
Drawing Trees in a Streaming Model�

Carla Binucci1, Ulrik Brandes2, Giuseppe Di Battista3,
Walter Didimo1, Marco Gaertler4, Pietro Palladino1,

Maurizio Patrignani3, Antonios Symvonis5, and Katharina Zweig6

1 Dipartimento di Ing. Elettronica e dell’Informazione, Università degli Studi di Perugia
2 Fachbereich Informatik & Informationswissenschaft, Universität Konstanz

3 Dipartimento di Informatica e Automazione, Università Roma Tre
4 Fakultät für Informatik, Universität Karlsruhe (TH)

5 Department of Mathematics, National Technical University of Athens
6 Department of Biological Physics, Eötvös Loránd University

Abstract. We introduce a data stream model of computation for Graph Drawing,
where a source produces a graph one edge at a time. When an edge is produced, it
is immediately drawn and its drawing can not be altered. The drawing has an im-
age persistence, that controls the lifetime of edges. If the persistence is k, an edge
remains in the drawing for the time spent by the source to generate k edges, then
it fades away. In this model we study the area requirement of planar straight-line
grid drawings of trees, with different streaming orders, layout models, and quality
criteria. We assess the output quality of the presented algorithms by computing
the competitive ratio with respect to the best known offline algorithms.

1 Introduction

We consider the following model. A source produces a graph one edge at a time. When
an edge is produced, it is immediately drawn (i.e., before the next edge is produced)
and its drawing can not be altered. The drawing has an image persistence, that controls
the lifetime of edges. If the persistence is infinite, edges are never removed from the
drawing. Otherwise, suppose the persistence is k, an edge remains in the drawing for
the time spent by the source to generate k edges, and then it fades away.

Studying this model, which we call streamed graph drawing, is motivated by the
challenge of offering visualization facilities to streaming applications, where massive
amounts of data, too large even to be stored, are produced and processed at a very high
rate [12]. The data are available one element at a time and need to be processed quickly
and with limited resources. Examples of application fields include computer network
traffic analysis, logging of security data, stock exchange quotes’ correlation, etc.

For the user of the visualization facility it is natural to associate any graphic change
with a new datum coming from the stream. Hence, moving pieces of the drawing would
be potentially ambiguous. On the other hand, the drawing should have a size as limited
as possible.

� Work on this problem began at the BICI Workshop on Graph Drawing: Visualization of Large
Graphs, held in Bertinoro, Italy, in March 2008.

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-131232

Erschienen in: Information Processing Letters ; 112 (2012), 11. - S. 418-422
https://dx.doi.org/10.1016/j.ipl.2012.02.011

293

Although streamed graph drawing is related to incremental and dynamic graph draw-
ing, it is qualitatively different from both. In incremental graph drawing the layout is
constructed step by step according to a precomputed vertex ordering that ensures invari-
ants regarding, e.g., its shape [3,7]. In streamed graph drawing the order cannot be cho-
sen. Dynamic graph drawing [4,11,13] usually refers to drawing sequences of graphs,
where drawings of consecutive graphs should be similar. Insertions and/or deletions
of vertices/edges are allowed and the current graph must be drawn without knowledge
of future updates. However, the current layout is only weakly constrained by previ-
ous drawings. In streamed graph drawing modifications concern only single edges and
previous layout decisions may not be altered.

While there is some work on computing properties of streamed graphs (see, e.g.,
[1,5,8]), very little has been done in the context of graph drawing. A result that applies
to streamed graph drawing with infinite persistence is shown in [13] in what is called
no change scenario. In that paper, a graph of maximum degree four is available one-
vertex-at-time and it is drawn orthogonally and with a few crossings.

We consider both a finite persistence and an infinite persistence model. Our results
in these models concern the area requirement for planar straight-line grid drawings of
trees, where we assume that the tree is streamed in such a way that the subtree to be
drawn is connected. Since a streamed graph drawing algorithm is a special case of an
online algorithm, it is reasonable to assess its output quality in terms of its competitive
ratio with respect to the best known offline algorithm. The obtained results are summa-
rized in Table 1, where n is the number of vertices of the current graph. For each type
of streaming order and for each class of trees investigated within each model, the table
reports the competitive ratio of a (specific) drawing algorithm, and the corresponding
lemma/theorem. The table puts in evidence the practical applicability of the finite per-
sistence model. On the other hand, the results on the infinite persistence model show
the intrinsic difficulty of the problem. In fact, in the paper we prove that a large family
of algorithms for the infinite persistence model requires Ω(2

n
8 /n) competitive ratio to

draw binary trees (see Lemma 5).
Another way to interpret our results on the infinite persistence model is the following:

All the area-efficient tree-drawing algorithms known in the literature have the capability
to inspect the entire tree for exploiting some balancing consideration. In the infinite
persistence model we ask the question of which is the achievable area bound if such an
inspection can not be done.

This paper is organized as follows. In Sect. 2 we introduce the concept of streamed
graph drawing. Area requirements for tree drawings in our two main models are derived
in Sects. 3 and 4, and we conclude with directions for future work in Sect. 5.

2 Framework

Let G = (V, E) be a simple undirected graph. A straight-line grid drawing Γ = Γ (G)
is a geometric representation of G such that each vertex is drawn as a distinct point of
an integer-coordinate grid, and each edge is drawn as a straight-line segment between
the points associated with its end-vertices. A drawing is planar if no two edges cross.

294

Table 1. Summary of the results: competitive ratios of the proposed algorithms

Finite persistence model (constant persistence k)

Streaming order Graph class Area (competitive ratio)

Eulerian tour tree O(k2) Sect. 3, Theorem 2

Infinite persistence model (unbounded memory, n is the current graph size)

Streaming order Graph class Area (competitive ratio)

connected binary tree Θ(2n) Sect. 4.1, Lemma 4

tree, max. degree d Θ((d − 1)n) Sect. 4.1, Lemma 6

tree Ω(2n/n) Sect. 4.1, Lemma 7

BFS, DFS tree Θ(n) Sect. 4.2, Lemma 8

layered tree, max. degree d Θ(dn) Sect. 4.3, Lemma 9

Since we only consider planar straight-line grid drawings we simply refer to them as
drawings in the remainder.

Given a subset of edges E′ ⊆ E, the edge-induced (sub)graph G[E′] contains ex-
actly those vertices of V incident with edges in E′, and the edges in E′. We study the
problem of drawing a (potentially infinite) graph G described by a sequence of edges
(e1, e2, e3, . . .), which we call a stream of edges, where ei is known at time i. Through-
out this paper, let W k

i = {ei−k+1, . . . , ei} denote a window of the stream of size k and
let Ei = {e1, . . . , ei} denote the prefix of the stream of length i. Observe that Ei = W i

i .
Our goal is to design online drawing algorithms for streamed graphs. An online

drawing algorithm incrementally constructs a drawing of the graph, by adding one edge
at a time according to the order in which they appear in the stream. Once a vertex is
placed, however, the decision must not be altered unless the vertex is removed.

Let Γ0 be an initially empty drawing. We deal with two models.

Finite persistence model. At each time i ≥ 1 and for some fixed parameter k ≥ 1,
called persistence, determine a drawing Γi of Gi = G[W k

i] by adding ei to Γi−1

and dropping (if i > k) ei−k from Γi.
Infinite persistence model. At each time i ≥ 1, determine a drawing Γi of Gi =

G[Ei] by adding ei to Γi−1.

We relate the connectivity of the graph to the persistence of the drawing. If the persis-
tence k is finite, a stream of edges is connected if G[W k

i] is connected for all i ≥ 1.
If the persistence is infinite, then a stream is connected if G[Ei] is connected for all
i ≥ 1. In both models we assume that the stream of edges is connected. Also, in the
finite persistence model we assume that our memory is bounded by O(k).

Since streamed graph drawing algorithms are special online algorithms, an important
assessment of quality is their competitive ratio. For a given online drawing algorithm A
and some measure of quality, consider any stream of edges S = (e1, e2, . . .). Denote
by A(S) the quality of A executed on S, and by Opt(S) the quality achievable by an
optimal offline algorithm, i.e. an algorithm that knows the streaming order in advance.

„~„„„„„„„„„,,\

: ;
1 t

: w 1 t
••• - -.. : ' 1 t __ ,:

1,„ \ „ t

:' ~ ;::._ .,_ --- --- --- --- ---
< ~~~:/ 1 V t:::.:::--=----=~~·::::_:~/

/·- 1 t W3 :

1 t
'

„ „„ „ „ „ „ „ „„

(a)

295

toe

(b)

Fig. L (a) An Eulerian tour with a persistence k = 5. When Ws is the current window, vertex v
is disappeared from the drawing. (b) A leg of vertex u.

Where possible, we measure the effectiveness of A by evaluating its competitive ratio:
A(S)

R A = ma.xs Opt(S) .

In the remainder of the paper we restrict our attention to the case where G is a tree,
the goal is to determine a planar straight-line grid drawing, and the measure of quality
is the area required by the drawing. Note that, Opt(S) = B (n) if G [S] is a binary tree
with n vertices [9] or if G[S] is a tree with n vertices and vertex degree bounded by
.fii [10]. The best lrnown area bound for general trees is O(n log n) [6, 14]. In the next
two sections we give upper and lower bounds on the area competitive ratio of streamed
tree drawing algorithms under several streaming orders.

3 Finite Persistence Drawings of Trees

We consider the following scenario, corresponding to the intuitive notion of a user
traversing an undirected tree: the edges of the stream are given according to an Eu
lerian tour of the tree where we suppose that the persistence k is much smaller than the
number of the edges of the tree (the tree may be considered " infinite"). Each edge is
traversed exactly twice: the first time in the f orward direction and the second time in
the backward direction. This corresponds to a DFS traversal where backtracks explic
itly appear. Observe that window Wik contains in general both fo rward and backward
edges and that G [Wik] is always connected. Figure 1 shows an example of an Eulerian
tour where several windows of size 5 are highlighted: window W1 contains two forward
and three backward edges; window W5 contains all backward edges.

In this scenario a vertex may be encountered several times during the traversal. Con
sider edge ei = (u , v) and assume that the Eulerian tour moves from u to v . We say that
ei leaves u and reaches v . Also, if v was already a vertex of Gi -1 (and hence is already
drawn in I'i -1) then, we say that ei returns to v . Otherwise, v has to be inserted into
the drawing I'i of Gi - Observe that if a vertex v, reached at time i, is reached again at

296

time j, with j > i + k + 1, and is not reached at any intermediate time, then v has (in
general) two different representations in Γi and Γj .

The first algorithm presented in this section is the following. Consider m integer-
coordinate points p0, p1, . . . , pm−1 in convex position. An easy strategy is to use such
points clockwise in a greedy way. At each time i, we maintain an index nexti such
that point pnexti is the first unused point in clockwise order. The first edge e1 is drawn
between points p0 and p1 and next2 = 2. Suppose that edge ei = (u, v) has to be added
to the drawing. If v is not present in Γi−1, assign to v the coordinates of pnexti and set
nexti+1 = (nexti + 1) mod m. We call this algorithm GREEDY-CLOCKWISE (GC).

Algorithm GC guarantees a non-intersecting drawing provided that two conditions
are satisfied for all i: (Condition 1) Point pnexti is not used in Γi by any vertex different
from v. (Condition 2) Edge ei does not cross any edge of Γi. Lemma 1 and Lemma 2
show that satisfying Condition 1 implies satisfying Condition 2. Let w be a vertex of
Γi, we denote by i(w) the time when vertex w entered Γi.

Lemma 1. Let Γi be a drawing of Gi constructed by Algorithm GC and let v1, v2, and
v3 be three vertices of Gi such that i(v1) < i(v2) < i(v3) in Γi. If there is a sequence
of forward edges from v1 to v3, then there is a sequence of forward edges from v1 to v2.

Proof. Consider edges ei(v1) = (v0, v1) and ej = (v1, v0) of the stream. The Eulerian
tour implies that the vertices reached by a forward path from v1 are those vertices
incident to some edge eh, with i(v1) < h < j. Suppose for a contradiction that v2

is not reached by a forward path from v1. Since v2 was drawn after v1, this implies
i(v2) > j. It follows that also i(v3) > j. Hence, v3 can not be reached by a forward
path from v1. ��
Lemma 2. Let Γi−1 be a drawing of Gi−1 constructed by Algorithm GC and consider
a vertex v that is not in Gi−1 and should be added to Gi−1 at time i. If Condition 1 is
satisfied, then no crossing is introduced by drawing v at pnexti .

Proof. Let ei = (u, v). Draw v on pnexti . Since Condition 1 is satisfied, then pnexti is
not used by any vertex. Suppose for contradiction that Γi has a crossing. It follows that
there exists in Γi an edge (x, y), such that vertices x, u, y, v appear in this relative order
in the clockwise direction. By Condition 1 and since the points are used in a greedy
way, i(x) < i(u) < i(y) < i(v). Because of edge (x, y), there is a forward path from x
to y and hence by Lemma 1 there is a forward path from x to u. Analogously, because
of edge (u, v), there is a forward path from u to v and hence by Lemma 1 there is a
forward path from u to y. Hence, there is an undirected cycle in Gi involving x, u, and
y. This is a contradiction since we are exploring a tree. ��
Consider two edges ei = (u, v) and ej = (v, u), with j > i. Observe that j − i is odd.
Edges ei, ei+1, . . . , ej are a leg of u. Vertices discovered at times i, i+1, . . . , j, i.e., the
j−i+1

2 distinct vertices incident to edges ei+1, . . . , ej−1, are a foot of u. Node v is the
heel of the foot and the last discovered vertex of the foot is the toe. Figure 1(b) shows
the drawing of a leg (and provides a hint of why its vertices are called a foot). A foot is
itself composed of smaller feet, where the smallest possible foot is when a leaf of the
tree is reached, that is, when its heel and its toe are the same vertex (as for vertex y of
Fig. 1(b)).

297

Consider the case when j − i ≤ k. This implies that u is present in all the drawings
Γi−1, . . . , Γj+k . In this case we say that the foot is a regular foot (or R-foot). Otherwise,
we say that it is an extra-large foot (or XL-foot).

Property 1. A regular foot has maximum size �k
2 �.

Observe that in any drawing constructed by Algorithm GC the vertices of a regular foot
are contiguously placed after its heel, the toe being the last in clockwise order.

Property 2. Let i be the time when an extra-large foot of v is entered by the Eulerian
tour. Vertex v disappears from the drawing at time i + k.

Now, we exploit the above properties and lemmas to prove that, if k is the persistence
of the drawing and if the tree has maximum degree d (where a binary tree has d = 3),
then it suffices using �k

2 � · (d− 1)+ k+1 points in convex position to guarantee to GC
that Condition 1 is satisfied. In order to prove this we need the following lemma.

Lemma 3. Consider Algorithm GC on m points in convex position. Suppose that for
each vertex v it holds that during the time elapsing from when v is discovered and
when it disappears from the drawing at most m− 1 other vertices are discovered. Then
Condition 1 holds at each time.

Proof. Suppose, for a contradiction that there exists a vertex u, discovered at time i, for
which Condition 1 does not hold because point pnexti is used by vertex w 	= u. Since
GC is greedy, after u has been inserted all the m points have been used. This implies
that after w and before u, m − 1 vertices have been discovered. Summing up, we have
that w violates the condition of the statement.

Theorem 1. Let S be a stream of edges produced by an Eulerian tour of a tree of degree
at most d. Algorithm GC draws S with persistence k without crossings on �k

2 � · (d −
1) + k + 1 points in convex position. Also RGC = O(d3k2).

Proof. Due to Lemma 2 it suffices to show that Condition 1 holds at each time i. We
exploit Lemma 3 to show that during the time elapsing from when a vertex v is discov-
ered and when it disappears from the drawing at most �k

2 � · (d − 1) + k other vertices
are discovered. Suppose v is discovered by edge ei = (u, v). Three cases are possible:
(i) v is a leaf; (ii) all feet of v are regular; (iii) v has an XL-foot. Case (i) is simple: we
have that v disappears from the drawing at time i+k+1. Hence, at most k vertices can
be discovered before it disappears. In Case (ii) since each R-foot can have at most �k

2 �
vertices (Property 1) and since at most (d − 1) of them can be traversed, the maximum
number of vertices that can be discovered after v enters the drawing and before it disap-
pears is �k

2 �·(d−1)+k (see Fig. 1(a) for an example with k = 5). In Case (iii), because
of Property 2, after the XL-foot is entered, at most k vertices can be discovered before
v disappears. Hence, the worst case is that the XL-foot follows d − 2 R-feet. Overall, a
maximum of �k

2 � · (d − 2) + k vertices can be discovered before v disappears.
Regarding the competitive ratio, m grid points in convex position take O(m3) area

[2], and therefore the area of the drawing of our online algorithm is Θ(d3k3). Finally,
any offline algorithm requires Ω(k) area for placing O(k) vertices. ��

298

�

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����

foot 1

foot 2

foot 3

foot 4

u

���
���
���
���
���
���
���

�

���
���
���
���

���
���
���
���
���
���

�
�����
�����
�����
�����
�����
�����
�����
�����

�

��������
��������
��������
��������
��������
��������

foot 1

foot 2

foot 3’

foot 3’’foot 3’’’

v

u

(a) (b)

Fig. 2. (a) Feet 1, 2, and 3 are drawn by GC, foot 4 is drawn by GCC. (b) Foot 3 is an XL-foot
of u. Its size is large enough to promote v as the oldest vertex in place of u.

Theorem 1 uses a number of points that is proportional to the maximum degree of
the tree. In the following we introduce a second algorithm that uses a number of points
that only depends on the persistence k.

Intuitively, the basic strategy is to alternate Algorithm GC with its mirrored version,
called GREEDY-COUNTER-CLOCKWISE (GCC), where, at each step, nexti is possibly
decreased rather than increased. Namely, let old(Γi) be the oldest vertex of Γi, that is,
the vertex that appears in Γi, Γi−1, . . . , Γi−j with highest j. The decision of switching
between GC and GCC (or vice versa) is taken each time you start to draw a new foot of
old(Γi). We begin with Algorithm GC and use points in the clockwise direction with
respect to old(Γi) until we have used enough of them to ensure that the points near
to old(Γi) in the counter-clockwise direction are available. At this point, we switch to
Algorithm GCC, starting from the point immediately next to old(Γi) in the counter-
clockwise direction, and we use Algorithm GCC to draw the next feet of old(Γi)
until the last drawn foot of old(Γi) has used enough points in the counter-clockwise
direction to ensure that the points in clockwise direction are available. Figure 2(a)
shows an example where three feet were drawn by GC and the fourth foot is drawn
by GCC.

Formally, Algorithm SNOWPLOW (SP) works as follows. Let oldi be the index of
the point of Γi where old(Γi) is drawn. Suppose that edge ei = (u, v) has to be added to
the drawing. If v is present in Γi−1 then Γi = Γi−1. Otherwise, if u 	= oldi or u = oldi

but (nexti − oldi) mod m ≤ �k
2�, place v on pnexti and set nexti+1 = (nexti + 1)

mod m. If u = oldi and (nexti − oldi) mod m > �k
2�, then switch to GCC, that is,

place v on point p(oldi−1) mod m and set nexti+1 = (oldi − 2) mod m.
A critical step is when old(Γi) 	= old(Γi−1). This happens when an XL-foot is drawn

either by GC or by GCC. In this case the heel of such a foot becomes the oldest vertex
(see Fig. 2(b) for an example).

We show in the following that SP needs 2k − 1 points in convex position to pro-
duce a non-crossing drawing of the stream of edges independently of the degree of the
vertices.

299

Theorem 2. Let S be a stream of edges produced by an Eulerian tour of a tree. Al-
gorithm SP draws S with persistence k without crossings on 2k − 1 points in convex
position. Also RSP = O(k2).

Sketch of Proof: Suppose that Algorithm SP is in its GC phase. Assume, without loss
of generality, that poldi = p0, and denote by P+ = {p1, p2, . . . p� k

2 �−1} (P− =
{p−1, p−2, . . . p−� k

2 �+1}) the points after poldi in clockwise (counter-clockwise) order.
Consider the case when poldi has a sequence of R-feet. In order to switch to the GCC
phase at least �k

2 � points and at most 2�k
2 �−1 points of P+ are used. Since at least �k

2 �
points are used of P+, at least the same amount of time elapsed from when the current
GC phase started. Hence, points in P− are not used by any vertex. ��

4 Infinite Persistence Drawings of Trees

We consider different scenarios depending on the ordering of the edges in the stream:
(i) The edges come in an arbitrary order, with the only constraint that the connectivity is
preserved, (ii) the edges come according to a DFS/BFS traversal, (iii) the edges come
layer by layer. For each scenario different classes of trees are analyzed.

4.1 Arbitrary Order Scenario

In the arbitrary order scenario we first analyze the case of binary trees, then we give
results for bounded degree trees and, eventually, for general trees. The following lemma
deals with a very simple drawing strategy.

Lemma 4. Let S = (e1, e2, . . .) be any stream of edges such that, at each time i ≥ 1,
Gi is a rooted binary tree. Suppose that the root of all Gi is one of the two end-vertices
of e1. There exists a drawing algorithm A for S in the infinite persistence model, such
that the drawing of any Gi is downward with respect to the root and RA = Θ(2n).

Sketch of Proof: Place the root at (0, 0) and place its first child v1 on (0, 1) and its
second child v2 on (1, 1). For every vertex v placed at (x, y) reserve in each subsequent
row z > y the points from xl = 2z−y · x to xr = 2z−y(x + 1) − 1 (see Fig. 3(a)). It is
easy to see that an area of O(n) × O(2n) is always sufficient for any stream of edges
representing a binary tree. The bound is tight since the stream describing the path-like
tree of Fig. 3(a) uses an area of Ω(n) × Ω(2n). Since the best offline algorithm can
draw a binary tree in linear area, the statement follows. ��

The algorithm in the proof of Lemma 4 is such that whatever is the order in which the
edges of a complete binary tree are given, it always computes the same drawing, up
to a permutation of the vertex labels. We call such an algorithm a predefined-location
algorithm for binary trees. Since the competitive ratio of the very simple algorithm in
Lemma 4 is exponential, one can ask if there exists a better algorithm that uses a similar
strategy. Unfortunately, the next result shows that this is not the case.

Lemma 5. Let A be any predefined-location algorithm for binary trees in the infinite
persistence model. Then RA = Ω(2

n
8 /n).

300

2h

e1
e2

e3

e4

e5

0

1

2

3

4

0 1 2 3 4 5 6 87

h

−1

(a)

e1

u

v

R

Ωarea = (2)h

num. vertices = O(h)

(b)

Fig. 3. (a) A drawing produced by the algorithm in the proof of Lemma 4. Bold edges represent an
edge sequence that causes exponential area. (b) Schematic illustration of the proof of Lemma 5.

Proof. We show that there exists a sequence of edges such that the drawing computed
by A for the binary tree induced by this sequence requires Ω(2

n
8) area, where n is

the number of vertices of the tree. Since there exists an offline algorithm that com-
putes a drawing of optimal area Θ(n) for the binary tree, this implies the statement.
Refer to Fig. 3(b). By hypothesis the algorithm always computes the same drawing
for a rooted complete binary tree of depth h. Consider the bounding box R of such a
drawing. Clearly, the area of R is Ω(2h). Every path between two vertices of a com-
plete binary tree of depth h consists of at most 2h + 1 vertices and 2h edges (the first
level has number 0). Independently of the position of the first edge e1 = (u, v) of the
stream, we can define a subsequence of the stream with at most 8h edges that forces
the algorithm to draw two paths, one consisting of at most 4h edges and going from
the left side to the right side of R, and the other consisting of at most 4h edges and
going from the bottom side to the top side of R, as shown in the figure. Therefore, for
this subsequence of n = 8h edges and vertices the algorithm constructs a drawing of
area Ω(2h). ��
If the stream of edges induces at each time a tree whose vertices have degree bounded
by a constant d, then we can define a drawing algorithm similar to the one described in
the proof of Lemma 4. Namely, when a new edge e = (u, v) is processed and v is the
k-th child of u, we set y(v) = y(u)+1 and x(v) = (d−1) ·x(u)+k−1. Hence, using
the same worst case analysis performed in the proof of Lemma 4, the drawing area used
by this algorithm is Θ(n)×Θ((d−1)n). Since there exists an offline drawing algorithm
that takes Θ(n) area for bounded degree trees [10], we get the following result.

Lemma 6. Let S = (e1, e2, . . .) be any stream of edges such that, at each time i ≥ 1,
Gi is a tree with vertex degree at most d. There exists a drawing algorithm A for S in
the infinite persistence model, such that RA = Θ((d − 1)n).

The next result extends Lemma 6 to general trees. It proves that there exists an algorithm
to draw any infinite tree in the infinite persistence model, under the hypothesis that the
stream is connected. In this case we give only a lower bound of the area.

301

(a) (b) (c) (d) (e) (t)

Fig. 4. Illustration of the algorithm described in the proof of Lemma 7

(a) (b) (c)

Fig. 5. Slicing the cone of a vertex and inserting its child: (a) initial configuration; (b) slicing the
cone and finding the closest grid point; (c) inserting the edge.

Lemma 7 . There exists an algorithm A that draws in the infinite persistence model any
stream of edges S = (e1 , e2 , ...) such that Gi is a tree of arbitrary vertex degree. The
exponential competitive ratio of Ais RA = il(2n /n).

Sketch of Proof' A greedy drawing strategy is the following (see Fig. 4 and Fig. 5).
For each vertex u already placed in the drawing, the algorithm reserves an infinite cone
centered at u that does not intersect with any other cone. Each time a new edge e =

(u, v) is added to the drawing, the algorithm splits the cone of u into two halves, one
of which will be the new cone of u and the other will be used to place v at the first
available grid point inside it and to reserve a new (sub-)cone for v. Since all the cones
assigned to vertices are infinite, it is always possible to add further edges.

The lower bound of the competitive ratio is obtained when using as input the fam
ily Gn = (Vn , En) defined by Vn = {l, ... ,n} andEn = {(i, i + 1): 1 ~ i ~
n-2}u{(n-2,n)}. D

4.2 BFS and DFS Order Scenarios

If the edges in the stream are given according to some specific order, algorithms can be
designed that improve the competitive ratio obtained in the case of the arbitrary order.
We focus on orderings deriving from BFS or DFS traversals.

Lemma 8. Let S = (e 1 , e2 , ...) be a stream of edges such that G i is a tree of any
vertex degree, at each time i :::=:: 1, and the edges of the stream are given according to
a BFS or to a DFS visit of the graph. There exists a drawing algorithm Afor S in the
infinite persistence model, such that RA = B(n).

Sketch of Proof' In the case of the BFS order, we place the first vertex at (0, 0) and
all of its k children consecutively along the next row, starting at (0, 1). Processing the
children of any vertex at (x , y) we place all its children on the Ieftmost position that is

302

1 2 3 4 5 6 870

0

1

2

3

4

5

6

1

2 3 4

5 6 8 9

10 11 12

7

1413

15 16 17 18 19

20

(a)

1 2 3 4 5 6 870

0

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9 1110

12

13

14

15

16 17

18

(b)

0

1

2

3

4

1 2 3 4 5 6 870

(c)

Fig. 6. Running examples of drawing algorithms for (a) BFS (b) DFS, and (c) layer ordering

not yet occupied, starting at (0, y + 1) (see Fig. 6(a)). The required area is clearly in
O(n2) for this algorithm. For offline algorithms the required area is bound from below
by Ω(n) and thus the statement follows. It can be seen that the worst–case for the BFS
order requires a quadratic area, which implies that the analysis is tight. When drawing
a tree that comes in DFS order, every vertex can be placed at the leftmost unoccupied
position below its parent. The area is O(n2) and the analysis of the worst case implies
that this bound is tight. ��

4.3 Layer Order

This scenario is intermediate between the BFS order scenario and the arbitrary order
one. In the layer order scenario edges come layer by layer, but the order of the edges in
each layer is arbitrary. We prove the following.

Lemma 9. Let d > 0 be a given integer constant and let S = (e1, e2, . . .) be any
stream of edges such that Gi is a tree of vertex degree at most d, at each time i ≥ 1,
and the edges of the stream are given according to a layer order. There exists a drawing
algorithm A for S in the infinite persistence model, such that RA = Θ(dn).

Proof. Algorithm A works as follows. If e1 = (u, v) is the first edge of the stream,
set x(u) = 0, y(u) = 0, x(v) = 0, y(v) = 1. Also, since u has at most other d − 1
adjacent vertices, reserve (d − 1) consecutive grid points to the right of v. When the
first vertex of a new level l (l ≥ 1) enters the drawing, all vertices of the previous level
l − 1 have been already drawn. Hence, if nl−1 is the number of vertices of level l − 1,
reserve (d−1)nl−1 consecutive grid points for the vertices of level l. Namely, denote by
u1, u2, . . . , unl−1 the vertices at level l − 1, from left to right. Use the leftmost (d − 1)
grid points at level l for arranging the children of u1, the next (d − 1) grid points for
arranging the children of u2, and so on. See Fig. 6(c) for an example. The width of the
drawing increases at most linearly with the number of vertices of the tree. Indeed, if the
width of the drawing is w, there is at least one level l of the drawing having a vertex
with x-coordinate equal to w. This implies that level l− 1 contains w/(d− 1) vertices.
Also, since each level contains at least one vertex and since the height of the drawing is
equal to the number of levels, the height of the drawing increases at most linearly with
the number of vertices. Hence, the area is O(dn) × O(n). Also, it is easy to find an
instance requiring such an area. The best offline algorithm takes Θ(n) area. ��

303

5 Open Problems

This paper opens many possible research directions, including the following: (i) Some
of our algorithms have high competitive ratio, hence it is natural to investigate better
solutions. (ii) Computing tighter lower bounds would allow us to have a more precise
evaluation of streaming algorithms. (iii) It would be interesting to extend the study to
larger classes of planar graphs or even to general graphs. (iv) Other persistence mod-
els can be considered. For example we could have drawings where the persistence is
O(log n), where n is the size of the stream.

Acknowledgments

We thank Ioannis G. Tollis for interesting conversations.

References

1. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an ap-
plication to counting triangles in graphs. In: Proc. SODA, pp. 623–632 (2002)

2. Bárány, I., Tokushige, N.: The minimum area of convex lattice n-gons. Combinatorica 24(2),
171–185 (2004)

3. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computational Geom-
etry 9, 159–180 (1998)

4. Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs.
LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)

5. Buriol, L., Donato, D., Leonardi, S., Matzner, T.: Using data stream algorithms for computing
properties of large graphs. In: Proc. Workshop on Massive Geometric Datasets (MASSIVE
2005), pp. 9–14 (2005)

6. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward
drawings of binary trees. Comput. Geom. Theory Appl. 2, 187–200 (1992)

7. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10, 41–51 (1990)

8. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-
streaming model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

9. Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and arbitrary aspect
ratio. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 320–331.
Springer, Heidelberg (2002)

10. Garg, A., Rusu, A.: Straight-line drawings of general trees with linear area and arbitrary
aspect ratio. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003.
LNCS, vol. 2669, pp. 876–885. Springer, Heidelberg (2003)

11. Huang, M.L., Eades, P., Wang, J.: On-line animated visualization of huge graphs using a
modified spring algorithm. J. Vis. Lang. Comput. 9(6), 623–645 (1998)

12. Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and Trends in
Theoretical Computer Science 1(2), 117–236 (2005)

13. Papakostas, A., Tollis, I.G.: Interactive orthogonal graph drawing. IEEE Trans. Comput-
ers 47(11), 1297–1309 (1998)

14. Shiloach, Y.: Arrangements of Planar Graphs on the Planar Lattice. Ph.D. thesis, Weizmann
Institute of Science (1976)

