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On the super connectivity of Kronecker products of graphs∗
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Abstract

Let G1 and G2 be two graphs. The Kronecker product G1 ×G2 has vertex set V (G1 ×

G2) = V (G1) × V (G2) and edge set E(G1 × G2) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and

v1v2 ∈ E(G2)}. A graph G is super connected, or simply super-κ, if every minimum sepa-

rating set is the neighbors of a vertex of G, that is, every separating set isolates a vertex.

In this paper we show that for an arbitrary graph G with κ(G) = δ(G) and Kn (n ≥ 3) a

complete graph on n vertices, G×Kn is super-κ, where κ(G) and δ(G) are the connectivity

and the minimum degree of G, respectively.
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1 Introduction and terminology

Throughout this paper, only undirected simple graphs without loops or multiple edges are

considered. Unless otherwise stated, we follow Bondy [5] for terminology and definitions.

Let G = (V (G), E(G)) be a graph. For two vertices u, v ∈ V (G), u and v are neighbors if u

and v is adjacent. The set of vertices adjacent to the vertex v is called the neighborhood of v

and denoted by N(v), i.e., N(v) = {u | uv ∈ E(G)}. The degree of v is equal to |N(v)|, denoted

by dG(v) or simply d(v). The number δ(G) = min{dG(v) | v ∈ V (G)} is the minimum degree

of G. For a subset S ⊆ V (G), the neighborhood of S is N(S) =
⋃

v∈S N(v). The subgraph

induced by S is denoted by G[S], and let dS(v) denote the number of vertices in S that are

adjacent to the vertex v. As usual, Kn denotes the complete graph on n vertices and Cn is the

cycle on n vertices.

∗Research was partially supported by PuJiang Project of Shanghai (No. 09PJ1405000) and Shanghai Leading

Academic Discipline Project (No. S30104).
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A set S ⊂ V is a separating set of a connected graph G, if either G − S disconnected or

reduces to the trivial graph K1. The connectivity of G, denoted by κ(G), is the minimum

cardinality of a separating set of G. In particular, κ(Kn) = n − 1 and κ(G) = 0 if and only if

G is disconnected or a K1. Clearly, κ(G) ≤ δ(G). A graph G with minimum degree δ(G) is

maximally connected if κ(G) = δ(G).

The notion of super–connectedness proposed in [2, 3, 4] aims at pushing the analysis of

the connectivity properties of graphs beyond the standard connectivity. A graph G is super

connected, or simply super-κ, if every minimum separating set is the neighbors of a vertex of

G, that is, every separating set isolates a vertex. Observe that a super-connected graph G is

necessarily maximally connected, i.e., κ(G) = δ(G), but the converse is not true. It is easily to

see from the cycle graph Cn (n ≥ 6).

The Kronecker product, together with the Cartesian, the strong, and the lexicographic prod-

uct, is one of the four standard graph products [12]. The Kronecker product of two graphs

G1 and G2 is defined as V (G1 × G2) = V (G1) × V (G2) and E(G1 × G2) = {(u1, v1)(u2, v2) :

u1u2 ∈ E(G1) and v1v2 ∈ E(G2)} (see, [6, 21]). The Kronecker product has been introduced

and studied from several points of view and is known under many different names, for instance

as the direct product, cardinal product, categorical product, tensor product and cross product.

Moreover, it is universal in the sense that every graph is an induced subgraph of a suitable

direct product of complete graphs [18]. The Kronecker product of graphs has been extensively

investigated concerning graph colorings, graph recognition and decomposition, graph embed-

ding, matching theory, stability and domination theory in graphs (see, for example, [1, 7, 16]).

The properties on the structure of Kronecker product of graphs can be found in [10, 11, 15, 19].

One has known that it has many interesting applications, for instance it can be used in au-

tomata theory [9], complex networks [14] and modeling concurrency in multiprocessor systems

[13].

Miller [17] and Weichsel [21] investigated the connectedness of Kronecker product of two

connected graphs. Recently, the connectivity of Cartesian products and strong products of two

connected graphs have been studied, and in all cases the explicit formulae have been obtained

in terms of the graph invariants of the factor graphs (see, [8, 19, 22] for more details). The

connectivity of Kronecker products of graphs seems to be more complex than that with the

Cartesian or strong products. Guji and Vumar [10] presented the connectivity of Kronecker

product of a bipartite graph and a complete graph and they proposed to investigate the con-

nectivity of Kronecker product of a nontrivial graph and a complete graph. Recently, Wang

and Xue [20] settled the problem and they obtained the following result.

Theorem 1 ([20]). For any graph G, κ(G×Kn) = min{nκ(G), (n − 1)δ(G)} for n ≥ 3.
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Recently, Guo et al. [11] studied the super connectivity of Kronecker product of a bipartite

graph and a complete graph and they proved the following result.

Theorem 2 ([11]). If G is a bipartite graph with κ(G) = δ(G), then G×Kn (n ≥ 3) is super-κ.

In this paper, motivated by the above results, we further investigate the super connectivity

of Kronecker product of an arbitrary graph and a complete graph Kn (n ≥ 3). Our main result

is as follows.

Theorem 3. For an arbitrary graph G with κ(G) = δ(G), G×Kn (n ≥ 3) is super-κ.

2 Preliminaries

In this section we give some properties on Kronecker product of graphs, and we will use them

in the proof of our main result. We first give two known results.

Observation 1 ([6]). Let H = G1 ×G2 = (V (H), E(H)). Then

(1) |V (H)| = |V (G1)| · |V (G2)|,

(2) |E(H)| = 2|E(G1)| · |E(G2)|,

(3) for every (u, v) ∈ V (H), dH((u, v)) = dG1
(u) · dG2

(v).

By Observation 1, we have δ(G ×Kn) = (n− 1)δ(G) for any graph G.

Lemma 1 ([21]). Let G1 and G2 be connected graph. The graph H = G1 ×G2 is connected if

and only if G1 or G2 contains an odd cycle.

When considering the Kronecker product of a graph G and Kn (n ≥ 3), we shall always

let V (G) = {u1, u2, . . . , um}, V (Kn) = {v1, v2, . . . , vn} and set Si = {ui} × V (Kn), for i =

1, 2, . . . ,m. Then Si is an independent set in G×Kn, and V (G×Kn) has a partition V (G×Kn) =

S1 ∪ S2 ∪ . . . ∪ Sm.

Let S ⊆ V (G×Kn) satisfy the following three conditions:

(1). |S| = (n− 1)δ(G), and

(2). S′

i := Si − S 6= ∅, for i = 1, 2, . . . ,m, and

(3). G×Kn − S has no isolated vertex.

Associated with G, S and S′

i, we define the following new graph G∗ as described in [20].
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(i). V (G∗) = {S′

1, S
′

2, . . . , S
′

m}, and

(ii). E(G∗) = {S′

iS
′

j : E(S′

i, S
′

j) 6= ∅}, where E(S′

i, S
′

j) denotes the collections of all edges in

G×Kn − S with one end in S′

i and the other in S′

j .

Next we give two lemmas about the connectedness of G∗ and the structure of S′

i, which play a

key role in the proof of our main result. In the next proofs, we always assume κ(G) = δ(G) > 0.

In [20] proved that G∗ is connected if G is connected and |S| < (n − 1)δ(G). In fact, when

|S| = (n− 1)δ(G) here, we still get the result by using the same method in [20].

Lemma 2. If G is connected, then G∗ is connected.

Lemma 3. Let G be nonbipatite graph with κ(G) = δ(G). Then for any vertex of G∗, S′

i, as a

subset of V (G×Kn), it is contained in the vertex set of some component of G×Kn − S.

Proof. It suffices to prove the lemma for i = 1. We consider the cardinality of the set S′

i.

If |S′

1| = 1, then the assertion holds trivially. So we may assume that |S′| ≥ 2. We consider

the following two cases:

Case 1: |S′

1| ≥ 3. Suppose to the contrary that S′

1 is not contained in any component

of G × Kn − S. Then there must exist a component, say C, such that 0 < |S′

1 ∩ V (C)| ≤

|S′

1|/2 < |S′

1|−1. Let (u1, vp) ∈ S′

1∩V (C). By the conditions (1) and (3) of the definition of S,

G×Kn − S has at least one vertex, say (uj , vq)(j ∈ {2, . . . ,m}), such that (uj, vq) and (u1, vp)

are neighbors. Clearly, (uj , vq) ∈ V (C), and S′

1 − {(u1, vq)} ⊆ V (C) since every vertex in

S′

1 − {(u1, vq)} is adjacent to (uj , vq). It follows |S
′

1 ∩ V (C)| ≥ |S′

1| − 1, a contradiction.

Case 2: |S′

1| = 2. Let Z∗ = {S′

j : j ∈ {1, 2, . . . ,m}, |S′

j | = 1} and C∗ be a component

of G∗ − Z∗ which containing S′

1. Let |C∗| = r, without loss of generality, we may assume

V (C∗) = {S′

1, S
′

2, . . . , S
′

r}.

Since each S′

j ∈ V (C∗) contains at least two elements, any edge S′

jS
′

k in C∗ implies every

vertex in S′

k has at least one neighbor in S′

j in G × Kn − S. Therefore, if there is a vertex

S′

j in C∗ contains in the vertex set of some component C of G ×Kn − S, then every S′

k with

S′

kS
′

j ∈ E(C∗) is contained in V (C) as each |S′

j| > 1. It follows from the connectedness of C∗

that
⋃r

i=1 S
′

i ⊆ V (C) and hence S′

1 ⊆ V (C).

By Case 1, we may assume each S′

j ∈ V (C∗) contains exactly two elements. Let S′

j =

{uj} × Fj , j = 1, 2, . . . , r, and Fj ⊆ V (Kn).

Suppose that there exists an edge S′

jS
′

k in C∗ with Fj 6= Fk. It is easily to see that S′

j ∪ S′

k

induces a connected subgraph of G × Kn. This implies that S′

j and S′

k are contained in the
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same component, say C, of G ×Kn − S. As mentioned above, we have S′

1 ⊆
⋃r

i=1 S
′

i ⊆ V (C),

the lemma follows.

Otherwise, by the connectedness of C∗, we have F1 = F2 = · · · = Fr. Notice that C∗ and

G[
⋃r

i=1 S
′

i] are isomorphic to G[u1, u2, . . . , ur] and G[u1, u2, . . . , ur] × K2, respectively. If we

can prove that G[u1, u2, . . . , ur]×K2 is connected in G×Kn − S, then the lemma follows.

Note that G is connected. If G[u1, u2, . . . , ur] contains an odd cycle, then the assertion follows

by Lemma 1.

Suppose that G[u1, u2, . . . , ur] does not contain an odd cycle, that is, G[u1, u2, . . . , ur] is bipar-

tite. This implies that δ(G[u1, u2, . . . , ur]) ≤ r/2. Let j ∈ {1, 2, . . . , r} such that dG[u1,u2,...,ur ](uj)

= δ(G[u1, u2, . . . , ur]).

Let uk be a neighbor of uj in G. Then either S′

k ∈ Z∗ or S′

k is adjacent to S′

j in C∗. Thus,

δ(G) ≤ dG(uj) ≤ dC∗(S′

j) + |Z∗| = dG[u1,u2,...,ur ](uj) + |Z∗| ≤ r/2 + |Z∗|. (1)

Therefore, we have

(n− 1)δ(G) = |S| ≥ (n− 2)r + (n− 1)|Z∗| ≥ (n− 1)
(r

2
+ |Z∗|

)

≥ (n− 1)δ(G). (2)

This means that the equations holds in (1) and (2). Hence, n = 3, δ(G) = dG(uj) = r/2 + |Z∗|

and dG[u1,u2,...,ur](uj) = δ(G[u1, u2, . . . , ur]) = r/2. Since G[u1, u2, . . . , ur] is bipartite, it is r/2-

regular, so each vertex uj (1 ≤ j ≤ r) has the same degree r/2 + |Z∗| in G. This implies that

each S′

j (1 ≤ j ≤ r) is adjacent to all the vertices of Z∗ in G∗.

We claim that Z∗ 6= ∅.

Indeed, if Z∗ = ∅, then C∗ = G∗, so G[u1, u2, . . . , ur] = G[u1, u2, . . . , um] = G, which

contradicts our assumption that G is a nonbipartite graph. Clearly, G[u1, u2, . . . , ur]×K2 can

be connected by the vertices of Z∗, as desired. ✷

By the definition, the following lemma is straight.

Lemma 4. Let m = |G| ≤ 2 and ui be any vertex of G. Then

(1). δ(G − ui) ≥ δ(G) − 1, and

(2). κ(G− ui) ≥ κ(G) − 1.

5



3 Proof of the main result

Now we are ready to give the proof of Theorem 3. By Theorem 2, we only need to show that

the assertion in Theorem 3 is true for a nonbipartite graph G. Therefore, we always assume

that G is nonbipartite in our proof below.

Proof of Theorem 3. If G is disconnected, i.e., κ(G) = δ(G) = 0, then G×Kn is disconnected,

and the assertion holds. So we may assume that G is connected and δ(G) ≥ 1.

If we can show that for every subset S of G×Kn with |S| = (n−1)δ(G), either G×Kn−S is

connected or G×Kn−S has an isolated vertex, then we are done. Our proof is by contradiction.

Suppose that G×Kn is not super-κ. Then there is a separating set S with |S| = (n − 1)δ(G)

such that G×Kn−S is not connected but has no isolated vertex. If we can show that G×Kn−S

is connected, then we shall arrive at a contradiction and the assertion holds.

We will distinguish two possibilities as follows.

Case 1: If S satisfies condition (2), i.e., S′

i := Si−S 6= ∅, for i = 1, 2, . . . ,m. It follows from

Lemma 2 and Lemma 3 that G×Kn − S is connected.

Case 2: S does not satisfies condition (2). Then there exists an Si contained in S. So

S − Si ⊆ V ((G − ui)×Kn) and

|S − Si| = |S| − n = (n− 1)δ(G) − n

< min{nκ(G) − n, (n− 1)δ(G) − (n− 1)}

≤ min{nκ(G− ui), (n − 1)δ(G − ui)},

the last inequality above follows from Lemma 4.

By Theorem 1, we have κ((G − ui) × Kn) = min{nκ(G − ui), (n − 1)δ(G − ui)}, Hence,

(G − ui) × Kn − (S − Si) is connected. Note that (G − ui) × Kn − (S − Si) = G × Kn − S.

Hence G×Kn − S is connected.

In all cases, we show that G ×Kn − S is connected, this contradicts our assumption on S.

So the assertion follows.
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