
ar
X

iv
:1

10
9.

36
39

v2
 [

cs
.C

C
]

 2
4

D
ec

 2
01

1

Local Correction of Juntas

Noga Alon ∗ Amit Weinstein †

August 20, 2018

Abstract

A Boolean function f over n variables is said to be q-locally correctable if, given a black-box
access to a function g which is ”close” to an isomorphism fσ of f , we can compute fσ(x) for
any x ∈ Z

n
2
with good probability using q queries to g.

We observe that any k-junta, that is, any function which depends only on k of its input
variables, is O(2k)-locally correctable. Moreover, we show that there are examples where this
is essentially best possible, and locally correcting some k-juntas requires a number of queries
which is exponential in k. These examples, however, are far from being typical, and indeed we
prove that for almost every k-junta, O(k log k) queries suffice.

1 Introduction

The field of property testing of Boolean functions received a considerable amount of attention in
the last two decades. Many properties of functions have been examined in order to estimate what is
the needed query complexity for testing them, that is, the number of inputs of the function one has
to read in order to distinguish between a function that satisfies the property and one that is ”far”
from satisfying it. In particular, one is usually interested in properties for which the number of
queries is independent of the input size. Some of these properties are linearity [7], being a dictator
function [4, 11], a junta [9, 10], or a low-degree polynomial [2].

Another property that one might consider testing is functions isomorphism, i.e. testing if two
functions are identical up to relabeling of the input variables. A common scenario is where one
function is given in advance and the goal of the tester is to determine if the second input function
is isomorphic to it or far from any isomorphism of it. Several recent results indicate that testing
this property is hard for most functions (requires Ω(n) queries), and specifically for k-juntas there
are lower bounds which depend on k (see e.g. [6, 1, 8]).

The focus of our work is not testing such properties, but rather locally correcting functions, that
is, determining the value of a function in a given point by reading its values in several other points.
This is closely related to random self-reducibility, as pointed out already in [7]. More precisely, we
care about locally correcting specific functions which are known up to isomorphism.

∗Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978,
Israel and Institute for Advanced Study, Princeton, New Jersey 08540, USA. Email: nogaa@tau.ac.il. Research
supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant and by NSF grant No. DMS-0835373.

†Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email: amitw@tau.ac.il.
Research supported in part by an ERC advanced grant.

1

http://arxiv.org/abs/1109.3639v2

Question. Given a specific Boolean function f , what is the needed query complexity in order to
correct an input function which is close to some isomorphism fσ of f?

This question can be seen as a special case of locally correctable codes (see, e.g., [12]). Namely,
each codeword would be the 2n evaluations of an isomorphism of the input function (at most n!
distinct codewords) and we would like to correct any specific value of the given noisy codeword
using as few queries as possible.

Here we study the above question mostly for juntas. We provide both lower and upper ex-
ponential bounds for the query complexity of locally correcting juntas with respect to their size.
However, the given lower bound is applicable only to a small portion of the juntas and in fact we
show that most k-juntas are locally correctable using a nearly linear (in k) number of queries.

1.1 Preliminaries

In order to correct functions, we need to first define when two functions are ”close”, as otherwise
correction is hopeless. We use the common definition, saying two Boolean functions are ε-close if
they agree on all but at most an ε fraction of the inputs. The following definition best describes
the focus of our work, indicating when a function is locally correctable.

Definition. A Boolean function f : Zn
2 7→ Z2 is said to be q-locally correctable for ε > 0 if the

following holds. There exists an algorithm that given an input function g which is ε-close to an
isomorphism fσ of f , can determine the value fσ(x) for any specific x ∈ Z

n
2 with probability at least

2/3, using q queries to g.

More generally, we also define a family of functions to be locally correctable when we do not
require to know which specific function from the family we are trying to correct.

Definition. A family F of Boolean functions is said to be q-locally correctable for ε > 0 if the
following holds. There exists an algorithm that given an input function g which is ε-close to an
isomorphism fσ of f , for some f ∈ F from the family, can determine the value fσ(x) for any
specific x ∈ Z

n
2 with probability at least 2/3, using q queries to g.

A crucial observation when looking at the above definitions is the fact that the mentioned
algorithm must hold for every input x ∈ Z

n
2 . Replacing this requirement by the ability to determine

the value at a uniform random x, any function would be trivially 1-locally correctable for ε ≤
1/3 as at least 2/3 of the inputs remain unmodified. In addition, it is useful to think of ε as a
constant independent of n, which however can depend on some property of the function f . This
dependence is often required to ensure that g is close to a unique isomorphism of f (up to equivalent
isomorphisms).

A simple result regarding juntas is an exponential upper bound for the number of queries, in
terms of the junta’s size. For this upper bound, we use the analysis of testing low-degree polynomials
and therefore get the following more general bound.

Proposition 1. Every polynomial of degree k is O(2k)-locally correctable for ε < 2−k−3.

Proof sketch. The techniques used in testing low-degree polynomials rely on their values on the
points of random affine subcubes inside Zn

2 which are defined by random bases of k+1 vectors and

2

an offset in Z
n
2 (see [2]). Taking such a subcube and evaluating the sum of a degree k polynomial on

all 2k+1 elements of it, always results in zero. The test itself selects several such random subcubes
and verifies that this is indeed the case. Since in our case, we are given some specific input x ∈ Z

n
2

for which we want to correct the function, we can use a similar argument.

Given the input x, we randomly select k + 1 vectors x1, x2, . . . , xk+1 and consider the affine
subcube whose basis is the set of these k + 1 vectors and whose offset is x. Since the sum of
evaluations inside this affine subcube (which includes x) is zero, we can deduce the value at x by
querying the other 2k+1 − 1 locations of the cube, assuming none of them was modified. Since we
select the k+1 vectors in the basis randomly, relying on the (easy case in the) analysis of [2] which
is based on the fact that each input queried is uniformly random, we can bound this probability by
(2k+1 − 1)ε < 1/4 and therefore this algorithm indicates that f is indeed O(2k)-locally correctable
for ε < 2−k−3.

Corollary 2. The family of k-juntas is O(2k)-locally correctable for ε < 2−k−3.

Proof. A k-junta is in particular a polynomial of degree k and therefore is also O(2k)-locally cor-
rectable using the above proposition. In addition, the algorithm suggested by the proposition does
not require any knowledge about the input function except for it being a polynomial of degree k,
thus the family of k-juntas is O(2k)-locally correctable.

1.2 Our results

A natural question is whether the exponential upper bound for low-degree polynomials, which is
applicable also for juntas, is indeed tight in the case of juntas. We show that the answer is indeed
positive, but only for a small fraction of the juntas. In other words, for some juntas the exponential
upper bound is also best possible but this is far from being the typical case.

Theorem 3. There exist some k-juntas which require 2Ω(k) (adaptive or non-adaptive) queries in
order to be locally corrected, even for ε which is exponentially small in n.

In the typical case, however, i.e., for almost every junta, the lower bound above is far from
being tight and in fact one can correct a typical k-junta using a nearly linear number of queries (in
k). Formally, we prove the following.

Theorem 4. A k-junta in which every influencing variable has influence of at least 1/50 is
O(k log k)-locally correctable for ε < 2−k−3. Therefore this is the case for almost every k-junta.

Corollary 5. The family of k-juntas in which every influencing variable has influence of at least
1/50 is O(k log k)-locally correctable for ε < 2−k−3.

2 Local correction of k-juntas

We start this section with the proof of the lower bound for some juntas. The juntas used in the
proof are very sparse, having an exponentially small fraction of inputs for which the value of the
function is 1.

3

Proof of Theorem 3. Given k < n ∈ N where n is even, define f to be the AND function of the
first k literals x1, . . . , xk. In order to prove a lower bound for the number of queries, we use Yao’s
principle. To this end, we define two distributions on functions which are all o(1)-close to being
isomorphic to f , one for which the algorithm should return zero and another for which the algorithm
should return one (denoted by D0 and D1 respectively). We further show that any algorithm that
performs only 2o(k) queries would not be able to distinguish between the two distributions with
non-negligible probability.

We first describe the distribution D0 as follows. We randomly choose a permutation σ ∈ Sn so
that σ(i) ∈ [n/2] for every i ∈ [k], meaning the k relevant variables are all in the first half.1 The
function g given to the algorithm is defined by g(y) = fσ(y) whenever the Hamming weight of y

is at most 0.3n in each half (i.e.
∑n/2

i=1 yi ≤ 0.3n and
∑n

i=n/2+1 yi ≤ 0.3n) and otherwise g(y) = 0.
Notice that indeed g is o(1)-close to being isomorphic to f as we modified only an o(1)-fraction of
the inputs. The input x is set to be the balanced input of n/2 zeros followed by n/2 ones. Clearly
fσ(x) = 0 for every instance in D0 as required.

The distribution D1 is similar to D0 with one modification. The permutation σ is chosen so
that σ(i) 6∈ [n/2] for every i ∈ [k]. The choice of x and the locations where we fix g(y) = 0 are
defined as before and indeed fσ(x) = 1 for every instance in D1.

We first show that an arbitrary query to g in either distribution would output one with proba-
bility at most 2−Ω(k). Let y be some query the algorithm performs. Clearly, if the Hamming weight
of y in either half is more than 0.3n, the result would be zero according to the definition of g in
both distributions. Otherwise, the probability that g(y) = 1 is given by

(

m

k

)

/

(

n/2

k

)

=
(m− k + 1)(m− k + 2) · · ·m

(n/2− k + 1)(n/2 − k + 2) · · · (n/2)
≤

(

3n/10

n/2

)k

= 0.6k

where m is the Hamming weight of y in the relevant half (either the first half for D0 or the second
half for D1), which is known to be at most 0.3n. Therefore, any algorithm that performs at most
2o(k) queries would find a y for which g(y) = 1 only with negligible probability, and it would not be
able to distinguish between D0 and D1 with noticeable probability. Notice that the proof implies
that using an adaptive algorithm would not yield any improvement as we can predict all results to
be zero in advance (and therefore this is equivalent to a non-adaptive algorithm).

The fact that the AND junta is very sparse was crucial for the above proof. In order to prove a
better upper bound for most juntas, we need some restriction that would ensure the function is far
from being sparse. In Theorem 4 we required something even stronger, that the influence of every
influencing variable, that is, any of the k special variables of the junta, is at least 1/50.

Definition 1 (Influence). Given a Boolean function f : Zn
2 7→ Z2, the influence of i with respect to

f is defined by
Infi(f) = Pr

x
[f(x) 6= f(x+ ei)]

where ei is the vector having 1 only at location i.

Thus, the influence is the probability that changing the value of the ith variable will also
change the value of the function. This probability is taken over all values of x, and is therefore
the expected influence of i in a restricted function (when the variable i itself is not restricted).

1 Throughout this work we use the notation [ℓ] := {1, 2, . . . , ℓ}.

4

Moreover, if the influence of some variable i is greater than 1/50, then the function is 1/100-far
from being a constant.

Given a random k-junta for which the influencing variables are the first k variables, the influence
of some variable 1 ≤ i ≤ k is determined by the bias of the 2k−1 pairs of inputs of length k which
differ only in the ith variable, where the values of all other variables in [k] range over all possibilities.
The expected bias is hence 1/2, and moreover

Pr[Inf i(f) < 1/50] = Pr[B(2k−1, 1/2) < 2k−1/50] < 2−c2k

for some absolute constant c > 0, where here B is the binomial distribution and we applied one
of the standard estimates for binomial distributions (cf., e.g. [3], Appendix A). Therefore, by the
union bound, the k influencing variables would all have influence greater than 1/50 with probability

1− 2−Ω(2k).

Now that we defined the influence of a variable and verified that indeed almost every junta
satisfies the condition in the theorem, we describe the proof of Theorem 4.

Proof of Theorem 4. Let f be a k-junta as in Theorem 4, and let g be the given input function which
is ε-close to fσ (we assume ε < 2−k−3 in order to guarantee that g is close to a unique isomorphism
fσ). Following the basic approach in the known junta testing algorithms (see e.g. [10, 5]), we intend
to randomly divide the variables into parts and identify which sets have influencing variables. Here
however, mistakenly identifying a set to have influencing variables (due to fault evaluations of
the input function) or having more than one such variable in a part is not an essential issue (as
estimating the number of influencing variables is not our goal).

Fix s = 3k and partition the set [n] into s parts uniformly at random, by assigning to each
variable one of the s sets independently. For each set we perform r = 100 log k+500 pairs of queries,
where each pair (x, x′) is chosen independently and uniformly at random such that x and x′ agree
on all elements outside of the current set. When a set has at least one influencing variable (with
influence at least 1/50), each such pair would yield different outcomes with probability at least
1/100 (as the randomly restricted function over the variables outside of the current set is expected
to be at least 1/100-far from being a constant). Therefore, the probability we would dismiss such
a set is at most 0.99r < 0.5log k · 0.99500 < 1/100k (assuming we did not hit a faulty evaluation -
a probability that we later consider). Since there are at most k sets with influencing variables, by
the union bound we would identify them all with probability at least 99/100.

In order to estimate how many sets we would consider as influencing, we compute the probability
that a non-influencing set would mistakenly be considered otherwise. This can only occur if we
query the function at a faulty input, which happens with probability ε. During this process, we
perform only sr = O(k log k) pairs of independent non-adaptive queries and therefore we would hit
a faulty evaluation only with probability O(k log k/2k) = 2−Ω(k).

So far with good probability we have identified at most k sets which are influencing. Let
S1, . . . , Sk denote these k sets (where we add some arbitrary randomly chosen sets if less than k
were found) and define S = ∪k

i=1Si to be their union (notice that the size of S is expected to be
E [|S|] = n/3). Given the input x for which we were asked to determine fσ(x), we would like to
choose an input y which agrees with x on all indices from S, and yet is uniformly distributed (except
for the restriction to match x on the k influencing variables). Achieving this would guarantee that
the probability of y hitting a faulty evaluation is at most 2k+1/2k+3 = 1/4 (even if all faulty
evaluations fall into inputs which agree with x on these k variables).

5

Let p = 3/4 and define y so that yi = xi for every i ∈ S, and otherwise Pr[yi 6= xi] = p.
Whenever i is not one of the special k variables, Pr[yi 6= xi] = Pr[i 6∈ S] · p = 2

3 · 3
4 = 1

2 and these
probabilities are all independent. The independence between the different variables and the fact
that Pr[i 6∈ S] is exactly 2/3 are crucial points which require a moment of reflection to verify. This
implies that indeed y is uniformly distributed over all inputs which agree with x on the special k
variables, as required.

Combining the two parts together, the algorithm would return the correct answer g(y) = fσ(x)
with probability at least 3/4− 1/100 − 2−Ω(k) > 2/3 (for large enough k).

Proof of Corollary 5. The algorithm provided here did not use any specific knowledge of the func-
tion f except for the guarantee of its structure, being a k-junta in which each influencing variable
has influence at least 1/50. Therefore, this family is O(k log k)-locally correctable for ε < 2−k−3.
Hence, for every fixed k this family forms a locally correctable code which has polynomial size in
n and constant number of queries O(k log k).

3 Conclusions and open problems

In this work we have shown that k-juntas and degree k polynomials are q-locally correctable, where
q depends on the structure parameter k of the function, and not on the number of variables n.
We have also seen that q is always at most O(2k) and that sometimes an exponential behavior is
tight. The main general open question in this subject is that of computing the query complexity
of local correction for any given function. In particular, it would be very interesting to find a char-
acterization of all functions that are ”easily” correctable, that is, have constant query complexity
(independent of n).

Although we have seen both upper and lower bounds for juntas and polynomials, the lower
bound is only applicable for specific functions. Symmetric functions, for example, are always 0-
locally correctable as one does not need to query the function at all in order to correct an input.
However, such functions can have arbitrary large degree as polynomials. Taking the majority func-
tion as an example, it is trivial to correct and yet it has high degree, but even a slight modification
of it, Majn−1 - the majority of n− 1 of the variables, makes it hard for correcting. Given Majn−1,
one can modify o(1) fraction of the inputs, namely the balanced layer, and make this function
impossible for correcting in any number of queries.

References

[1] N. Alon and E. Blais, Testing boolean function isomorphism. In Proc. RANDOM-APPROX,
pages 394-405, 2010.

[2] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-degree polynomials
over GF(2). Proceedings of RANDOM-APPROX 2003, 188-199. Also: Testing Reed-Muller
codes, IEEE Transactions on Information Theory 51 (2005), 4032-4039.

[3] N. Alon and J. Spencer, The Probabilistic Method, Third Edition, Wiley 2008.

[4] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-approximability - towards
tight results. SIAM J. Comput., 27(3):804-915, 1998.

6

[5] E. Blais, Testing juntas nearly optimally. Proceedings of the 41st annual ACM STOC, 2009,
pp. 151-158.

[6] E. Blais and R. O’Donnell, Lower bounds for testing function isomorphism. In IEEE Conference
on Computational Complexity, pages 235-246, 2010.

[7] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47(3):549-595, 1993.

[8] S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Nearly tight bounds for testing function
isomorphism. In Proc. SODA, pages 1683-1702, 2011.

[9] H. Chockler and D. Gutfreund, A lower bound for testing juntas. Information Processing
Letters, 90(6):301-305, 2004.

[10] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, Testing juntas. J. Comput.
Syst. Sci., 68(4):753-787, 2004.

[11] M. Parnas, D. Ron, and A. Samorodnitsky, Testing basic boolean formulae. SIAM J. Discrete
Math., 16(1):20-46, 2002.

[12] S. Yekhanin, Locally decodable codes, NOW Publishers, 2010.

7

	1 Introduction
	1.1 Preliminaries
	1.2 Our results

	2 Local correction of k-juntas
	3 Conclusions and open problems

