
A deterministic algorithm for fitting a step function to a

weighted point-set
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Abstract

Given a set of n points in the plane, each point having a positive weight, and an integer
k > 0, we present an optimal O(n log n)-time deterministic algorithm to compute a step
function with k steps that minimizes the maximum weighted vertical distance to the input
points. It matches the expected time bound of the best known randomized algorithm for
this problem. Our approach relies on Cole’s improved parametric searching technique. As
a direct application, our result yields the first O(n log n)-time algorithm for computing a
k-center of a set of n points on the real line.

1 Problem formulation and previous works

A function f : R→ R is called a k-step function if there exists a real sequence a1 < · · · < ak−1
such that the restriction of f to each of the intervals (−∞, a1), [ai, ai+1) and [ak−1,+∞) is
a constant. A weighted point in the plane is a triplet p = (x, y, w) ∈ R3 where (x, y) ∈ R2

represents the coordinates of p and w > 0 is a weight associated with p. We use d(p, f) to
denote the weighted vertical distance w · |f(x) − y| between p and f . For a set of weighted
points P , we define the distance d(P, f) between P and a step function f as:

d(P, f) = max{d(p, f) | p ∈ P}.

Given the point-set P , our goal is to find a k-step function f that minimizes d(P, f).
This histogram construction problem is motivated by databases applications, where one

wants to find a compact representation of the dataset that fits into main memory, so as to
optimize query processing [6]. The unweighted version, where wi = 1 for all i, has been studied
extensively, until optimal algorithms were found. (See our previous article [5] and references
therein.)

The weighted case was first considered by Guha and Shim [6], who gave an O(n log n +
k2 log6 n)-time algorithm. Lopez and Mayster [10] gave an O(n2)-time algorithm, which is thus
faster for small values of k. Then Fournier and Vigneron [5] gave an O(n log4 n) algorithm,
which was further improved to O(min(n log2 n, n log n + k2 log n

k log n log logn)) by Chen and
Wang [2]. Eventually, an optimal randomized O(n log n)-time algorithm was obtained by Liu [9].
In this note, we present a deterministic counterpart to Liu’s algorithm, which runs in O(n log n)
time. This time bound is optimal as the unweighted case already requires Ω(n log n) time [5].
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Our approach combines ideas from previous work on this problem [6, 7] with the improved
parametric searching technique by Cole [4].

Our result has a direct application to the k-center problem on the real line: Given a set
of n points r1 < · · · < rn ∈ R, with weights w1, . . . , wn, the goal is to find a set of k centers
c1, . . . , ck ∈ R that minimizes the maximum over i of the weighted distance wid(ri, {c1, . . . , ck}).
Given such an instance of the weighted k-center problem, we construct an instance of our step-
function approximation problem where the input points are pi = (i, ri) for i = 1, . . . , n, keeping
the same weights w1, . . . , wn. Then these two problems are equivalent: The y-coordinates of the
k steps of an optimal step-function give an optimal set of k centers. So our algorithm also solves
the weighted k-center problem on the line in O(n log n) time, improving on a recent result by
Chen and Wang [3].

2 An optimal deterministic algorithm

We consider an input set of weighted points P = {(xi, yi, wi) | 1 6 i 6 n}, and an integer k > 0.
Let ε∗ denote the optimal distance from P to a k-step function, that is,

ε∗ = min{d(P, f) | f is a k-step function}.

Karras et al. [7] made the following observation:

Lemma 1 Given a set of n weighted points sorted with respect to their x-coordinate, an integer
k > 0 and a real ε > 0, one can decide in time O(n) if ε < ε∗.

The above lemma is obtained by a greedy method, going through the points from left to right
and creating a new step whenever necessary. More than k steps are created along this process
if and only if ε < ε∗. A consequence is that once ε∗ is known, an optimal k-step function can
be built in linear time by running this algorithm on ε = ε∗.

A second observation, made by Guha and Shim [6], is the following. The distance of a point
p = (xi, yi, wi) to the constant function c is equal to d(p, c) = wi · |c − yi|. Hence, for a (non
empty) subset Q ⊆ P of the input points, the distance min{d(Q, f) | f is a constant function}
between Q and the closest constant function is given by the minimum y-coordinate of the points
in the region UQ defined as:

UQ =
⋂

(xi,yi,wi)∈Q

{(x, y) | y > wi · |x− yi|}.

In other words, the distance between Q and the closest 1-step function is the y-coordinate of the
lowest vertex in the upper envelope UQ of the lines with equation y = ±wi(x−yi) corresponding
to the points (xi, yi, wi) ∈ Q. (There is only one lowest vertex as the slopes ±wi are nonzero.)

An immediate consequence is the following. For i ∈ {1, . . . , n}, let `2i−1 be the line defined
by the equation y = wi(x−yi), and `2i the line defined by y = −wi(x−yi). Let L = {`1, . . . , `2n}.
We denote by A(L) the arrangement of these lines. (See Figure 1.)

Lemma 2 The optimal distance ε∗ from a set of weighted points P to a k-step function is the
y-coordinate of a vertex of A(L).

The deterministic algorithm presented here will be obtained by performing a search on the
vertices of A(L), calling the decision procedure of Lemma 1 only O(log n) times, and with an
overall extra time O(n log n). We achieve it by applying Cole’s improved parametric searching
technique [4]:
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Figure 1: The arrangement A(L) and the upper envelope (shaded) of a subset Q ⊂ L (bold).The
y-coordinate of the lowest point u in UQ gives the minimum distance from Q to a 1-step function.

Theorem 3 (Cole) Consider the problem of sorting an array A[1, . . . , n] of size n. Assume
the following two conditions hold:

(i) There is an O(n) time algorithm to test if A[i] 6 A[j].

(ii) There exists a linear order � on the set {(i, j) | 1 6 i < j 6 n} such that

(i, j) � (i′, j′) ⇒
(
A[i] 6 A[j]⇒ A[i′] 6 A[j′]

)
and such that we can decide if (i, j) � (i′, j′) in O(1) time.

Then, the array A can be sorted in O(n log n) time.

We briefly explain Cole’s method. Recall that a sorting network [8] for n elements is a
sequence L1, . . . , Ld, each Li being a set of comparisons on disjoint inputs in {1, . . . , n}. On
an input array A[1, . . . , n], the network operates as follows: for each level p from 1 to d, the
comparisons in Lp are performed in parallel, and the two elements of A corresponding to each
comparison are swapped if they appear in the wrong order. If the sorting network is correct,
the elements of A are output in sorted order after the last level.

The algorithm from Theorem 3 works as follows. First build a sorting network of depth
O(log n) in deterministic O(n log n) time [1, 11]. During the course of the sorting algorithm,
each comparison in the network is marked with one of the following labels: resolved, active or
inactive. In the beginning, the comparisons at the first level L1 of the network are marked
active, while all others are inactive. The weight 1/4p is assigned to each active node at level p.
Repeat the following until all nodes are resolved:

– Compute the weighted median (im, jm) of all active comparisons with respect to the order
� defined in (ii);

– Decide if A[im] 6 A[jm] with the algorithm from (i). This solves a weighted half of the active
comparisons. Swap the corresponding element of A when in the wrong order, and mark
these comparisons as resolved. Mark all inactive comparisons having their two inputs
resolved as active.

It can be proved that at most O(n) nodes are active at any step. Since the weighted median can
be computed in linear time, each step is performed in O(n) time. Moreover, it can be showed
that the algorithm terminates in at most O(log n) steps. So overall, this procedure sorts an
array of size n in O(n log n) time.

We are now ready to give our algorithm for fitting a step function to a weighted point set:
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Theorem 4 Given a set P of n weighted points in the plane and an integer k > 0, a k-step
function f minimizing d(P, f) can be computed in O(n log n) deterministic time.

Proof: Let θ : R → {0, 1} be the mapping defined by θ(ε) = 0 if ε < ε∗ and θ(ε) = 1
otherwise. First we sort the points of P with respect to their x-coordinate. Given ε, this allows
to compute θ(ε) in time O(n), using the decision algorithm of Lemma 1.

We denote by π : R2 → R the projection onto y-coordinate axis. Recall the definition of
the lines L = {`1, . . . , `2n}. For y ∈ R, let `i(y) be the unique x ∈ R such that (x, y) ∈ `i; it is
well-defined since no line is parallel to the x-axis. By Lemma 2, it holds that

ε∗ = min{π(v) | v vertex of A(L), θ(π(v)) = 1}.
Although ε∗ is not known, we shall sort the set {`i(ε∗) | 1 6 i 6 2n} using Cole’s method.

Note that L could be of cardinality smaller than 2n if some lines are identical. We discard
identical lines and order them with respect to their order at −∞. That is, L = {`1, . . . , `m} and
for all 0 < i < m, it holds that `i(y) < `i+1(y) when y → −∞. Let us check that conditions (i)
and (ii) of Theorem 3 hold.

Condition (i): Given i < j, we want to decide if `i(ε
∗) 6 `j(ε

∗). If lines `i and `j are parallel,
the ordering on the lines ensures that `i(y) < `j(y) for all y and in particular for ε∗. Otherwise,
we compute y0 = π(`i ∩ `j) in time O(1), then decide if y0 < ε∗ in time O(n) by Lemma 1. If
y0 < ε∗, then `i(ε

∗) > `j(ε
∗); otherwise `i(ε

∗) 6 `i(ε
∗).

Condition (ii): For i < j, let us define π̃(`i, `j) = π(`i ∩ `j) if lines `i and `j intersect, and
π̃(`i, `j) = +∞ otherwise. (Or equivalently π̃(`i, `j) = sup{y ∈ R | `i(y) < `j(y)}.) Let � be
the order on the set {(i, j) | 1 6 i < j 6 m} defined by:

(i, j) � (i′, j′) if and only if π̃(`i, `j) 6 π̃(`i′ , `j′).

Assume (i, j) � (i′, j′) and `i(ε
∗) 6 `j(ε

∗). (See figure 2.) From the second condition, it holds

`i

`j
`i′

`j′

π(`i ∩ `j)

π(`i′ ∩ `j′)

ε∗

y

Figure 2: A case where (i, j) � (i′, j′) and `i(ε
∗) 6 `j(ε

∗).

that ε∗ 6 π̃(`i, `j), then the first condition yields ε∗ 6 π̃(`i′ , `j′); it follows that `i′(ε
∗) 6 `j′(ε

∗).
Moreover, the order � can obviously be computed in O(1) time.

Hence Theorem 3 allows to compute a permutation σ of {1, . . . ,m} such that

`σ(1)(ε
∗) 6 `σ(2)(ε

∗) 6 . . . 6 `σ(m)(ε
∗)

in time O(n log n). By Lemma 2, it holds that ε∗ ∈ {π(`σ(i) ∩ `σ(i+1)) | 0 < i < m}. After
sorting this set, we perform a binary search using the linear-time decision algorithm, and thus
we compute ε∗ in O(n log n) time. At last, we run the decision algorithm on ε∗, which gives an
optimal k-step function for P .
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3 Concluding remarks

When the input points are given in unsorted order, our algorithm is optimal by reduction from
sorting [5]. So an intriguing question is whether there exists an o(n log n)-time algorithm when
the input points are given in sorted order. For instance, in the unweighted case, a linear-time
algorithm exists if the points are sorted according to their x-coordinates [5].

Our algorithm is mainly of theoretical interest, as Cole’s parametric searching technique
relies on a sorting network with O(log n) depth; all known constructions for such networks in-
volve large constants. So it would be interesting to have a practical O(n log n)-time deterministic
algorithm.
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[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n parallel sets. Combinatorica,
3(1):1–19, 1983.

[2] Danny Z. Chen and Haitao Wang. Approximating points by a piecewise linear function: I. In
ISAAC, pages 224–233, 2009.

[3] Danny Z. Chen and Haitao Wang. Efficient algorithms for the weighted k-center problem on a real
line. In ISAAC, pages 584–593, 2011.

[4] Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34(1):200–208, 1987.
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