary constants
s, bs. The SAT solver we used was cryptominisat |5] and it took us about a
week of computing time.

24096

3.1. The constraint bs(f) > bs

In order to describe bs(f) > bs we constructed one SAT instance for each
partition of n into bs parts p1, ..., pps. The semantic meaning for the constraint
we will describe is “there is a function which is sensitive on blocks of sizes
D1,---,Dbs - The constraint bs(f) > bs is feasible if and only if there exists a
partition for which the constraint described below is satisfiable.

We note that for any 7 C {1,...,n} and g(z) = f(zT) we have s(f) = s(g)
and bs(f) = bs(g). This permits us to assume, without loss of generality, that
f attains the maximal block sensitivity on input 0...0, furthermore we can
assume that f(0...0) = 0. If bs(f) > bs then by reordering variables we can

1—1 1—1 [
enforce ~f(0...0)AA, £(0...07) where P, = {3 p;+1, pj+2.....) pj}-
j=1

j=1 j=1
This was our constraint. We used this constraint to enforce bs(f) > bs.

n s bs n s bs n s bs n s bs
>4 2 3| >8 4 6 |>10 4 7 |>11 9 10
>5 3 4 |>8 6 7 |>10 6 8 12 4 8
>6 4 5 |>9 3 6 |>10 8 9 12 6 9
>7 3 5 |>9 5 7 |>11 5 8 12 8 10
>7 5 6 |>9 7 8 |>11 7 9 12 10 11

Table 1: All permissable (n, s, bs) triples for n < 12

3.2. The constraint s(f) < s

We constructed the constraint s(f) < s as a conjunction of constraints of
the form s(f,w) <'s, where w ranged over all 2" inputs.

We will now describe the setup for the constraint s(f,w) < s. Let b; be the
variable denoting f (w{i}). We used auxiliary variables and clauses to implement
“counting” in unary. That is, we introduced new Boolean variables aq,...,a,
and defined a set of constraints that force a1 +as+...+a, = b1 +ba+...+ b,
and a1 > as > ... > an,, essentially sorting the b;’s.

If {a;} is a permutation of {b;} sorted in descending order, then the con-
straint s(f, w) < s can be implemented as (—f (w) A—as11)V(f(w)Aay—s). The
set of a;’s was built incrementally using a dynamic programming table {¢; ;}
(0 < 4,5 < n), where ¢;; = 1 iff at least j of by,...,b; are 1. Following the
semantic meaning of ¢; ; we have the base conditions of ¢;o = 1 and ¢; ; = 0
(¢ < j). Furthermore, the following recurrence holds: ¢; j = (ci—1,j—1Ab;)Vei—1j
(1 < j <i < n). This can be proved by considering two cases: if b; = 1 then
Ci,j = Ci—1,5—1 V Ci—1,5 = Ci—1,5—1, because Ci—1,5 — Ci—1,5—1, if bi = 0 then
ci,j = ci—1,;; both of these equalities agree with the definition of ¢; ;. The set
of a;’s is exactly the last row of the matrix: a; = ¢; n.

3.3. Results

We have summarized our results in Table[Il Our experiments show that for
all functions with at most 12 variables bs(f) does not exceed %s(f)2 + 1s(f).
This might suggest that our example is indeed optimal. Due to the results of
Kenyon and Kutin, the best possible separation that can be achieved between
the sensitivity and the block sensitivity for blocks of size at most 2 is quadratic,
so the new result is not far from optimal in such sense.

4. Acknowledgements

I would like to thank Andris Ambainis for introducing me to this problem
and subsequent helpful discussions. Computational resources were provided in
part by AlLab of Institute of Mathematics and Computer Science, University
of Latvia. I am thankful to the anonymous reviewers for their comments, which
substantially improved this paper (FIXME).

References

1]

N. Nisan, CREW PRAMs and decision trees, in: STOC ’89:
Proceedings of the twenty-first annual ACM symposium on The-
ory of computing, ACM, New York, NY, USA, 1989, pp. 327-335.
doi:http://doi.acm.org/10.1145/73007.73038.

H. Buhrman, R. de Wolf, Complexity measures and decision tree complexity:
a survey, Theor. Comput. Sci. 288 (1) (2002) 21-43.

D. Rubinstein, Sensitivity vs. block sensitivity of boolean functions, Combi-
natorica 15 (2) (1995) 297-299.

C. Kenyon, S. Kutin, Sensitivity, block sensitivity, and l-block sen-
sitivity of boolean functions, Inf. Comput. 189 (1) (2004) 43-53.
doi:http://dx.doi.org/10.1016/j.1c.2002.12.001.

M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic
problems, in: O. Kullmann (Ed.), SAT, Vol. 5584 of Lecture Notes in Com-
puter Science, Springer, 2009, pp. 244-257.

http://dx.doi.org/http://doi.acm.org/10.1145/73007.73038
http://dx.doi.org/http://dx.doi.org/10.1016/j.ic.2002.12.001

	1 Introduction
	2 Our result
	3 Maximal separation for functions of few variables
	3.1 The constraint bs(f) bs
	3.2 The constraint s(f) s
	3.3 Results

	4 Acknowledgements

