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Stabilizing Data-Link over non-FIFO Channels

with Optimal Fault-Resilience

Shlomi Dolev∗ Swan Dubois† Maria Potop-Butucaru† Sébastien Tixeuil‡

Abstract

Self-stabilizing systems have the ability to converge to a correct behavior when started in
any configuration. Most of the work done so far in the self-stabilization area assumed either
communication via shared memory or via FIFO channels.

This paper is the first to lay the bases for the design of self-stabilizing message passing
algorithms over unreliable non-FIFO channels. We propose an optimal stabilizing data-link
layer that emulates a reliable FIFO communication channel over unreliable capacity bounded
non-FIFO channels.

1 Introduction

Self-stabilization [9, 10, 17] is one of the most versatile techniques to sustain availability, reliability,
and serviceability in modern distributed systems. After the occurrence of a catastrophic failure that
placed the system components in some arbitrary global state, self-stabilization guarantees recovery
to a correct behavior in finite time without external (i.e. human) intervention.

As self-stabilization is usually considered a hard property to satisfy, most related works used a
simple communication model where processes can determine the current state of every neighbors
(and update their own state accordingly) in an atomic manner (this model is referred to in the
literature as the state model or systems with central/distributed daemon). Asynchronous message
passing is a more realistic way, compared to the state model, for the communication of processes
in distributed systems. In such settings processes communicate by exchanging messages, where
sending and receiving message are two separate atomic actions. Transformers for shared memory
protocols to act in message passing systems, assuming the existence of FIFO channels, have been
suggested, see e.g. [11, 10]. At the core of those transformers are the data-link protocols, that
permit to reliably exchange information between neighboring processes in the message passing
model. In addition, several self-stabilizing protocols (i.e. [13, 2]) that are directly written in the
message-passing model use an underlying data-link protocol as a building block.
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Related Works. The most studied data-link protocol, namely the alternating bit protocol (ABP),
was proved to satisfy some stabilization properties [1, 12, 4]: in any execution of ABP, there exists a
suffix that satisfies the specification (i.e. the ABP is pseudo-stabilizing). However, the impossibility
to bound the amount of time before this suffix is reached makes the ABP unsuitable for most tasks.
In [14, 11], Gouda and Multari and Dolev, Israeli, and Moran independently prove that for a wide
class of problems (including data-link construction) guaranteeing self-stabilization when channels
have unbounded initial capacity requires some kind of unboundedness in the protocol (either un-
bounded memory in [14], the existence of some aperiodic function [1], or access to a probabilistic
variable [1]). In other words, those approaches require to implement unbounded capacities with
finite memory, and are thus unlikely to be actually used in real systems. Also, the expected time
before reaching a stable global state depends on the initial contents of communication channels,
and is thus unbounded.

Most recent works took the more realistic approach of assuming channels with bounded initial
capacity. The token passing protocol in [12] can be used as a self-stabilizing ABP on bounded
channels and only uses bounded memory. Howell et al. [15] provide another data-link protocol
over bounded channels with the additional desirable property that the underlying communication
channels are unreliable (i.e. they may loose or duplicate messages). Later, Varghese [18] presented
self-stabilizing solutions for a wide class of problems (including data-link) in the same setting using
only bounded memory. The FIFO ordering is crucial for the stabilization since solution relies on
the fact that a sequence number that is unique in the system is eventually generated and flushes
every stale message in transit. A common drawback of all aforementioned self-stabilizing data-link
solutions is that they assume a FIFO order on messages in the underlying communication channels.

A notable exception are the protocols provided in [3] that assumed a non-FIFO message passing
system. The main difference with our approach stands in the fact that their system is enhanced
with some failure detector whereas we assume a fully asynchronous system.

Another drawback of previously mentioned self-stabilizing data-link solutions is that they do
not consider the quantitative impact of faults from the perspective of the upper layer protocol (i.e.
the layer that actually uses the data-link). Indeed, starting from an arbitrary global state where
channels may initially contain messages of arbitrary content, being able to bound the number
of messages sent that are lost or duplicated, or the number of fake messages that are actually
delivered to the destination is a very important matter. The bound on the number of faulty
messages delivered by a data-link protocol is an important criteria for the data-link usability in
larger application, in order to ensure the fault-resiliency of the global protocol stack. To our
knowledge, only [13, 8] addresses, to some extent, this concern. A snap-stabilizing data-link (and
global reset) for bounded capacity FIFO channels appears in [13]. In [8] a snap-stabilizing solution
to the propagation of information with feedback (PIF) problem is presented. The solution can
be seen as a data-link protocol when reduced to a 2-processes system. Snap-stabilization implies
that any message that is actually sent by the sender process is eventually received by the receiver
process, so the number of lost messages is 0. However, we cannot provide bounds on the number
of duplications of a given message or on the number of ghost messages (that is, messages that are
not sent by the sender but received by the receiver due to the arbitrary content of communication
channels in the initial configuration). Concerning the self-stabilizing protocols, only an order of
magnitude on those numbers can be inferred from the stabilization time (if m messages sent or
received are required to enter a legitimate global state from any arbitrary initialization, then at
most m messages could be lost, duplicated, or wrongly delivered). To our knowledge, the question
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of fault-resilience optimality for data-link protocols has never been raised before, although it has
important practical consequences.

Our contribution. Our contribution in this paper is twofold:

1. We define complexity metrics that are related to the fault-resilience of data-link protocols,
and present impossibility results in the context of self-stabilization (i.e. the ability to recover
from any arbitrary initial global state). In particular, we prove that no data-link protocol
can prevent one message duplication, the delivery of a single fake message, or the reordering
of a single message.

2. We present a data-link protocol that is optimal with respect to all presented fault-resilience
metrics. Moreover, unlike previous self-stabilizing solutions that operate assuming the under-
lying communication channels preserve FIFO ordering, the channels we consider may indeed
reorder messages, having some of them remain in the channel for an arbitrary long time. The
strong fault-resilience property exhibited by our protocol makes it particularly suitable for
inclusion as a building block in more complex applications.

Paper organization. The paper is organized as follows. Section 2 proposes the network model
and hypothesis and then, the data-link problem specification. Section 3 introduces three lower
bounds results that justify our optimality claim. In Section 4, we propose our optimal stabilizing
data-link protocol altogether with its correctness proof.

2 Model

2.1 System Model

A message-passing distributed system consists of n processes, p0, p1, p2, . . . , pn−1, connected by
communication links through which messages are sent and received. Two processes connected
through a communication link are referred in the following as neighboring processes.

As emphasized in [1] the purpose of a data-link protocol is to reliably transmit messages from
one end of a communication medium (link) to the other end. Ideally, messages have to arrive
without duplication or loss and in the order they have been sent. Therefore, we focus in the
following on the communication between two neighboring processes pi and pj where pi acts as the
sender and pj acts as the receiver. The communication link between the two processes pi and pj is
denoted in the following (pi, pj) and is composed of two virtual directed channels (i, j) and (j, i).
The channel (i, j) is used to send messages from pi to pj while the channel (j, i) is used to send
acknowledgments from pj to pi. In systems where pj is also message sender, two additional virtual
channels are used to carry the messages from pj to pi and acknowledgments from pi to pj.

We assume in the following that the capacity of each directed channel is c packets (i.e. low level
messages). Note that in the scope of self-stabilization, where the system copes with an arbitrary
starting configuration, there is no deterministic data-link simulation that uses bounded memory
when the capacity of channels is unbounded [14, 12].

The channels are non-FIFO and not necessarily reliable (i.e. packets may not follow the FIFO
order and may be lost). Additionally, their delivery time is unbounded. That is, any non lost
packet is received in a finite but unbounded time. Each channel (i, j) is weakly fair in the sense
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that if the sender sends infinitely often a packet on the channel, then the receiver receives this
packet an infinite number of time. Sending a packet to a channel whose capacity is exhausted (i.e.
the channel already contains c packets) results in loosing a packet (either a packet already in the
channel or the packet being sent).

As we deal with arbitrary initial corruption, a channel may initially contain up to c ghost
packets (i.e. packets that have never been sent and contain arbitrary content).

A processor is modeled by a state machine that executes steps. Channels are modeled as sets
(rather than queues to reflect the non-FIFO order). For example, the c-bounded channel (i, j)
(used to send messages from pi to pj) is modeled by a c-sized set denoted by sij.

In each step, a processor changes its local state (i.e. the state of its local memory), and
executes a single communication operation, which is either a send operation or a receive operation.
The communication operation changes the state of an attached channel. In case the communication
operation is a send operation from pi to pj then sij is a union of sij in the previous state with the
sent packet. If the obtained union does not respect the bound |sij| ≤ c then an arbitrary message in
the obtained union is deleted. In case the communication operation is a receive operation of a (non
null) packet m (m must exist in sji of the previous state), then m is removed from sji. A receive
operation by pi from pj may result in a null packet even when the sji is not empty, thus allowing
unbounded delay for any particular packet. Packet losses are modeled by allowing spontaneous
packet removals from the set.

A configuration of the system is the product of the local states of processes in the system and
of their incident channels.

An execution is a sequence of configurations, E = (C1, C2, . . .) such that Ci, i > 1, is obtained
from Ci−1 when at least one process in the system executes a step.

2.2 Problem Specification

The specification we provide in this section is borrowed from [16] but we adapt it to the self-
stabilizing context. In particular, we introduce the idea to bound the number of lost, duplicated,
ghost and re-ordered messages by some constants.

Consider a system of two processors pi and pj . A distributed application needs to send some
messages from pi to pj. We say that the application layer of pi sends a message when it requests
the communication protocol to carry this message to pj . This message is delivered to pj when the
communication protocol releases this message to the application layer of pi. A ghost message is
a message delivered to pj whereas pi did not send it previously (due to the arbitrary content of
communication channels in the initial configuration). A duplicated message is a message that is
delivered several times to pj whereas pi sent it only once. A message is lost when pi sends it but pj
never delivers it. A message m is reordered when it is delivered to pj before a message m′ whereas m
has been sent after m′ by pi. Intuitively, the goal of a Stabilizing Data-Link protocol is to provide a
communication black box that ensures some properties on the number of lost, duplicated, ghost and
reordered messages starting from any arbitrary configuration. In the sequel, we formally specify
the Stabilizing Data-Link problem

We associate to any execution E the sequence S(E) = m0m1m2 . . . of messages sent by pi in
E and the sequence R(E) = m′

0m
′
1m

′
2 . . . of messages delivered to pj in E. Note that we consider

that all sent messages are different (even if their actual content are identical, we can distinguish
them as external observer of the system). We introduce the following notations. For any sequence
W and any integers i and j, W j is the prefix of W of length j and Wi is the suffix of W such that
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W = W i−1Wi. The notation ǫ denotes the empty sequence. For example, R(E)0 = ǫ. For any
message m, we define the m∗ as the repetition of m an arbitrary number of times (possibly 0). For
any sequence W , the sequence W ∗ is the result of the application of the ∗ operator to each message
of W .

For any non negative integers α, β, γ, and δ, the (α, β, γ, δ)-Stabilizing Data-Link com-
munication over c-bounded channels satisfies the following properties starting from an arbitrary
configuration (with pi and pj being respectively the sender and the receiver) for any execution E:

• α-Loss: The first α messages sent by pi (in the worst case) may be lost.

∃a ≤ α,∀m ∈ S(E)a,m ∈ R(E)

• β-Duplication: The first β messages delivered to pj (in the worst case) may be duplicated
ones.

∃b ≤ β,∀m ∈ S(E), |{m′
i = m|m′

i ∈ R(E)}| > 1 ⇒ m ∈ R(E)b

• γ-Creation: The first γ messages delivered to pj (in the worst case) may be ghost messages.

∃c ≤ γ,∀m ∈ R(E),m /∈ S(E) ⇒ m ∈ R(E)c

• δ-Reordering: The first δ messages delivered to pj (in the worst case) may be reordered.

∃d ≤ δ,R(E)d = S(E)∗

In the following section, we show that it is impossible to perform a (α, β, γ, δ)-Stabilizing Data-
Link communication with β = 0, γ = 0, or δ = 0. Then, we can deduce that a (0, 1, 1, 1)-Stabilizing
Data-Link communication achieves optimal fault-resiliency. The above definitions imply that such
a communication protocol ensures that R(E) = S(E) or R(E) = m.S(E) (where m is an arbitrary
message, it may be present in S(E)) for any execution E. In other words, the sequence of received
messages by pj is identical to the sequence of emitted messages by pi excepted the first delivery in
the worst case.

3 Lower Bounds

In this section, we propose three impossibility results related to the possible values for the param-
eters β, γ, and δ. We prove that the lower bounds for β, γ, and δ parameters is 1. These results
confirm the claim that the protocol we propose is optimal since it implements a (0, 1, 1, 1)-Stabilizing
data-link.

Theorem 1 There exists no (α, β, γ, δ)-Stabilizing Data-Link communication algorithm over c-
bounded channels with γ = 0.

Proof: By contradiction, let A be any (α, β, 0, δ)-Stabilizing Data-Link communication algorithm
over c-bounded channels must have an instruction that delivers messages to the receiver processor.
As the program counter may be corrupted and channels may contain up to c ghost messages in the
initial configuration, the receiver processor may execute this instruction during the first step of an
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execution E. In consequence, the first message of R(E) may be a ghost message m. Hence, we can
assume that R(E)1 = m.

It is possible to construct the execution E such that m /∈ S(E). In conclusion, we have:
∃m ∈ R(E),m /∈ S(E) ∧ m /∈ R(E)0 = ǫ (recall that ǫ denotes the empty sequence). This
is contradictory with the 0-Creation property of A and implies that γ ≥ 1 for any (α, β, γ, δ)-
Stabilizing Data-Link communication algorithm over c-bounded channels. ✷

Theorem 2 There exists no (α, β, γ, δ)-Stabilizing Data-Link communication algorithm over c-
bounded channels with β = 0.

Proof: By contradiction, let A be any (α, 0, γ, δ)-Stabilizing Data-Link communication algorithm
over c-bounded channels. Following Theorem 1, we have γ > 0. This implies that the first message
delivered to pj in an execution E by A may be a ghost message m. Hence, we can assume that
R(E)1 = m.

It is possible to construct the execution E such that the first (real) message sent by pi to pj
and delivered to pj by A is the same message m. This message has been sent by pi only once
but has been delivered to pj at least twice. In conclusion, we have: ∃m ∈ S(E), |{m′

i = m|m′
i ∈

R(E)}| > 1∧m /∈ R(E)0 = ǫ (recall that ǫ denotes the empty sequence). This is contradictory with
the 0-Duplication property of A and implies that β ≥ 1 for any (α, β, γ, δ)-Stabilizing Data-Link
communication algorithm over c-bounded channels. ✷

Theorem 3 There exists no (α, β, γ, δ)-Stabilizing Data-Link communication algorithm over c-
bounded channels with δ = 0.

Proof: By contradiction, let A be any (α, β, γ, 0)-Stabilizing Data-Link communication algorithm
over c-bounded channels. Following Theorem 1, we have γ > 0. This implies that the first message
delivered to pj by A in an execution E may be a ghost message m. Hence, we can assume that
R(E)1 = m.

It is possible to construct the execution E such that S(E)α+2 = m0m1 . . . mα−1mαm and
∀i ∈ {0, . . . , α},mi 6= m. As A satisfies the α-Loss and the 0-Reordering properties, it follows
that ∃i ∈ {0, . . . , α}, R(E)1 = mi (otherwise, we have a contradiction since either A lost at least
α + 1 messages or reordered at least one message, that is contradictory). As mi 6= m, we obtain
a contradiction that shows that δ ≥ 1 for any (α, β, γ, δ)-Stabilizing Data-Link communication
algorithm over c-bounded channels. ✷

In the next section, we present a protocol that is optimal with respect to α, β, γ, and δ
parameters. That is, our protocol satisfies the (0, 1, 1, 1)-Stabilizing Data-Link specification.

4 A (0, 1, 1, 1)-Stabilizing Data-Link Protocol

4.1 Presentation of the Protocol

Key ideas of the protocol. The rationale of the protocol consists in adding safety extensions
to the well-known alternating bit protocol (a.k.a. ABP). The concept used in the design of the
data-link protocol is to let the sender use a mechanism based on the capacity c of communication
channels so that the sender can ensure the execution of an operation in the receiver side. More
precisely, the receiver acts only upon receiving a packet from the sender. The sender may repeatedly
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Physical Channel

Stabilizing Data-Link

Application Layer

❄

❄

✻

Send(m)

SendPacket(m,ab)

Physical Channel

Stabilizing Data-Link

Application Layer

✻

❄

DeliverMessage(m)

pi pj

✲

(Send part) (Receive part)

ReceivePacket(ack,(m,ab))

SendPacket(ack,(m,ab))

ReceivePacket(m,ab)

✛

Messages

Acknowledgements

✻

✻
DeliverAck(m)

❄

Receive()

Figure 1: General organization of our system.

send a particular packet, and each time the receiver receives a packet it acknowledges the packet
arrival.

First, the receiver can deliver a message only if c+1 copies of this message have been previously
received: this ensures that at least one of them is genuine (i.e. was actually sent by the sender).
Moreover, a message is delivered only if the expected bit alternates with the one of the previously
received message (similarly to the ABP) in order to ensure that no message is duplicated. Indeed,
the sender may still send copies of the message with the same alternating bit value until it receives
a sufficient number of acknowledgments.

Second, the sender will expect for each message sent at least 3c + 2 acknowledgments with a
matching alternating bit. As up to c acknowledgments could be ghost, this implies that 2c + 2
of these acknowledgments were actually sent by the receiver. One such acknowledgment could be
sent by the received due to bad initialization, c of them could be due to c initial ghost messages in
the reverse direction, and the remaining c + 1 can only originate from genuine messages from the
sender, that triggered a delivery at the receiver.

At this stage, the protocol does not ensure the 0-Loss property due to the use of the alternating
bit. Indeed, if the alternating bit values of the sender and of the receiver are not synchronized at the
first delivery, the receiver drops the first message. To avoid this message loss, the sender alternates
between actual messages and synchronization messages. In other words, to send a message m,
the sender first sends a synchronization message (denoted by < SY NCHRO >) until it receives
3c+2 acknowledgments of this synchronization message and then send the actual message m until
it receives 3c+ 2 acknowledgments of m. It follows that only the synchronization message may be
lost and the actual message is always delivered to the receiver.
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General organization of the system. Our system is organized as follows. The application
layer generates messages to be send from pi to pj. To perform this goal, it invokes our stabilizing
data-link protocol. Furthermore, this layer invokes procedures provided by the physical channel.

In more details, the stabilizing data-link protocol is composed of two functions: Send (which is
executed on the sender side) and Receive (which is executed on the receiver side). When the appli-
cation layer on the sender side wants to send a message m, it invokes Send(m). Send procedure is
blocking, that is if Send is already in execution, the application layer waits its termination whereas
the Receive function is always executed on the receiver side. When the Receive function has a
message to deliver at the application layer on the receiver side, it executes DeliverMessage(m)
that transmits m to the application layer. When the Receive function wants to discard a syn-
chronization message (since this kind of messages is useless to the application layer), it uses the
DropMessage function that only deletes the message. Finally, each delivered message is acknowl-
edged to the application layer on the sender side by DeliverAck(m).

Functions Send and Receive must interact with the physical channel in order to exchange
messages. For this, we assume that the channel provides two operations. First, it provides
an operation to send a message or an acknowledgment, respectively SendPacket(m,ab) and
SendPacket(ack,(m,ab)) where m is the message and ab its alternating bit value. This oper-
ation puts m (or its acknowledgment) in the channel if it is possible (if this operation leads to
more than c messages in the channel, one of them is arbitrarily deleted). Second, it provides an
operation to receive a message or an acknowledgment, respectively ReceivePacket(m,ab) and
ReceivePacket(ack,(m,ab)) where m is the message and ab its alternating bit value. On the
receiver side, ReceivePacket(m,ab) is executed when the channel has a message to deliver and
when Receive is not in execution. It sets then m and ab to actual values of the delivered message.
In other words, the reception (for the data-link protocol) on the receiver side is message-driven.
On the sender side, ReceivePacket(ack,(m,ab)) is executed by the data-link protocol and does
polling. That is it checks whether the first waiting message in the channel (if any) matches with
an acknowledgment of the parameter (m,ab). It returns true if this is the case, false otherwise.
In any case, the first waiting message (if any) is deleted from the channel. The architecture of our
system is summarized in Figure 1.

Detailed presentation of the protocol. Our (0, 1, 1, 1)-stabilizing data-link protocol SDL is
presented as Figure 2. In the following, we provide details about the two functions Send and
Receive.

The function Send takes a message m as parameter and stores the current alternating bit value
in the variable ab. First, it alternates the value of ab (line 01) before sending a synchronization
message (line 02) using an auxiliary function SendMessage. Then, lines 03 and 04 repeat these
instructions with the message m. Once the last invocation of SendMessage returns, it delivers to
the application layer the acknowledgment of m using DeliverAck. Now, let us describe the auxil-
iary function SendMessage. This function repeatedly (while loop of line 02) sends its parameter
message m (line 03) until receiving 3c+ 2 acknowledgment for this message (line 04-05).

The functionReceive takes no parameter and uses two variables. The first one is the alternating
bit value of the last delivered or dropped message stored in last delivered and the second one is a
queue Q that stores the number of receptions of at most c+ 1 different messages. Each element of
this queue is a 3-tuple (m,ab, count), wherem is a message, ab is an alternating bit value, and count
is an integer denoting the number of packets (m,ab) received for the corresponding m and ab since
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the last DeliverMessage or DropMessage occurred. The queue [] operator takes a message m
and a boolean b as operands, and either enqueues (m,ab, 0) (if (m,ab, ∗) is not present in Q, then if
the queue contained c+1 elements, the last element of the queue is dequeued) or returns a pointer
to the count value associated to m and ab in Q. Any time a tuple value is changed in the queue,
this tuple is promoted at the top of the queue (in order to keep in memory the c+1 latest received
messages), and the size of the queue does not change. The ⊥ assignment to a queue Q denotes the
fact that Q is emptied. At each reception of a message (m,ab) (line 01), the corresponding entry in
the queue is updated (or created if needed) by line 02. If pj already received c+1 copies of m since
the last DeliverMessage or DropMessage occurred (test on line 03) then the queue is emptied
(line 10). Moreover, if the alternating bit value of the message is different from last delivered (test
on line 04), then the message is either delivered with DeliverMessage (line 06) or dropped with
DropMessage (line 08) depending if it is a synchronization message or not (test on line 05). Then,
the last delivered value is updated by line 09. Finally, in any case, the message is acknowledged
to the sender with line 11.

4.2 Correctness Proof

In this section, let pi and pj be two neighboring nodes that execute SDL, pi being the sender and
pj the receiver. Let E = (C1, C2, . . .) be an execution starting from an arbitrary configuration.

We say that a message m′ is processed by pj when pj executes DeliverMessage (m′) (line 06
of Receive function) if m′ is a normal message or when pj executes DropMessage (m′) (line 08
of Receive function) if m′ is a < SY NCHRO > message.

First, we need two preliminaries results related to the result of the execution of the procedure
SendMessage by pi depending on the configuration in which pi starts to execute this procedure.

Lemma 1 When pi starts to execute SendMessage (m′, ab) in a configuration where ab 6= last
delivered, the message m′ (either a < SY NCHRO > message or a normal message) and every
message parameter to a subsequent invocation of SendMessage is processed by pj in a finite time.

Proof: Consider a configuration Ck where ab 6= last delivered. Assume that pi starts to execute
SendMessage (m′, ab) in Ck. By contradiction, assume m′ is never processed by pj in the remain-
der of E. That is, pj never executes lines 06 or 08 in the Receive procedure. In turn, tests on
lines 03 or 04 never evaluate to true simultaneously.

As last delivered 6= ab in Ck and last delivered may change only when m′ is processed (line
09), we know that the test on line 04 is always true (since m is never processed by assumption).

This implies that Q[m′, ab] ≥ c+ 1 never evaluates to true (test on line 03). This implies that
the sender stops sending (m′, ab) before the (m′, ab) counter reached c+1, which is impossible. The
reason is as follows. In order to stop sending the same message, pi must get 3c+2 acknowledgments
with the expected content (ack, (m′, ab)). If such 3c+2 acknowledgments are indeed received, this
implies that the receiver issued at least 2c+ 2 of those acknowledgments, and thus received 2c+ 2
packets (m′, ab). Consider the first such packet (m′, ab) received by pj. If there is no reset of pj’s
queue following this packet, the head of the queue now contains an entry (m′, ab, ∗) that can not
be deleted until the receiver resets the entire queue. Indeed, at most c packets are initially present
in the receiver’s input channel, that can create at most c entries in the queue. Since the queue is of
size c + 1, the (m′, ab, ∗) tuple remains. Now, if the receiver sends c+ 1 packets (ack, (m′, ab)), it
implies that the receiver’s queue for entry (m′, ab, ∗) was incremented c+1 times, which invalidates
the assumption. It follows that m′ is processed in a finite time.
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Send

input:

m: message to be sent
persistent variable:

ab: boolean that states the current alternating bit value

01: ab := ¬ab

02: SendMessage (< SY NCHRO >, ab)
03: ab := ¬ab

04: SendMessage (m, ab)
05: DeliverAck (m)

SendMessage

input:

m′: message to be sent
ab: boolean that states the alternating bit value associated to m

variable:

ack: integer denoting the number of acknowledgments received for the current ab value

01: ack := 0
02: while ack < 3c+ 2
03: SendPacket (m′, ab)
04: if ReceivePacket (ack, (m′, ab))
05: ack := ack + 1;

Receive

persistent variables:
last delivered: boolean that states the alternating bit value of the last delivered message
Q: queue of size c+ 1 of 3-tuples (m, ab, count), where m is a message, ab is an alternating
bit value, and count is an integer denoting the number of packets (m, ab) received for the
corresponding m and ab since the last DeliverMessage or DropMessage occurred.

01: upon ReceivePacket (m, ab)
02: Q[m,ab] := min(Q[m, ab] + 1, c+ 1)
03: if Q[m,ab] ≥ c+ 1 then

04: if last delivered 6= ab then

05: if m 6=< SY NCHRO > then

06: DeliverMessage (m)
07: else

08: DropMessage (m)
09: last delivered := ab

10: Q := ⊥

11: SendPacket (ack, (m, ab))

Figure 2: SDL, a (0, 1, 1, 1)-Stabilizing Data-Link protocol

Note that after the processing of m′, ab and last delivered have the same value with the
execution of the line 09 of Receive procedure. Hence the next invocation of the SendMessage
primitive by pi will make the values ab and last delivered different. Applying the above reasoning,
the lemma follows. ✷

Lemma 2 When pi starts to execute SendMessage (m′, ab) in a configuration where ab = last
delivered, only m′ (either a < SY NCHRO > message or a normal message) is not processed by
pj.
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Proof: Consider a configuration Ck where ab = last delivered. Assume that pi starts to execute
SendMessage (m′, ab) in Ck.

Since the test in the line 04 of the Receive procedure evaluates to false, the processing of
m′ is not executed. However, since pi keeps sending m′ and pj acknowledges these packets the
SendMessage procedure returns. Note that pi executes line 01 or 03 of the Send procedure
before the next invocation of SendMessage procedure.

It follows that the system reaches in a finite time a configuration where ab 6= last delivered.
Then, Lemma 1 implies that every message that is parameter of subsequent invocations of SendMes-
sage is eventually processed by pj . ✷

Now, we can prove that SDL satisfies the four properties of the specification (see Section 2.2)
starting from any configuration.

Lemma 3 SDL satisfies the 0-Loss property.

Proof: Assume that pi has to send a message m to pj starting from an arbitrary configuration.
Note that proofs of Lemmas 1 and 2 imply that any invocation of the Send procedure eventually
ends. This implies in turn that pi starts to execute Send(m) in a finite time.

Then, pi invokes first SendMessage with a < SY NCHRO > message as parameter (see
line 02 of the Send procedure). Note that this < SY NCHRO > message may be lost if ab =
last delivered when pi starts to execute SendMessage by Lemma 2.

Then, following Lemma 2 that we have ab 6= last delivered when pi starts to execute SendMes-
sage with m as parameter (see line 04 of the Send procedure) since it has executed line 03 of the
Send procedure. By Lemma 1, it follows that m is eventually processed by pj. As m is a normal
message, this implies by definition that m is delivered to pj in a finite time.

As this result holds whatever the state of the system when pi requests to send m, we obtain
that ∀m ∈ S(E),m ∈ R(E). It is sufficient to observe that S(E) = S(E)0 to obtain the result. ✷

Lemma 4 SDL satisfies the 1-Duplication property.

Proof: By contradiction, assume that there exists an execution E of SDL such that ∀b ≤ 1,∃m ∈
S(E), |{m′

i = m|m′
i ∈ R(E)}| > 1 ∧ m /∈ R(E)b. In particular, this property is true for b = 1.

Hence, ∃m ∈ S(E), |{m′
i = m|m′

i ∈ R(E)}| > 1 ∧m /∈ R(E)1. In other words, there exists in E a
message m sent by pi delivered several times to pj. Moreover m is not the first message received
by pj .

This implies that the line 06 in the Receive procedure is executed several times for the message
m. It is impossible and the reason is the following. After the first delivery of m the receiver empties
the queue and makes last delivered = ab (see proof of Lemma 2). Note that pi modifies ab only
when it stops to send m. Even if pi keeps invoking SendPacket (m,ab) until it receives the 3c+2
acknowledgments, none of these messages will be delivered since for each of them the test in line
04 in the Receive procedure returns false.

This contradiction implies that only the first message received by pj may be duplicate. The
lemma follows. ✷

Lemma 5 SDL satisfies the 1-Creation property.

Proof: By contradiction, assume that there exists an execution E of SDL such that ∀c ≤ 1,∃m ∈
R(E),m /∈ S(E) ∧ m /∈ R(E)c. In particular, this property is true for c = 1. Hence, ∃m ∈
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S(E),m /∈ S(E) ∧m /∈ R(E)1. In other words, there exists in E a message m not sent by pi but
delivered to pj. Moreover m is not the first message received by pj .

Initially the channel (i, j) may contain at most c ghosts messages. In the worst case, the
receiver’s queue also contains an entry for each of the ghost with the counters initialized to c or
c+ 1.

Let (g, ab) be the first ghost message received by pj with alternated bit set to ab. Let us study
the two possible cases. First, assume that ab 6= last delivered. Then pj delivers g (line 06 of
Receive procedure) and empties the queue (line 10 of Receive procedure). Second, assume that
ab = last delivered. Then pj does not deliver g (due to the test of line 04 of Receive procedure)
but it empties the queue (line 10 of Receive procedure).

In both cases, there is at most one ghost message delivered to pj and the queue has been
emptied. In turn, it remains now at most c − 1 ghosts messages in the channel (i, j). If one of
them is received by pj (after an invocation of ReceivePacket), its associated counter cannot reach
the value c + 1 (unless pi starts to send the same message but in this case, it is no longer a ghost
message) since there are at most c− 1 copies of the same message. Consequently, none of the c− 1
remaining ghost messages can be delivered, that contradicts the construction of m and proves the
result. ✷

Lemma 6 SDL satisfies the 1-Reordering property.

Proof: Following Lemma 5, SDL delivers at most one ghost message to pj in E. Let us consider
the two following possible cases.

Case 1: SDL delivers no ghost message to pj in E.
According to Lemmas 3 and 4, any message sent from pi is delivered to pj exactly once in
this case. Now, observe that any message is delivered to pj between the beginning and the
end of the corresponding execution of the procedure Send by pi. Indeed, the message is
delivered to pj when it receives the (c+1)-th copy of the message whereas pi waits to receive
the (3c + 2)-th acknowledgment of the message to stop sending it (see proof of Lemmas 1
and 2). Since the Send procedure is blocking for pi, R(E)0 = RE = SE for any execution E
where SDL delivers no ghost message to pj. Hence, ∃d = 0 ≤ 1, R(E)d = SE.

Case 2: SDL delivers one ghost message to pj in E.
Assume that the ghost message delivered by SDL is m. Lemma 5 allows us to state that m
is the first message delivered to pj . Then, a similar reasoning to the one of case 1 allows us
to conclude that R(E) = m.S(E) for any execution E where SDL delivers one ghost message
m to pj and then, R(E)1 = SE. Hence, ∃d = 1 ≤ 1, R(E)d = SE.

In both cases, we show that SDL satisfies the 1-Reordering property. ✷

Now, we can conclude on the following corollary of Lemmas 3, 4, 5 and 6.

Theorem 4 SDL satisfies the (0, 1, 1, 1)-Stabilizing Data-Link Communication specification.

5 Conclusion

In this paper, we focused on stabilizing data-link protocols over channels of bounded capacity
c. First, we introduced some measures for fault-resilience following the specification presented
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in [16] that is suitable to the self-stabilizing setting. Then, we proved lowers bounds on these
parameters. Finally, we proposed a stabilizing data-link protocol that emulates FIFO reliable links
over unreliable bounded non-FIFO communication environment with an optimal fault-resilience.
To achieve this optimal fault-resilience, our protocol sends 6c+4 packets (and their corresponding
acknowledgements) to deliver one message to the application layer.

Some interesting open questions follow. Is it possible to achieve optimal fault-resilience with a
(significantly) lower message complexity for a given channel capacity c? Recently, some works on
snap-stabilizing point-to-point communication [7, 6, 5] across multiples hops have been presented
in a coarse grained communication model. Is it possible to extend these results to the more realistic
message passing model using our Stabilizing Data-link as a communication black box? If so, is it
possible to provide optimal fault resilience as in the one hop case?
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[17] Sébastien Tixeuil. Algorithms and Theory of Computation Handbook, Second Edition, chapter
Self-stabilizing Algorithms, pages 26.1–26.45. Chapman & Hall/CRC Applied Algorithms and
Data Structures. CRC Press, Taylor & Francis Group, November 2009.

[18] George Varghese. Self-stabilization by counter flushing. SIAM J. Comput., 30(2):486–510,
2000.

14


	1 Introduction
	2 Model
	2.1 System Model
	2.2 Problem Specification

	3 Lower Bounds
	4 A (0,1,1,1)-Stabilizing Data-Link Protocol
	4.1 Presentation of the Protocol
	4.2 Correctness Proof

	5 Conclusion

