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Abstract

A well-known problem in Petri net theory is to formalise an appropriate causality-based concept of process or run for
place/transition systems. The so-called individual token interpretation, where tokens are distinguished according to
their causal history, giving rise to the processes of Goltz and Reisig, is often considered too detailed. The problem
of defining a fully satisfying more abstract concept of process for general place/transition systems has so-far not been
solved. In this paper, we recall the proposal of defining an abstract notion of process, here called BD-process, in terms
of equivalence classes of Goltz-Reisig processes, using an equivalence proposed by Best and Devillers. It yields a fully
satisfying solution for at least all one-safe nets. However, for certain nets which intuitively have different conflicting
behaviours, it yields only one maximal abstract process. Here we identify a class of place/transition systems, called
structural conflict nets, where conflict and concurrency due to token multiplicity are clearly separated. We show that,
in the case of structural conflict nets, the equivalence proposed by Best and Devillers yields a unique maximal abstract
process only for conflict-free nets. Thereby BD-processes constitute a simple and fully satisfying solution in the class of
structural conflict nets.
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1. Introduction

The most frequently used class of Petri nets are place/
transition systems (P/T systems) where places may carry
arbitrary many tokens, or a certain maximal number of
tokens when adding place capacities. These tokens are
usually assumed to be indistinguishable entities. Multi-
plicities of tokens may represent for instance the number
of available resources in a system. The semantics of this
type of Petri nets is well-defined with respect to single fir-
ings of transitions or finite sets of transitions firing in par-
allel (steps). Sequences of transition firings or of steps are
the usual way to define the behaviour of a P/T system.
However, these notions of behaviour do not fully reflect
the power of Petri nets, as they do not explicitly represent
causal dependencies between transition occurrences. If one
wishes to interpret P/T systems with a causal semantics,
several interpretations of what “causal semantics” should
actually mean are available. In the following we give a
short overview.

Initially, Petri introduced the concept of a net together
with the definition of the firing rule. He defined condi-
tion/event systems, where—amongst other restrictions—
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places (then called conditions) may carry at most one to-
ken. For this class of nets, he proposed what is now the
classical notion of a process, given as a mapping from an
occurrence net (acyclic net with unbranched places) to the
original net [Pet77, GSW80]. A process models a run of
the represented system, obtained by choosing one of the
alternatives in case of conflict. It records all occurrences
of the places and transitions visited during such a run, to-
gether with the causal dependencies between them, which
are given by the flow relation of the net. A linear-time
causal semantics of a condition/event system is thus ob-
tained by associating with a net the set of its processes.
Depending on the desired level of abstraction, it may suf-
fice to extract from each process just the partial order of
transition occurrences in it. The firing sequences of tran-
sitions or steps can in turn be extracted from these partial
orders. Nielsen, Plotkin and Winskel extended this to a
branching-time semantics by using occurrence nets with
forward branched places [NPW81]. These capture all runs
of the represented system, together with the branching
structure of choices between them.

Goltz and Reisig generalised Petri’s notion of process
to general P/T systems where multiple tokens may reside
on a single place [GR83]. We call this notion of a process
GR-process. Engelfriet adapted GR-processes by addition-
ally representing choices between alternative behaviours
[Eng91], thereby adopting the approach of [NPW81] to
P/T systems, although without arc weights. Meseguer,
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Sassone and Montanari extended this to cover also arc
weights [MMS97].

However, Goltz argued that when abstracting from the
identity of multiple tokens residing in the same place, GR-
processes do not accurately reflect runs of nets, because if
a Petri net is conflict-free it should intuitively have only
one run (for there are no choices to resolve), yet it may
have multiple GR-processes [Gol86]. This phenomenon is
illustrated in Figure 1 in Section 3. A similar argument is
made, e.g., in [HKT95].

At the heart of this issue is the question whether mul-
tiple tokens residing in the same place should be seen as
individual entities, so that a transition consuming just one
of them constitutes a conflict, or whether such tokens are
indistinguishable, so that taking one is equivalent to taking
the other. Van Glabbeek and Plotkin call the former view-
point the individual token interpretation of P/T systems
and the latter the collective token interpretation [GP95].
A formalisation of these interpretations occurs in [vG05].
A third option, proposed by Vogler, regards tokens only as
notation for a natural number stored in each place; these
numbers are incremented or decremented when firing tran-
sitions, thereby introducing explicit causality between any
transitions removing tokens from the same place [Vog91].
The GR-processes, as well as the work of [Eng91, MMS97],
fit with the individual token interpretation.

In this paper we continue the line of research of [Gol86,
MM88, DMM96, Maz89, HKT95] to formalise a causality-
based notion of run of a Petri net that fits the collec-
tive token interpretation. As remarked already in [Gol86],
what we need is some notion of an “abstract process” and
a notion of maximality for abstract processes, such that
a P/T-system is conflict-free iff it has exactly one maxi-
mal abstract process starting at the initial marking.

A canonical candidate for such a notion of an abstract
process is an equivalence class of GR-processes, using an
equivalence notion (≡∞

1 ) proposed by Best and Devillers
[BD87]. This equivalence relation is generated by a trans-
formation for changing causalities in GR-processes, called
swapping, that identifies GR-processes which differ only in
the choice which token was removed from a place. Here we
call the resulting notion of a more abstract process BD-
process. In the special case of one-safe P/T systems (where
places carry at most one token), or for condition/event sys-
tems, no swapping is possible, and a BD-process is just an
isomorphism class of GR-processes.

Meseguer and Montanari formalise runs in a net N as
morphisms in a category T (N) [MM88]. In [DMM96] it
has been established that these morphisms “coincide with
the commutative processes defined by Best and Devillers”
(their terminology for BD-processes). Likewise, Hoogers,
Kleijn and Thiagarajan represent an abstract run of a
net by a trace, thereby generalising the trace theory of
Mazurkiewicz [Maz95], and remark that “it is straightfor-
ward but laborious to set up a 1-1 correspondence between
our traces and the equivalence classes of finite processes
generated by the swap operation in [Best and Devillers,

1987].”. Mazurkiewicz applies a different approach with
his multitrees [Maz89], which record possible multisets of
fired transitions. This approach applies to nets without
self-loops only, and we will not consider it in this paper.

Best and Devillers have shown that their equivalence
classes of GR-processes are in a bijective correspondence
with equivalence classes of firing sequences, generated by
swapping two adjacent transitions firings that could have
been done in one step. This gives further evidence for the
suitability of BD-processes as a formalisation of abstract
runs. However, it can be argued that this solution is not
fully satisfying for general P/T systems, as we will recall
in Section 3 using an example from Ochmański [Och89].
It identifies GR-processes in such a way that certain P/T
systems with conflicts have only one maximal BD-process.

In this paper, we analyse the notion of conflict in P/T
systems and its interplay with concurrency and causality.
We recall the definition of the notion of conflict for P/T
systems from [Gol86]. We then define a subclass of P/T
systems, called structural conflict nets, where the inter-
play between conflicts and concurrency due to token mul-
tiplicities is clearly separated. On this class, the notions of
syntactic and semantic conflict are in complete agreement.
We show that, for this subclass of P/T systems, the swap
transformation by Best and Devillers yields a unique max-
imal BD-process only for those nets which are conflict-free.
The proof of this result is quite involved; it is achieved by
using the alternative characterisation of BD-processes by
firing sequences from [BD87].

We proceed by defining basic notions for P/T systems
in Section 2. In Section 3, we define GR-processes and
introduce the swapping equivalence. We give examples
and discuss the deficiencies of both GR-processes and BD-
processes for a collective token interpretation of general
P/T systems. Section 4 recapitulates the concept of con-
flict in P/T systems and defines structural conflict nets. In
Sections 5 and 6, respectively, we introduce the alternative
characterisation of BD-processes from [BD87] in terms of
equivalence classes of firing sequences and prove in this
setting that structural conflict nets with a unique maxi-
mal run are indeed conflict-free. Finally we transfer the
result to BD-processes in Section 7.

2. Place/Transition Systems

We will employ the following notations for multisets.

Definition 1. Let X be a set.

• A multiset overX is a function A : X → IN, i.e. A ∈ INX.

• x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.

• For multisets A and B over X we write A ⊆ B iff
A(x) ≤ B(x) for all x ∈X ;
A ∪B denotes the multiset over X with (A ∪B)(x) :=
max(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) :=
A(x) +B(x),
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A−B is given by (A−B)(x) := A(x) ·− B(x) =
max(A(x) −B(x), 0), and
for k ∈ IN the multiset k · A is given by (k · A)(x) :=
k · A(x).

• The function ∅ : X → IN, given by ∅(x) := 0 for all
x ∈X , is the empty multiset over X .

• If A is a multiset overX and Y ⊆ X then A ↾ Y denotes
the multiset over Y defined by (A ↾ Y )(x) := A(x) for
all x ∈ Y .

• The cardinality |A| of a multiset A over X is given by
|A| :=

∑

x∈X A(x).

• A multiset A over X is finite iff |A| < ∞, i.e., iff the set
{x | x ∈ A} is finite.

Two multisets A : X → IN and B : Y → IN are extension-
ally equivalent iff A ↾(X∩Y ) = B ↾(X∩Y ), A ↾(X\Y ) = ∅,
and B ↾(Y \X) = ∅. In this paper we often do not distin-
guish extensionally equivalent multisets. This enables us,
for instance, to use A ∪ B even when A and B have dif-
ferent underlying domains. With {x, x, y} we will denote
the multiset over {x, y} with A(x)=2 and A(y)=1, rather
than the set {x, y} itself. A multiset A with A(x) ≤ 1 for
all x is identified with the set {x | A(x) = 1}.

Below we define place/transition systems as net struc-
tures with an initial marking. In the literature we find
slight variations in the definition of P/T systems concern-
ing the requirements for pre- and postsets of places and
transitions. In our case, we do allow isolated places. For
transitions we allow empty postsets, but require at least
one preplace, thus avoiding problems with infinite self-
concurrency. Moreover, following [BD87], we restrict at-
tention to nets of finite synchronisation, meaning that each
transition has only finitely many pre- and postplaces. Arc
weights are included by defining the flow relation as a func-
tion to the natural numbers. For succinctness, we will refer
to our version of a P/T system as a net.

Definition 2.

A net is a tuple N = (S, T, F,M0) where

• S and T are disjoint sets (of places and transitions),

• F : (S×T ∪ T×S) → IN (the flow relation including
arc weights), and

• M0 : S → IN (the initial marking)

such that for all t ∈ T the set {s | F (s, t) > 0} is finite
and non-empty, and the set {s | F (t, s) > 0} is finite.

Graphically, nets are depicted by drawing the places as
circles and the transitions as boxes. For x, y ∈ S ∪ T there
are F (x, y) arrows (arcs) from x to y. When a net rep-
resents a concurrent system, a global state of this system
is given as a marking, a multiset of places, depicted by
placing M(s) dots (tokens) in each place s. The initial
state is M0. The system behaviour is defined by the possi-
ble moves between markings M and M ′, which take place

when a finite multiset G of transitions fires. When firing
a transition, tokens on preplaces are consumed and tokens
on postplaces are created, one for every incoming or outgo-
ing arc of t, respectively. Obviously, a transition can only
fire if all necessary tokens are available in M in the first
place. Definition 4 formalises this notion of behaviour.

Definition 3. LetN=(S, T, F,M0) be a net and x∈S∪T .

The multisets •x, x• : S ∪T → IN are given by •x(y) =
F (y, x) and x•(y) = F (x, y) for all y ∈ S ∪ T . If x ∈ T ,
the elements of •x and x• are called pre- and postplaces
of x, respectively. These functions extend to multisets
X : S ∪ T → IN as usual, by •X := Σx∈S∪TX(x) · •x
and X• := Σx∈S∪TX(x) · x•.

Definition 4. Let N =(S, T, F,M0) be a net, G ∈ INT, G
non-empty and finite, and M,M ′ ∈ INS.

G is a step from M to M ′, written M
G
−→N M ′, iff

• •G ⊆ M (G is enabled) and

• M ′ = (M − •G) +G•.

We may leave out the subscript N if clear from context.
Extending the notion to words σ = t1t2 . . . tn ∈ T ∗ we
write M

σ
−→ M ′ for

∃M1,M2, . . . ,Mn−1. M
{t1}
−→M1

{t2}
−→M2 · · ·Mn−1

{tn}
−→M ′.

When omitting σ orM ′ we always mean it to be existen-
tially quantified. When M0

σ
−→N , the word σ is called

a firing sequence of N . The set of all firing sequences
of N is denoted by FS(N).

Note that steps are (finite) multisets, thus allowing self-
concurrency. Also note that M

{t,u}
−−−→ implies M

tu
−→ and

M
ut
−→. We use the notation t ∈ σ to indicate that the

transition t occurs in the sequence σ, and σ ≤ ρ to indicate
that σ is a prefix of the sequence ρ, i.e. ∃µ. ρ = σµ.

3. Processes of Place/Transition Systems

We now define processes of nets. A (GR-)process is essen-
tially a conflict-free, acyclic net together with a mapping
function to the original net. It can be obtained by unwind-
ing the original net, choosing one of the alternatives in case
of conflict. The acyclic nature of the process gives rise to a
notion of causality for transition firings in the original net
via the mapping function. Conflicts present in the original
net are represented by one net yielding multiple processes,
each representing one possible way to decide the conflicts.

Definition 5.

A pair P = (N, π) is a (GR-)process of a net
N = (S, T, F,M0) iff

• N = (S ,T,F,M0) is a net, satisfying

− ∀s ∈ S . |•s| ≤1≥ |s•| ∧ M0(s) =

{

1 if •s = ∅
0 otherwise,
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− F is acyclic, i.e. ∀x ∈ S ∪ T. (x, x) 6∈ F+, where F+

is the transitive closure of {(t, u) | F (t, u) > 0},

− and {t | (t, u) ∈ F+} is finite for all u ∈ T.

• π : S ∪ T → S ∪ T is a function with π(S ) ⊆ S and
π(T) ⊆ T , satisfying

− π(M0) = M0, i.e. M0(s) = |π−1(s) ∩M0| for all
s ∈ S, and

− ∀t ∈ T, s ∈ S. F (s, π(t)) = |π−1(s) ∩ •t| ∧
F (π(t), s) = |π−1(s) ∩ t•|.

P is called finite if T (and hence S ) are finite.

The conditions forN ensure that a process is indeed a map-
ping from an occurrence net as defined in [Pet77, GSW80]
to the net N ; hence we define processes here in the classi-
cal way as in [GR83, BD87] (even though not introducing
occurrence nets explicitly).

A process is not required to represent a completed run
of the original net. It might just as well stop early. In those
cases, some set of transitions can be added to the process
such that another (larger) process is obtained. This cor-
responds to the system taking some more steps and gives
rise to a natural order between processes.

Definition 6. Let P = ((S ,T,F,M0), π) and
P ′ = ((S ′,T′,F′,M′

0), π
′) be two processes of the same net.

• P ′ is a prefix of P , notation P ′ ≤ P , and P an extension
of P ′, iff S ′ ⊆ S , T′ ⊆ T, M′

0 = M0, F
′ = F ↾(S ′×T′ ∪

T

′×S ′) and π′ = π ↾(S ′ × T

′).

• A process of a net is said to be maximal if it has no
proper extension.

The requirements above imply that if P ′ ≤ P , (x, y) ∈ F+

and y ∈ S

′ ∪ T′ then x ∈ S

′ ∪ T′. Conversely, any subset
T

′ ⊆ T satisfying (t, u) ∈ F

+ ∧ u ∈ T

′ ⇒ t ∈ T

′ uniquely
determines a prefix of P .

Two processes (N, π) and (N′, π′) are isomorphic iff
there exists an isomorphism φ from N to N′ which re-
spects the process mapping, i.e. π = π′ ◦ φ. Here an
isomorphism φ between two nets N = (S ,T,F,M0) and
N

′ = (S ′,T′,F′,M′
0) is a bijection between their places

and transitions such that M′
0(φ(s)) = M0(s) for all s ∈ S

and F ′(φ(x), φ(y)) = F (x, y) for all x, y ∈ S ∪ T.
The notion of a GR-process presented above may fail

to capture the intuitive concept of an abstract run of the
represented system if the original net (e.g. the one in Fig-
ure 1) reaches a marking with multiple tokens in one place.
According to Definition 5, such a net N has processes in
which multiple places are mapped to the same place in N ,
thereby representing multiple tokens there. (In Figure 1
each of the two represented processes has two places that
map to place 4 in N .) If such a process features a tran-
sition whose counterpart in N consumes just one of the
tokens present in this place, one needs to choose which
of the equivalent places in the process to connect to this
transition. Taking different choices gives rise to different

1 2
a b

4

3 c

5

1 2

a b

4 4

c 3

5

1 2

a b

4 4

c3

5

Figure 1: A net N with its two maximal GR-processes. The process
mappings are indicated by labels.

processes (such as the two in Figure 1). There is the philo-
sophical question of whether multiple tokens in the same
place are distinct entities, that may induce distinct causal
relationships—the individual token interpretation, or to-
gether constitute some state of the place—the collective
token interpretation [GP95]. In the collective token inter-
pretation of P/T systems, which we take in this paper, the
choice which token to remove should not lead to different
runs.

As already described in Section 1, a possible strategy
to achieve a more abstract notion of process is to introduce
a suitable equivalence notion, identifying processes which
only differ with respect to the choices of tokens removed
from the same place, thus identifying for example the two
processes in Figure 1. A candidate for such an equivalence
was proposed in [BD87]. It is defined by first introduc-
ing a simple transformation on GR-processes; it allows to
change causalities in a process by swapping outgoing ar-
rows between places corresponding to the same place in the
system net. By reflexive and transitive closure this yields
an equivalence notion on finite GR-processes. Slightly de-
viating from [BD87], we define the equivalence for infinite
processes via their finite approximations.

Definition 7. Let P = ((S ,T,F,M0), π) be a process and
let p, q ∈ S with (p, q) /∈ F+ ∪ (F−1)+ and π(p) = π(q).

Then swap(P, p, q) is defined as ((S ,T,F′,M0), π) with

F

′(x, y) =











F(q, y) iff x = p, y ∈ T

F(p, y) iff x = q, y ∈ T

F(x, y) otherwise.

Definition 8.

• Two processes P and Q of the same net are one step
swapping equivalent (P ≈s Q) iff swap(P, p, q) is iso-
morphic to Q for some places p and q.

• We write ≈∗
s for the reflexive and transitive closure of

≈s, and P for the ≈∗
s-equivalence class of a finite

process P . The prefix relation ≤ between processes
is lifted to such equivalence classes by P ′ ≤ P iff

4



a b c d

Figure 2: A net with only a single process up to swapping equivalence.

P ′ ≈∗
s Q

′ ≤ Q ≈∗
s P for some Q′, Q.1

• Two processes P and Q are swapping equivalent (P ≈∞
s

Q) iff
↓ ({ P ′ | P ′ ≤ P, P ′ finite}) =

↓ ({ Q′ | Q′ ≤ Q, Q′ finite})

where ↓ denotes prefix-closure under ≤.

• We call a≈∞
s -equivalence class of processes a BD-process.

Our definition of ≈∞
s deviates from the definition of ≡∞

1

from [BD87] to make proofs easier later on. We conjecture
however that the two notions coincide.

Unfortunately, with respect to the intuition that dif-
ferent ways to resolve a conflict should give rise to dif-
ferent processes, or the requirement that a P/T system
should have exactly one maximal process iff it is conflict-
free [Gol86], the swapping equivalence relation is too large.
Consider for example the net depicted in Figure 2. In the
initial situation only two of the three enabled transitions
can fire, which constitutes a conflict. However, there is
only one maximal process up to swapping equivalence.

This example has been known for quite some time
[Och89, DMM96, BMO09]. However, we are not aware
of a solution, i.e. any formalisation of the concept of a run
of a net which correctly represents both causality and par-
allelism of the net, and meets the above requirement. For
one-safe nets, i.e. nets where places will never carry more
than one token in all reachable markings, as well as for con-
dition/event systems, (GR-)processes up to isomorphism
are already known to constitute a fully satisfying solution
in the above sense. In this paper we will define a larger
subclass of P/T systems, including the net of Figure 1, on
which BD-processes form a satisfying solution.

4. Conflicts in Place/Transition Systems

Since we desire an abstract notion of process with the prop-
erty that a P/T-system has exactly one maximal abstract
process iff it is conflict-free, it is essential to have a firm
definition of conflict. Conflict is a basic notion in the the-
ory of Petri nets, with an easy and clear interpretation

1It is not hard to verify that if P ≈∗

s Q ≤ Q′ then P ≤ P ′ ≈∗

s Q′

for some process P ′. This implies that ≤ is a partial order on ≈∗

s -
equivalence classes of finite processes. Alternatively, this conclusion
will follow from Theorem 4.

in one-safe P/T systems. Two transitions are in (struc-
tural or syntactic) conflict if they share a common preplace
[GSW80]. In one-safe nets this coincides with a semantic
notion of conflict: if two transitions share a common pre-
place and they are both enabled, only one of them may
fire in the next step. Its firing will (at least temporary)
disable the other transition.

In general P/T systems, the situation concerning con-
flicts is more complicated [Gol86]. First consider the net
of Figure 1. In the individual token interpretation of nets,
one could postulate that there is a conflict between tran-
sition c consuming the token produced by a or by b. Un-
der such an interpretation of conflict, the two maximal
GR-processes match our expectations exactly. Under the
collective token interpretation used in this paper, on the
other hand, we consider this net to be conflict-free, and
thus expect only one maximal process.

Next consider the net in Figure 2. In the marking
shown, there are three enabled transitions sharing a pre-
place. Any pair of two of them may fire concurrently (even
though they share a preplace), but not all three of them.
This ought to be seen as a conflict. Yet, if there would
be three tokens in the top-most place of that net, the net
would be conflict-free. This shows that conflict is a more
involved notion here that may no longer be characterised
structurally or syntactically. In [Gol86], it was observed
that the traditional definition of conflict covered conflicts
between two transitions only, and the following definition
of conflict in general P/T systems was proposed.

Definition 9. LetN=(S, T, F,M0) be a net andM ∈ INS.

• A finite, non-empty multiset G ∈ INT is in (semantic)
conflict in M iff (∀t ∈ G. M

G ↾{t}
−−−→) ∧ ¬M

G
−→.

• N is (semantic) conflict-free iff no finite, non-empty
multiset G ∈ INT is in semantic conflict in any M with
M0 −→ M .

Remark: In a net (S, T, F,M0) with S = {s}, T = {t, u},
M0(s) = 1 and F (s, t) = F (s, u) = 1, the multiset {t, t}
is not enabled in M0. For this reason the multiset {t, t, u}
does not count as being in conflict in M0, even though it
is not enabled. However, its subset {t, u} is in conflict.

We now propose a class of P/T systems where the struc-
tural definition of conflict matches the semantic definition
of conflict as given above. We require that two transitions
sharing a preplace will never occur both in one step.

Definition 10. Let N = (S, T, F,M0) be a net.

N is a structural conflict net iff ∀t, u. (M0 −→
{t,u}
−−−→) ⇒

•t ∩ •u = ∅.

Note that this excludes self-concurrency from the possible
behaviours in a structural conflict net: as in our setting
every transition has at least one preplace, t = u implies
•t ∩ •u 6= ∅. Also note that in a structural conflict net
a non-empty, finite multiset G is in conflict in a marking

5



M iff G is a set and two distinct transitions in G are in
conflict in M .

We will show that the problem outlined in Section 3,
namely that the transitive closure of the swapping rela-
tion equates processes which we would like to distinguish,
vanishes for the class of structural conflict nets. How-
ever, the proof of this result is not straightforward. In
order to achieve this result, we first introduce the alterna-
tive characterisation of BD-processes from [BD87] in terms
of an equivalence notion on firing sequences in Section 5
and then characterise problematic situations and prove an
appropriate result in terms of this alternative behaviour
description in Section 6.

5. Abstract Runs of Place/Transition Systems

This section is largely based on [BD87], but with adapted
notation and terminology, and a different treatment of infi-
nite runs. We recall and reformulate these results in order
to use them in the following two sections.

The behaviour of a net can be described not only by
its processes, but also by its firing sequences. Firing se-
quences however impose a total order on transition fir-
ings, thereby abstracting from information on causal de-
pendence, or concurrency, between transition firings. To
retrieve this information we introduce an adjacency rela-
tion on firing sequences with the intuition that adjacent
firing sequences represent the same run of the net. We
then define FS-runs in terms of the resulting equivalence
classes of firing sequences. Adjacency is similar to the
idea of Mazurkiewicz traces [Maz95], allowing to exchange
concurrent transitions. However, it is based on the seman-
tic notion of concurrency instead of the global syntactic
independence relation in trace theory, similar as in the
approach of generalising trace theory in [HKT95].

Definition 11. LetN = (S, T, F,M0) be a net, and σ, ρ ∈
FS(N).

• σ and ρ are adjacent, σ ↔ ρ, iff σ = σ1tuσ2, ρ = σ1utσ2

and M0
σ1−→

{t,u}
−−−→.

• We write ↔∗ for the reflexive and transitive closure of ↔,
and [σ] for the ↔∗-equivalence class of a firing sequence
σ.

Note that ↔∗-related firing sequences contain the same
(finite) multiset of transition occurrences. When writing
σ ↔∗ ρ we implicitly claim that σ, ρ ∈ FS(N). Furthermore
σ ↔∗ ρ ∧ σµ ∈ FS(N) implies σµ ↔∗ ρµ for all µ ∈ T ∗.

The following definition introduces the notion of partial
FS-run which is a formalisation of the intuitive concept of
a finite, partial run of a net.

Definition 12. Let N be a net and σ, ρ ∈ FS(N).

• A partial FS-run ofN is an ↔∗-equivalence class of firing
sequences.

• A partial FS-run [σ] is a prefix of another partial FS-run
[ρ], notation [σ] ≤ [ρ], iff ∃µ. σ ≤ µ ↔∗ ρ.

Note that ρ′ ↔∗ ρ ≤ µ ↔∗ σ implies ∃µ′. ρ′ ≤ µ′ ↔∗ µ, thus
the notion of prefix is well-defined, and a partial order.

The following concept of an FS-run extends the no-
tion of a partial FS-run to possibly infinite runs, in such a
way that an FS-run is completely determined by its finite
approximations.

Definition 13. Let N be a net.

An FS-run R of N is a set of partial FS-runs of N such
that

• [ρ] ≤ [σ] ∈ R ⇒ [ρ] ∈ R (R is prefix-closed), and

• [σ], [ρ] ∈ R ⇒ ∃[µ] ∈ R. [σ] ≤ [µ] ∧ [ρ] ≤ [µ] (R is
directed).

The class of partial FS-runs and the finite elements (in
the set theoretical sense) in the class of FS-runs are in
bijective correspondence. Every finite FS-run R must have
a largest element, say [σ], and the set of all prefixes of [σ]
is R. Conversely, the set of prefixes of a partial FS-run [σ]
is a finite FS-run of which the largest element is again [σ].

Similar to the construction of FS-runs as sets of equiv-
alence classes of firing sequences, we define BD-runs as
sets of swapping equivalence classes of finite GR-processes.
There is a close relationship between BD-runs and BD-
processes, some details of which we will give in Section 7.

Definition 14. Let N be a net.

• A partial BD-run of N is a ≈∗
s-equivalence class of finite

processes.

• A BD-run of N is a prefix-closed and directed set of
partial BD-runs of N .

There is a bijective correspondence between partial BD-
runs and the finite elements in the class of BD-runs, just
as in the case of FS-runs above.

Much more interesting however is the bijective corre-
spondence between BD-runs and FS-runs we will now es-
tablish. In particular, it allows us to prove theorems about
firing sequences and lift them to processes with relative
ease.

Definition 15. Let N = (S, T, F,M0) be a net, and let
P=((S ,T,F,M0), π) be a finite process ofN and σ∈FS(N).

• Lin(P ) := {π(t1)π(t2) . . . π(tn) | ti ∈ T ∧ n = |T| ∧
tiF

∗tj ⇒ i ≤ j} (the linearisations of P ).

• Π(σ) := {P | σ ∈ Lin(P )}.

For one-safe nets, Π(σ) contains exactly one process up to
isomorphism, for any firing sequence σ [BD87].

Theorem 1. LetN=(S, T, F,M0) be a net, σ, ρ ∈ FS(N),
and P,Q two finite processes of N .

1. If Π(σ) ∩ Π(ρ) 6= ∅ then σ ↔∗ ρ.

2. If Lin(P ) ∩ Lin(Q) 6= ∅ then P ≈∗
s Q.

Proof: See [BD87]. �
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Theorem 2. LetN=(S, T, F,M0) be a net, σ, ρ ∈ FS(N),
and P,Q two finite processes of N .

1. If σ ↔ρ then Π(σ) ∩ Π(ρ) 6= ∅.

2. If P ≈s Q then Lin(P ) ∩ Lin(Q) 6= ∅.

Proof: See [BD87]. �

Theorem 3. Let N = (S, T, F,M0) be a net, P,Q two
finite processes of N , σ ∈ Lin(P ), and ρ ∈ Lin(Q).

σ ↔∗ ρ iff P ≈∗
s Q.

Proof: “⇒”: We show that ∀n ∈ IN. (σ ↔n ρ ⇒ P ≈∗
s Q)

by induction on n. To start, σ ↔0 ρ means σ = ρ, so
σ ∈ Lin(P )∩Lin(Q). By Theorem 1 then P ≈∗

s Q. For the
induction step, we need to show that σ ↔n ρ ⇒ P ≈∗

s Q.
There must exists some µ such that σ ↔µ ↔(n−1) ρ. By
Theorem 2 there is some P ′ ∈ Π(σ) ∩ Π(µ). So σ ∈
Lin(P ) ∩ Lin(P ′) and per Theorem 1, P ≈∗

s P ′. That
µ ↔(n−1) ρ ⇒ P ′ ≈∗

s Q follows from the induction assump-
tion.

“⇐”: Goes likewise but with the rôles of ↔and ≈s and
those of Π and Lin exchanged. �

The functions Lin and Π can be lifted to equivalence classes
of finite processes and firing sequences, respectively, by

Lin( P ) := [σ] for σ an arbitrary element of Lin(P ),
and

Π([σ]) := P for P an arbitrary element of Π(σ).
Theorem 3 ensures that these liftings are well-defined, and
that they are inverses of each other, thereby obtaining a
bijective correspondence between partial BD-runs and par-
tial FS-runs. The following theorem tells that this bijec-
tion respects the prefix ordering between runs.

Theorem 4. Let N = (S, T, F,M0) be a net, P,Q two
finite processes of N , σ ∈ Lin(P ), and ρ ∈ Lin(Q).

[σ] ≤ [ρ] iff P ≤ Q .

Proof: “⇐”: Take P ′ ∈ P andQ′ ∈ Q such that P ′ ≤
Q′. If follows immediately from Definitions 6 and 15 that
any σ′ ∈ Lin(P ′) can be extended to some ρ′ ∈ Lin(Q′),
so that [σ] = [σ′] ≤ [ρ′] = [ρ].

“⇒”: Take ρ′ ∈ [ρ] such that σ ≤ ρ′ and take Q′ =
((S ′,T′,F′,M′

0), π
′) ∈ Π(ρ′). By Definition 15, T′ can be

enumerated as t1t1 . . . tn such that tiF
′∗tj ⇒ i ≤ j and

ρ′ = π′(t1)π
′(t2) . . . π

′(tn). So σ = π′(t1)π
′(t2) . . . π

′(tm)
with m ≤ n. It follows from the remark below Definition 6
that Q′ has a prefix P ′ with transitions {t1, . . . , tm} such
that P ′ ∈ Π(σ). Hence P = P ′ ≤ Q′ = Q . �

Since BD-runs are created out of the ordered space of par-
tial BD-runs of a net in the same way as FS-runs are
created out of partial FS-runs, this immediately yields a
bijective correspondence also between infinite (in the set-
theoretical sense) BD-runs and infinite FS-runs. This bi-
jection respects the subset relation ⊆ between runs, which
is the counterpart of the prefix relation ≤ between partial
runs, and hence also the concept of a maximal run.

6. Abstract Runs of Structural Conflict Nets

This section formally uses FS-runs; however the results
carry over to BD-runs easily, via the bijection established
in Section 5.

Returning to the example of Figure 2, we find that the
depicted net has only one maximal FS-run: [abdc]=[adbc]=
[adcb] = [acdb] = [cadb] = [cdab] = [cdba] = [cbda] = [bcda] =
[bdca] = [bdac] = [badc]. The conflict between the initially
enabled sets of transitions {a, b}, {b, c}, and {a, c} has not
been resolved; rather all possibilities have been included
in the same run. The following definition describes runs
for which this is not the case.

Definition 16. Let N = (S, T, F,M0) be a net.

An FS-run R is conflict-free iff for all finite, non-empty
multisets G ∈ INT and all σ ∈ T ∗

(∀t ∈ G. [σtG(t)] ∈ R ∧M0
σ

−→
G ↾{t}
−−−→) ⇒ M0

σ
−→

G
−→ .

We will now show that in structural conflict nets every run
is conflict free. For structural conflict nets thus holds what
one would intuitively expect: every conflict in the net gives
rise to distinct runs, each one representing a particular way
to resolve the conflict.

Theorem 5. Let N be a structural conflict net.
Every FS-run R of N is conflict-free.

Proof: Let R be an FS-run of N = (S, T, F,M0), σ ∈
T ∗, and G ∈ INT a finite, non-empty multiset such that
∀t ∈G. [σtG(t)] ∈R ∧M0

σ
−→

G ↾{t}
−−−→. Let M be the unique

marking of N with M0
σ

−→ M . We have to show that
M

G
−→.
No transition t can occur more than once in G as self-

concurrency cannot occur in structural conflict nets and
M0

σ
−→

G ↾{t}
−−−→.

Let t, u ∈ G, t 6= u. Then M
t

−→ ∧ M
u

−→. Since
R is directed, there exist ρ, µ ∈ T ∗ with σtρ ↔∗ σuµ. By
Definition 11, σtρ and σuµ must contain the same multiset
of transitions. Hence somewhere in the sequence σtρ =
ν1

↔ν2

↔· · · ↔νn = σuµ the transitions t and u must be
exchanged, i.e. νi = ν′tuν′′ ↔ν′utν′′ = νi+1. Thus there
is a marking M ′ with M0

ν′

−→ M ′ {t,u}
−−−→. Since N is a

structural conflict net, •t ∩ •u = ∅. As this holds for all
t, u ∈ G, it follows that M

G
−→. �

Theorem 6. Let N be a structural conflict net.
IfN has exactly one maximal FS-run thenN is conflict-

free.

Proof: Let N = (S, T, F,M0). Assume N has a conflict,
i.e. there exists σ ∈ T ∗, M ∈ INS , G ∈ INT , G finite, with
M0

σ
−→ M , ¬M

G
−→ and ∀t ∈ G. M

G ↾{t}
−−−→. We show that

N has no unique maximal FS-run.
For every t ∈ G, the set {[ρ] | [ρ] ≤ [σtG(t)]} constitutes

an FS-run of N . Hence, a unique maximal FS-run of N
would be a superset of {[σtG(t)] | t ∈ G}, and thus not
conflict-free. However, every FS-run ofN must be conflict-
free according to Theorem 5. �
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7. BD-Processes of Structural Conflict Nets

In this section we adapt Theorem 6 from runs to BD-
processes, i.e. GR-processes up to ≈∞

s . To this end, we
give a mapping from GR-processes to BD-runs.

Definition 17. Let N be a net and P a process thereof.

Then BD(P ) :=↓ { P ′ | P ′ ≤ P, P ′ finite}.

Note that, by Definition 8, P ≈∞
s Q iff BD(P ) = BD(Q).

Lemma 1. Let N be a net and P a process thereof.
BD(P ) is a BD-run.

Proof: Prefix-closure holds by definition of ↓, using the
transitivity of ≤.

For any ordered setX , ifX is directed, so is ↓X. Hence
it suffices to show that { P ′ | P ′≤P, P ′ finite} is directed.
Take finite Pi := ((S i,Ti,Fi,M0i), πi) ≤ P for i = 1, 2.
Then P ′ := ((S 1∪S 2,T1∪T2,F1∪F2,M01∪M02), π1∪π2)
≤ P and P ′ is finite. Moreover, Pi ≤ P ′ for i = 1, 2 and
thus Pi ≤ P ′ . Hence BD(P ) is directed. �

We now show that the existence of a unique maximal GR-
process implies the existence of a unique maximal BD-run.

Lemma 2. Let N be a net.
Every process P of N is a prefix of a maximal process

of N .

Proof: The set of all processes of N of which P is a pre-
fix is partially ordered by ≤. Every chain in this set has
an upper bound, obtained by componentwise union. Via
Zorn’s Lemma this set contains at least one maximal pro-
cess. �

Lemma 3. Let N be a net.
If N has exactly one maximal GR-process up to ≈∞

s
then N has exactly one maximal BD-run.

Proof: Take any finite processes P, P ′ of N . According
to Lemma 2 there are maximal processes Q,Q′ of N with
P ≤ Q, P ′ ≤ Q′. As N has exactly one maximal process
up to ≈∞

s , Q ≈∞
s Q′ and BD(Q) = BD(Q′). Hence as

P ′ ∈ BD(Q′) also P ′ ∈ BD(Q). Since BD(Q) is di-
rected, there exists a Q′′ with P ≤ Q′′ ∧ P ′ ≤ Q′′ .
As this holds for any finite processes P, P ′ the set of all
equivalence classes of finite processes of N is directed and
hence a BD-run. Naturally this is the largest BD-run. �

We can now conclude our main result: A semantic conflict
in structural conflict nets generates multiple maximal GR-
processes even up to swapping equivalence.

Corollary 1. Let N be a structural conflict net.
If N has only one maximal GR-process up to ≈∞

s then
N is conflict-free.

Proof: This follows directly from Lemma 3 and Theo-
rem 6, using the bijection between FS-runs and BD-runs
of Section 5. �

It would be interesting to show the reverse direction of
Corollary 1, i.e. to prove that a structural conflict net has
exactly one maximal GR-process up to ≈∞

s iff it is conflict-
free. We do conjecture that this holds for countable nets.
Even for processes generated by finite nets though, we find
it difficult to apply a similar proof technique by establish-
ing the necessary bijective correspondence between infinite
BD-processes and infinite BD-runs.
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